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Abstract

Wide angle fisheye images are becoming increasingly
common for perception tasks in applications such as robotics,
security, and mobility (e.g. drones, avionics). However, cur-
rent models often either ignore the distortions in wide angle
images or are not suitable to perform pixel-level tasks. In
this paper, we present an encoder-decoder model based on
a radial transformer architecture that adapts to distortions
in wide angle lenses by leveraging the physical character-
istics defined by the radial distortion profile. In contrast
to the original model, which only performs classification
tasks, we introduce a U-Net architecture, DarSwin-Unet,
designed for pixel level tasks. Furthermore, we propose a
novel strategy that minimizes sparsity when sampling the
image for creating its input tokens. Our approach enhances
the model capability to handle pixel-level tasks in wide an-
gle fisheye images, making it more effective for real-world
applications. Compared to other baselines, DarSwin-Unet
achieves the best results across different datasets, with sig-
nificant gains when trained on bounded levels of distor-
tions (very low, low, medium, and high) and tested on all,
including out-of-distribution distortions. We demonstrate
its performance on depth estimation and show through ex-
tensive experiments that DarSwin-Unet can perform zero-
shot adaptation to unseen distortions of different wide an-
gle lenses. The code and models are publicly available at
https://lvsn.github.io/darswin-unet/.

1. Introduction
1 Many areas in computer vision, such as security [17],

augmented reality (AR) [40], healthcare, and particularly
autonomous vehicles [10, 58], utilize wide angle lenses be-
cause they minimize costs by requiring fewer cameras to
capture a 360◦ scene due to their increased field of view.

However, this cost benefit comes with a drawback: im-
ages captured by wide angle lenses exhibit significant distor-
tion because the projection model is no longer perspective.
Straight lines in the real world appear curved in the image,
and the geometry of objects changes as a function of their

1*Authors contributed equally

location in the image. The majority of CNN-based models
have an implicit bias towards perspective images—indeed,
the distortions in wide angle lenses break the translational
equivariance of CNNs, limiting their applicability. The di-
versity in wide angle lens distortions further exacerbates this
problem: a method trained on a specific lens distortion does
not generalize well when evaluated on another lens with dif-
ferent distortion—one must therefore repeat the entire data
collection, training procedure, etc. on such a new lens.

One popular strategy to improve generalization when
tested on another lens is canceling the distortion effect by
warping the input image back to the perspective projection
model. A wide array of such methods, ranging from clas-
sical [5, 15, 34, 37, 60] to deep learning [50, 56], have been
proposed to train and test on the undistorted image. Un-
fortunately, canceling the effect of the distortion of wide
angle images tends to create severely stretched images. It
can also restrict the maximum field of view since, in the
limit, a point at 90◦ azimuth projects at infinity, but reducing
the maximum field of view defeats the purpose of using a
wide angle lens in the first place. Other projections are also
possible (e.g., cylindrical [35], or piecewise linear [58]), but
these also tend to create unwanted distortions or suffer from
resolution loss. Some methods like [1, 36] use deformable
convolutions [9, 61] to reason on wide angle image without
undistorting them. Here, convolution kernels adapt to the
lens distortion of the given image during training. However,
these methods tend to overfit to the wide angle lens distor-
tion present at training; hence, they cannot generalize over
unseen lens distortion at test time. Transformer-based archi-
tectures [2, 7] are also used to reason directly on the wide
angle image, even evaluating the generalization performance
to other distortions in DarSwin [2]. However, DarSwin was
only demonstrated for classification, and HealSwin [7] could
not adapt to other lenses at test time. To this date, it is not
clear whether distortion-aware architectures can be trained
for pixel-level tasks with zero-shot generalization to other
distortion lenses at test time without fine-tuning.

In this work, we present a robust solution to that very prob-
lem. In particular we present an encoder-decoder architec-
ture named DarSwin-Unet, which leverages DarSwin [2] as
the encoder. While this strategy is effective, we observe that
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the image sampling pattern proposed in [2] creates sparsity
issues which negatively affect the performance of pixel-level
tasks such as depth estimation. To address this issue, we pro-
pose a novel pixel sampling method that mitigates the afore-
mentioned sparsity problem, thereby significantly improving
depth estimation performance. We present experiments on
the depth estimation task, which show that DarSwin-Unet is
much more robust to changes in lens distortions at test time
than all of the compared baselines, including Swin-Unet [6]
and Swin-UPerNet [32, 49] trained on both distorted and
undistorted images, and DAT-UPerNet [47, 49] trained on
distorted images.

In short, we make the following key contributions:
• a novel encoder-decoder distortion-aware architecture,

named DarSwin-Unet, suitable for pixel-level tasks,
which adapts to the distortion in wide angle images in
a zero-shot manner at test time, without fine-tuning;

• a new pixel sampling scheme which limits the sample
sparsity problem when dealing with images of drasti-
cally different distortions;

• extensive experiments on depth estimation showing
the superiority of DarSwin-Unet at adapting to novel
distortion profiles at test time.

2. Related work
Distortion correction Wide angle cameras are increas-
ingly used in various computer vision applications, includ-
ing visual perception [24] and autonomous vehicle cam-
eras [19, 29, 58]. However, their adoption has been relatively
recent [35,38,39,55,58] due to the distortion present in their
images. Earlier methods primarily focused on correcting
this distortion [11, 14, 16, 27, 28, 50, 52, 54, 56, 60]. Some
approaches [27, 28, 53] use distortion parameters to assess
distortion density per pixel and subsequently correct it. How-
ever, such correction processes can introduce artifacts like
stretching [58], leading to performance degradation.

In contrast, our approach builds upon DarSwin [2], which
directly utilizes distortion parameters to reason about wide
angle images, avoiding the pitfalls associated with traditional
distortion correction methods. This approach is crucial as
it addresses distortions inherent in wide angle lenses and
aligns with the needs of modern computer vision tasks.

Convolution-based approaches. CNNs [18, 30, 43] are
highly effective for processing images with no distortion
due to their inherent bias towards natural image charac-
teristics, such as translational equivariance [4]. Methods
like [38,39,44] try to adapt CNNs on fisheye images for tasks
such as object detection. However, the distortion caused by
wide angle images breaks this symmetry, which reduces the
performance of CNNs. Methods like [21, 22, 25, 51] use
self-supervised learning combined with techniques like dis-
tillation or multi-task learning to have a better understanding

of distortion. Deformable convolutions [9, 61] offer flexi-
bility by learning kernel deformations, though at a higher
computational cost. Recent studies [1, 10, 36, 46] use de-
formable CNNs to handle fisheye distortion. In contrast, Our
network builds on DarSwin [2], which leverages attention
using a lens distortion profile instead of convolutions. How-
ever, unlike DarSwin’s encoder-only design, our network,
DarSwin-Unet, introduces an encoder-decoder architecture.

Hybrid-network based approaches. Some methods lever-
age properties from both self-attention and convolutions and
build hybrid networks. Methods like [26] use hybrid net-
works and try to leverage the geometric property of fisheye
images (i.e., the orthogonal placement of objects) and pro-
pose a new representation of fisheye road scenes, invariant
to the camera viewing direction. Shi et al. [41] leverages
the radial nature of distortion by including polar cross at-
tention for inpainting, but unlike DarSwin-Unet, they do
not use the lens information in their network. Similar to
our method, [20, 21, 23, 25] propose a camera-aware depth
estimation network to handle the severe distortion of fisheye
cameras: [25] encode the camera intrinsic parameters as a
tensor; and [23] propose a self-supervised depth estimation
method which relies on the lens distortion parameter for
forward and back-projection functions. Both these methods
use distortion parameters as a part of the input or training
process, but they rely on convolutions whose generalization
capabilities are limited due to the translational invariance
assumption being broken in wide angle images. Indeed, the
network weights each pixel and its corresponding lens distor-
tion prior equally regardless of the severity of distortion of
the wide angle image, which affects the ability to generalize
to a variety of lens distortion. Hence, [25] shows generaliza-
tion to lens distortion closer to training distortion, and [23]
does not show any generalization results.

Vision transformer based approaches. Vision transform-
ers (ViT) [12] use self-attention mechanisms [45] computed
on image patches rather than performing convolutions. Un-
like CNNs, a ViT does not have a fixed geometric struc-
ture in its architecture: any extra structure is given via
positional encoding. More recently, the Swin transformer
architecture [32] incorporates a multi-scale strategy with
window-based attention. Later, the Deformable Attention
Transformer (DAT) [47] adopts the concept of deformable
CNNs [9, 61] to enhance transformer adaptability. [59] pro-
poses a distortion-aware architecture using a transformer
network, but the network is limited to a fixed equirectangu-
lar distortion. Recently, methods very similar to our work,
such as [2, 7] use the Swin transformer [32] as their base
network. On one hand, [7] reasons on wide angle images
by assuming a spherical projection model (sec. 3) and us-
ing a Healpix grid on sphere, unlike the Cartesian grid in
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the original Swin transformer. However, it does not offer
generalization capabilities to unseen lenses at test time. Dar-
Swin [2], on the other hand, uses radial patches instead of the
Cartesian grid in the Swin transformer network. It embeds
the lens distortion parameter into the network (see sec. 3
for more details), to generalize the model’s performance on
unseen lens distortion at test time. However, DarSwin con-
ducts its experiments only on the image classification task.
In contrast, our proposed DarSwin-Unet, extends [2] to an
encoder-decoder architecture to perform pixel-level tasks,
making it more effective for real-world applications.

3. Background: Distortion-aware Radial Swin
transformer (DarSwin)

This section briefly summarizes DarSwin [2], a distortion-
aware radial patch-based encoder built on the Swin Trans-
former [32]. DarSwin adapts to wide angle distortions by
dividing images into radial patches based on the lens distor-
tion profile, as shown in fig. 1.

Architecture overview. The first layer of DarSwin divides
the image into radial patches by defining the number of
samples along radius Nr and azimuth Nφ. Samples along
azimuth are obtained directly by dividing the angular di-
mension of the polar representation of the image into Nφ

equal partitions as shown in fig. 2. Samples along the radius
are obtained according to the lens curve (rd = P(θ)) after
dividing the axis along the incident angle θ into Nr equal
partitions and sampling the radial value from the curve, as
shown in fig. 1. Moreover, the examples in fig. 1 show that
this partitioning strategy allows DarSwin to adapt to any
lens, knowing its distortion curve, by changing the patch
size. A CNN is then used to linearly embed these patches.
However, since the patch sizes are different and the input
to the CNN must have the same dimension, a fixed set of
points are sampled for each patch as shown in fig. 2. After
linear embedding, tokens are arranged in the polar format
Nr ×Nφ, and are fed into the DarSwin self-attention blocks,
which perform window-based self-attention. A set of non-
overlapping shifted windows is defined using the patches
along the azimuth dimension (Nφ), while shifts are obtained
by displacing the windows along the azimuth. Finally, a
downsampling step is used to reduce the spatial resolution
by merging four angular patches along the azimuth prior to
the next self-attention block. It is worth noting that DarSwin
uses an angular relative positional encoding technique to
capture the relative information between the produced radial
tokens in its attention layers.

The original paper [2] evaluated DarSwin on synthetically
distorted ImageNet (using the Unified camera model) and
demostrated its ability to adapt to new distortion curves in a
zero-shot test setting.

<latexit sha1_base64="MBZjNVgS9cIhjPaKpNdm6o7OJwY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmZnJ8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSvQFo2ilB90Le+WKW3VnIMvEy0kFctR75a9uGLM04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVULSj7UthWSm/p7IaGTMOApsZ0RxaBa9qfif10mxf+1nQiUpcsXmi/qpJBiT6d8kFJozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busXtyfV2o3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AFTGI3X</latexit> r d

<latexit sha1_base64="RnyzIg4Iy64zhhoBANN9EcBOI5Y=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEmYnvcmY2Z1lplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80jUo1hwZXUul2wAxIEUMDBUpoJxpYFEhoBaPbqd96Am2Eih9wnIAfsUEsQsEZWqnZxSEg65UrbtWdgS4TLycVkqPeK391+4qnEcTIJTOm47kJ+hnTKLiESambGkgYH7EBdCyNWQTGz2bXTuiJVfo0VNpWjHSm/p7IWGTMOApsZ8RwaBa9qfif10kxvPYzEScpQszni8JUUlR0+jrtCw0c5dgSxrWwt1I+ZJpxtAGVbAje4svLpHlW9S6rF/fnldpNHkeRHJFjcko8ckVq5I7USYNw8kieySt5c5Tz4rw7H/PWgpPPHJI/cD5/AKc3jzI=</latexit>

✓

<latexit sha1_base64="RSlJvNqUs15+pel/cOWQxnLITyI=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBbBU0msaeqt6MVjBfsBbSib7bZdutmE3U2hhP4ILx4U8erv8ea/cZtWUNEHA4/3ZpiZF8ScKW3bH1ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7ARYUc4EbWqmOe3EkuIw4LQdTG4WfntKpWKRuNezmPohHgk2ZARrI7V7UyzjMesXS3bZ8Sqee4UMqbqeW8lI1a7ZyCnbGUqwQqNffO8NIpKEVGjCsVJdx461n2KpGeF0XuglisaYTPCIdg0VOKTKT7Nz5+jMKAM0jKQpoVGmfp9IcajULAxMZ4j1WP32FuJfXjfRw5qfMhEnmgqyXDRMONIRWvyOBkxSovnMEEwkM7ciMsYSE20SKpgQvj5F/5PWhYml7N5dlurXqzjycAKncA4OeFCHW2hAEwhM4AGe4NmKrUfrxXpdtuas1cwx/ID19gnyoJAA</latexit>'
<latexit sha1_base64="RnyzIg4Iy64zhhoBANN9EcBOI5Y=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEmYnvcmY2Z1lplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80jUo1hwZXUul2wAxIEUMDBUpoJxpYFEhoBaPbqd96Am2Eih9wnIAfsUEsQsEZWqnZxSEg65UrbtWdgS4TLycVkqPeK391+4qnEcTIJTOm47kJ+hnTKLiESambGkgYH7EBdCyNWQTGz2bXTuiJVfo0VNpWjHSm/p7IWGTMOApsZ8RwaBa9qfif10kxvPYzEScpQszni8JUUlR0+jrtCw0c5dgSxrWwt1I+ZJpxtAGVbAje4svLpHlW9S6rF/fnldpNHkeRHJFjcko8ckVq5I7USYNw8kieySt5c5Tz4rw7H/PWgpPPHJI/cD5/AKc3jzI=</latexit>

✓

<latexit sha1_base64="MBZjNVgS9cIhjPaKpNdm6o7OJwY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmZnJ8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSvQFo2ilB90Le+WKW3VnIMvEy0kFctR75a9uGLM04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVULSj7UthWSm/p7IaGTMOApsZ0RxaBa9qfif10mxf+1nQiUpcsXmi/qpJBiT6d8kFJozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busXtyfV2o3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AFTGI3X</latexit> r d

<latexit sha1_base64="RSlJvNqUs15+pel/cOWQxnLITyI=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBbBU0msaeqt6MVjBfsBbSib7bZdutmE3U2hhP4ILx4U8erv8ea/cZtWUNEHA4/3ZpiZF8ScKW3bH1ZubX1jcyu/XdjZ3ds/KB4etVSUSEKbJOKR7ARYUc4EbWqmOe3EkuIw4LQdTG4WfntKpWKRuNezmPohHgk2ZARrI7V7UyzjMesXS3bZ8Sqee4UMqbqeW8lI1a7ZyCnbGUqwQqNffO8NIpKEVGjCsVJdx461n2KpGeF0XuglisaYTPCIdg0VOKTKT7Nz5+jMKAM0jKQpoVGmfp9IcajULAxMZ4j1WP32FuJfXjfRw5qfMhEnmgqyXDRMONIRWvyOBkxSovnMEEwkM7ciMsYSE20SKpgQvj5F/5PWhYml7N5dlurXqzjycAKncA4OeFCHW2hAEwhM4AGe4NmKrUfrxXpdtuas1cwx/ID19gnyoJAA</latexit>'

Low distortion High distortion

Figure 1. Radial divisions adapt to the lens distortion; here, we
show low (left) and high (right) distortion for illustration purposes.
DarSwin [2] separates radial patches equally along θ and deter-
mines the corresponding radius on the image plane according to
the (known) lens distortion curve rd = P(θ).

Figure 2. For illustration, the wide angle image is divided into 16
patches (Nr = 2 and Nφ = 8) along radius and azimuth. Nine
samples are defined per patch: 3 samples along the radius and 3
samples along the azimuth. The image is bilinearly sampled and
arranged in radial-azimuth format. This feature map is passed
through CNN to embed each patch to get a feature map of dimen-
sion Nr ×Nφ × embed-dim.

Unified camera model. The Unified camera model [3, 33]
describes the radial distortion by a single, bounded parameter
ξ ∈ [0, 1]2. It projects the world point to the image as follows

rd = P(θ) =
f cos θ

ξ + sin θ
, (1)

focal length, and ξ the distortion parameter. We use this
model for its flexibility in generating diverse distortion pro-
files with a single parameter ξ (fig. 7) and its analytically
invertible mapping, though our approach is not restricted to
this projection model.

4. Methodology
Inspired by the original DarSwin work [2], we propose

two main contributions. First, we extend the DarSwin
encoder-only architecture to a full encoder-decoder archi-
tecture (sec. 4.1). Second, we observe that sampling along
the incident angle θ yields suboptimal coverage, leading to
sparsity issues that affect performance. Therefore, we de-
sign a novel sampling technique (sec. 4.2) aimed at reducing
sparsity by minimizing the distance between samples, thus
improving performance.

4.1. DarSwin-Unet architecture

Fig. 3 shows an overview of the architecture, which takes
in a wide angle image and its distortion curve P(θ) as input.

2ξ can be slightly greater than 1 for certain types of catadioptric cam-
eras [57] but this is ignored here.
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Figure 3. Overview of our distortion-aware transformer encoder-decoder architecture, DarSwin-Unet. It employs hierarchical layers of
DarSwin transformer blocks [2] (top row) and replicates the structure in the decoder (similar to Swin-Unet [6]). To make the architecture
adapt to lens distortion, the patch partition, linear embedding, patch merging, and patch expanding layers, all take the lens projection curve
P(θ) (c.f. sec. 3) as input. The k-NN layer is used to project the feature map from polar (Nr ×Nφ) to cartesian space H ×W .

We propose a UNet architecture for our pixel-level model,
where the encoder part is a DarSwin architecture, and a de-
coder part incorporating two novel components: an azimuth
patch expanding layer for upsampling, and a k-NN layer to
project the outputs into the Cartesian coordinates, providing
pixel-level values as explained below.

Azimuth patch expanding layer. As explained in sec. 3,
DarSwin uses an azimuth patch merging layer to downsam-
ple the feature map. The radial nature of DarSwin enables
various possibilities when merging patches: merging along
the radius, along the azimuth, or both. Here, the encoder
employs azimuth patch merging, as it is found to perform
best according to [2]. Consequently, we propose an azimuth
patch expanding strategy.

As in [6], we use an MLP for the expanding layer. We use
this layer along the azimuth dimension to upsample by a 4×
factor. For example, consider the first (rightmost) patch ex-
panding layer in fig. 3. The input feature map (Nr×Nφ

64 ×8c)
is first given to an MLP layer to expand the feature dimen-
sion by 4× to get (Nr × Nφ

64 × 32c) where Nr and Nφ are
number of divisions along radius and azimuth respectively
(c.f. sec. 3). The feature map is then rearranged to reduce the
feature dimension and increase the resolution of the feature
map along the azimuth dimension to obtain (Nr × Nφ

16 × 4c).

k-NN layer. Lastly, we employ a k-NN layer to map the
polar feature map back to Cartesian coordinates. Each pixel
coordinate in the image is associated with its k closest sam-

ples (we use k = 4), and their respective feature vectors
are averaged. Since sample point locations are known, the
k-NN layer is fixed and not trainable. The k-NN output (of
dimensions H ×W × c) is fed into the last linear projection
layer to get the desired output for the required task.

4.2. Proposed sampling method

In the original DarSwin architecture, the input to the lin-
ear embedding layer (fig. 3) must have the same dimension.
Therefore, a fixed set of points are sampled from the im-
age for each patch. However, because the patch dimensions
change according to the distortion, this can create sparse
samples along the radius. Fig. 4 shows the samples obtained
with two extreme distortions using the unified camera model
with ξ = 0 and ξ = 1, respectively. Fig. 4-(a) shows how
sampling according to the lens curve, P(θ), used in [2],
results in significant sparsity in the image, where many sam-
ples are missing across the radius, under the perspective
projection (ξ = 0). Sampling according to another function
of θ, for example P(tan θ) in fig. 4-(b), enhances the results
but creates sparse samples when the distortion is very high
(e.g., ξ = 1). Here, we are looking for another function of
θ, named g(θ) which spreads out samples as uniformly as
possible across a wide range of distortions (fig. 4-(c)). The
lens functions are plotted in fig. 5. We observe that when the
derivative (slope) of the lens function is high, the samples
are spread far apart in the image.

More formally, we are looking for a strictly monotonic
function g that has minimal derivative over its entire range
when applied under both low and high distortion. As a proxy
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(a) rd = P(θ) (b) rd = P(tan θ) (c) rd = P(g(θ))

Figure 4. Illustration of sampling (represented by colored dots) on
a quadrant of an image taken from two different lenses (ξ = 0 (top
row) and ξ = 1 (bottom row). The images is sampled according
to the lens distortion curve P applied on different functions of θ:
(a) θ, (b) tan θ, and (c) our novel g(θ). Observe how the first two
options create large holes at either extreme values of ξ. In contrast,
our proposed function offers a good compromise across a wide
range of distortions.
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Figure 5. Lens distortion curves for least (ξ = 0) to most (ξ =
1) distorted using the unified camera model for illustration. We
represent the same curves according to, from left to right, tan θ,
our new g(θ), and θ. The high slopes present in both tan θ and
θ curves mean that samples will be spread far apart on the image
plane. In contrast, our g(θ) offers a good compromise across the
range of distortions.

for representing distortion, we again employ the unified
camera model (c.f. sec. 3) and are looking for a function g
that minimizes

max
θ

(
dP(g(θ))|ξ=0

d(g(θ))

)
+max

θ

(
dP(g(θ))|ξ=1

d(g(θ))

)
. (2)

We minimize the derivative only for low and high distor-
tions, as the derivatives for all intermediate distortions lie
between these two extremes (details in the supplementary).
The function g is parameterized as a convex combination of
two monotonic functions pn and qm.

g(θ) = λpn(θ) + (1− λ)qm(θ) , (3)

with pn(θ) = b

(
θ

a

)n

and qm(θ) = 1−
(
1− θ

a

)m

.

Figure 6. From a 360◦ panorama (top) from the Matterport3D
dataset [8], we generate a wide angle image and its depth map
(bottom) with a field of view 175◦. Lens distortion is simulated
with the uniform camera model (here, ξ = 0.95).

This ensures that the resulting curve is monotonic (see the
supplementary for more details). We search the optimal
parameters λ, m, n and b, that minimize the objective in
eq. (2). For optimization, we perform an exhaustive search
for λ ∈ [0, 1] with 10 steps, m ∈ [1, 20] with 60 steps,
n ∈ [0.5, 5] with 20 steps, and b ∈ [2, 10] with 40 steps. We
find that the values λ = 0.777,m = 5.5084, n = 5.0, a =
FOV
2 , b = 4.1052 gives us an optimal curves for both ξ = 0

and ξ = 1 as shown in fig. 5 (right). Using this optimal
curve g(θ) for sampling reduces sparsity at both extreme
cases (i.e., zero and maximal distortion levels) compared
to the previous methods (fig. 4-(c)). In our experiments we
sample 25 points along azimuth and 4 points along radius,
in total 100 sample points per patch. We also analyze the
performance on the depth estimation task using these three
functions in supplementary material.

5. Depth estimation experiments
To evaluate the efficacy of DarSwin-Unet’s generalization

and robustness on unseen distortion profiles, we perform
monocular depth estimation experiments using synthetically
generated wide angle images using a panoramic dataset [8].

5.1. Datasets

Existing wide-angle depth estimation datasets, such as
Woodscapes [58], lack the diverse distortion profiles required
to evaluate our network’s generalization. To address this,
we generate synthetic wide-angle images by cropping 175◦

field-of-view images from Matterport3D panoramas [8] and
simulating lens distortion using the unified camera model [3,
33] (see sec. 3), as illustrated in fig. 6.
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Very low Low Medium High

Figure 7. Visualization of a wide angle crop from a panorama
with different distortions representing 4 different distortion levels
From left to right: very low, low, medium, and high, used in four
different training sets as explained below. The image is cropped
from panorama with an original resolution of 512× 1024, where
the generated wide angle image is subsequently down-sampled to
64× 64 after warping.

(a) Wide angle image (b) Piecewise perspective

Figure 8. (a) 175◦ field of view wide angle image and (b) cor-
responding undistorted image using piecewise linear correction
(cubemap representation).

Training set. Similar to DarSwin [2], we generate four dif-
ferent training sets with different levels of distortion, defined
by the distortion parameter ξ: “very low” (ξ ∈ [0.0, 0.05]),
“low” (ξ ∈ [0.2, 0.35]), “medium” (ξ ∈ [0.5, 0.7]), and “high”
(ξ ∈ [0.85, 1.0]) as illustrated in fig. 7.

Training images are synthetically generated from panora-
mas on the fly during training with distortion ξ sampled
from their respective intervals, and the yaw viewing angle
in the panorama is uniformly sampled in the [0, 360◦] inter-
val. Each of the four training sets (one for each distortion
group) contains 9, 180 panoramas of original resolution of
512× 1024, where the generated wide angle image is subse-
quently downsampled to 64× 64 after warping.

Test set. To evaluate performance and zero-shot general-
ization to seen and unseen distortion profiles, we generate
20 test sets, each with a fixed distortion value uniformly
sampled from ξ ∈ [0, 1] in steps of 0.05. All test sets are
created from the same 1, 620 test panoramas.

5.2. Baselines

We compare to the following baselines. First, we use
Swin-Unet [6] and Swin-UPerNet (a Swin [32] encoder with
UPerNet [48] decoder). We also compare with DAT [47],

which leverages deformable attention in order to understand
lens distortion for better robustness. Hence, we compare with
DAT-UPerNet (a DAT [47] encoder with UPerNet decoder).
Since these baselines do not have access to the lens distortion,
as opposed to our proposed DarSwin-Unet, we also correct
the distortion in the image and train the Swin baselines on
this input. We dub these alternatives as Swin-Unet(undis)
and Swin-UPerNet(undis).

Undistorting with piecewise perspective projection.
Undistorting a 175◦ field-of-view wide angle image to a sin-
gle perspective image will result in extremely severe stretch-
ing. Instead, we follow the piecewise perspective correction
strategy in [58] and undistort the image to a partial cubemap,
which is composed of 6 perspective faces of 90◦ field of
view each, unrolled into an image and cropped to keep only
the valid pixels. As shown in fig. 8, this preserves the entire
field of view while minimizing stretching. As mentioned
above, these images are used to train the Swin-Unet(undis)
and Swin-UPerNet(undis) baselines.

5.3. Training details and evaluation metrics

All baselines have 1024 patch divisions on image size
64× 64 with patch size 2× 2 and window size 4× 4 along
the height and width. For DarSwin-Unet, we employ 16
divisions along the radius and 64 on the azimuth on an image
with a total of 1024 divisions (to have the same number of
patches as baselines). All encoders (Swin and DAT) are first
pre-trained for classification on the distorted tiny-ImageNet
dataset from [2]. Pre-trained encoders, along with their
respective decoders, are fine-tuned on the depth estimation
task. All methods are trained with the SGD optimizer with
momentum 0.9 and weight decay 10−4 with a batch size of
8. We employ a polynomial learning rate policy with a base
learning rate of 0.01 and power = 0.9. We use random flips
and rotations as data augmentation.

Training loss. Since the global scale of a scene is a fun-
damental ambiguity in depth estimation [13], we train the
network using the scale-invariant loss in log space [42]:

ℓ =

√√√√ 1

n

∑
i

di
2 − λ

n2

(∑
i

di

)2

, (4)

where di is the difference between the predicted and ground
truth (log-)depth. We use λ = 0.85.

Evaluation metrics. We evaluate performance on typical
depth estimation metrics [42]: absolute relative error, RMSE,
log-RMSE, squared relative error, and accuracy under thresh-
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Figure 9. Depth estimation accuracy δ1 (higher is better) as a function of test distortion for: DarSwin-Unet, Swin-Unet [6], Swin(undis)-Unet,
Swin-UPerNet [32, 48], Swin(undis)-UPerNet and DAT-UPerNet [47, 48]. All methods are trained on a restricted set of lens distortion
curves (indicated by the pink shaded regions): (a) Very low, (b) low, (c) medium, and (d) high distortion. We study the generalization
abilities of each model by testing across ξ ∈ [0, 1]. We can see that the performance of all the baseline decreases as we move away from
training distortion, but the curve for DarSwin-Unet remains relatively flat, indicating that DarSwin-Unet can generalize on unseen wide
angle distortion at test time.

old (δi, i ∈ {1, 2, 3}). The paper reports results on

δ1 =
1

|D|
|{d ∈ D|max(

d∗

d
,
d

d∗
) ≤ 1.25} , (5)

where D, d∗, and d are the set of valid, ground truth and pre-
dicted depths, respectively. Please consult the supplementary
material for results on other metrics.

5.4. Zero-shot generalization

We perform a similar generalization test as [2], we train
all the baselines and DarSwin-Unet on all four training sets
with different levels of distortion independently (represented
by the pink shaded region in fig. 9, and evaluate them on all
of the 20 test sets, as explained above. Our primary focus
is on the efficacy of the network on unseen lens distortion
(outside the pink shaded region). As shown in fig. 9, we
can see that for all the methods including DarSwin-Unet
the depth estimation accuracy δ1 metric is highest in the
pink shaded region for each training set since the model
has seen those lens distortion while training. But as we
move away from the pink region, the performance for the
baselines decreases rapidly, as these lens distortions are not
present during test time, but DarSwin-Unet maintains its
performance even outside the training distortion region for

(”low”, ”medium” and ”high” distortion training sets). When
DarSwin-Unet is trained in ”very low” distortion, we see a
decrease in performance as we move away from training dis-
tortion, but still DarSwin-Unet outperforms all the baselines.

DarSwin-Unet demonstrates better generalization capa-
bilities across different lenses by embedding the distortion
parameter within the network, as introduced by DarSwin [2].
The change in patch size, as depicted in fig. 1, allows each
patch in the attention layer to be weighted based on the
specific lens distortion.

For a fair comparison, the baselines Swin-Unet(undis)
and Swin-UPerNet(undis) are equiped with the distortion
parameter knowledge as well. However, despite this inclu-
sion, these baselines fail to generalize effectively to other
lenses. The primary reason for this is the presence of artifacts
resulting from the undistortion process.

5.5. Ablations

k-NN analysis. We study the impact of the number of sam-
ples per patch on the reconstruction quality. As explained
in sec. 4.1, 25 points are sampled along the radius, and 4
points are sampled along the azimuth, giving 25 × 4 sam-
ples for each patch. Since the k-NN layer is not trainable,
ablations on this part of the model are made based on the
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Ground truth Reconstructed labels by k-NN
ξ = 0.25 4× 4 8× 4 16× 4 25× 4

Figure 10. Visualizations of reconstructed labels by the k-NN layer
considering different numbers of samples per patch. For a low
number of samples (4 × 4 per patch), we notice some artifacts,
particularly in the center. These artifacts progressively disappear
when increasing the number of samples, leading to faithful recon-
structions with the k-NN 25× 4.

ground truth labels. We distort depth maps from Matter-
port3D [8] with ξ = 0.25. The ground truth label is sampled
and reconstructed using the sample locations and the k-NN
layer. To evaluate the efficiency of this layer, we calculate
the Mean Absolute Error (MAE) over valid pixels between
each ground truth label and its corresponding reconstructed
label, and then we average values over all images. We ablate
on the number of samples per patch as shown in tab. 1 and
illustrated in fig. 10. We show that 25× 4 samples per patch
results in efficient projection from polar features to cartesian
features with an error of 0.8% and 10.3ms/image compared
to 3.1ms/image for 4× 4 samples.

Table 1. Ablation study on the efficiency of the k-NN layer: for a
limited number of samples per patch (2× 2 and 4× 4), we have an
important error of 21.3% and 9.3%, respectively. The error reduced
significantly for a number of samples equal or higher to 8× 8.

# samples/patch 4× 4 8× 4 16× 4 25× 4

MAE 4.09% 2.36% 1.28% 0.8%

Sampling function. We compared the choice of sampling
strategy (sec. 4.2), using depth accuracy for the model trained
on each training set and tested on all ξ ∈ [0, 1]. We experi-
ment on the three distortion curves radius vs (tan θ, θ, g(θ)).
The generalization performance of curves with respect
to tan(θ) and θ surpasses our method g(θ) in specific
cases—”very low” and ”high” distortion (see fig. 11). This
behavior aligns with fig. 4, as tan(θ) benefits from dense
sampling near ξ = 0, making it effective at low distortion
but less so elsewhere. Similarly, θ performs well at high
distortion due to dense sampling near ξ = 1. However, our
proposed sampling method with respect to g(θ) consistently
outperforms across all distortion levels.

6. Discussion
This paper introduces DarSwin-Unet, a novel radial-based

distortion-aware encoder-decoder transformer built upon

0.0 0.2 0.4 0.6 0.80.5

0.6

0.7

0.8

D
ep

th
 a

cc
ur

ac
y 

1

Very Low Distortion

0.0 0.2 0.4 0.6 0.80.5

0.6

0.7

0.8

Low Distortion

0.0 0.2 0.4 0.6 0.8
Distortion 

0.5

0.6

0.7

0.8

D
ep

th
 a

cc
ur

ac
y 

1

Medium Distortion

0.00 0.25 0.50 0.75
Distortion 

0.5

0.6

0.7

0.8

High Distortion

g( ) tan

Figure 11. Depth accuracy when the model is trained across all four
distortion levels—”very low,” ”low,” ”medium,” and ”high”—using
different sampling strategies. Our proposed sampling strategy,
P(g(θ)), demonstrates better performance in generalization across
all distortion levels compared to P(θ) and P(tan θ).

DarSwin [2]. DarSwin-Unet dynamically adapts its structure
according to the lens distortion profile of a calibrated lens,
enabling it to achieve state-of-the-art performance in zero-
shot adaptation on various lenses for the depth estimation.

A key contribution of our work is the development of
a novel sampling function designed to address the sparsity
issues inherent in distortion-based sampling techniques intro-
duced by [2]. This improvement is particularly important for
pixel-level tasks, where sparsity in sampling has a more pro-
nounced impact and can significantly degrade performance,
unlike in classification tasks.

Limitations and future work While DarSwin-Unet shows
significant advancements in distortion-aware pixel-level
tasks like depth estimation, it has limitations. Scaling to
high-resolution images remains challenging, but incorporat-
ing ideas from SwinV2 [31], which excels at scaling Swin
Transformer architectures, could enhance its ability to han-
dle higher resolutions. Additionally, DarSwin-Unet relies
on prior knowledge of lens distortion profiles, limiting its
use in uncalibrated scenarios. Future work could address
this by integrating a secondary network to predict distortion
parameters or developing an end-to-end model that learns
distortion directly from input images.
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and Patrick Mäder. Omnidet: Surround view cameras based
multi-task visual perception network for autonomous driv-
ing. IEEE Robotics and Automation Letters, 6(2):2830–2837,
2021. 2

[26] Jongsung Lee, Gyeongsu Cho, Jeongin Park, Kyongjun Kim,
Seongoh Lee, Jung-Hee Kim, Seong-Gyun Jeong, and Kyung-
don Joo. Slabins: Fisheye depth estimation using slanted bins
on road environments. In Int. Conf. Comput. Vis., 2023. 2

[27] Kang Liao, Chunyu Lin, and Yao Zhao. A deep ordinal dis-
tortion estimation approach for distortion rectification. IEEE
Trans. Image Process., 30:3362–3375, 2021. 2

[28] Kang Liao, Chunyu Lin, Yao Zhao, and Mai Xu. Model-
free distortion rectification framework bridged by distortion

8667



distribution map. IEEE Trans. Image Process., 29:3707–3718,
2020. 2

[29] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel
dataset and benchmarks for urban scene understanding in 2d
and 3d. IEEE Trans. Pattern Anal. Mach. Intell., 2022. 2

[30] Shuying Liu and Weihong Deng. Very deep convolutional
neural network based image classification using small training
sample size. In IAPR Asian Conf. on Pattern Recog., 2015. 2

[31] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu
Wei, and Baining Guo. Swin transformer v2: Scaling up
capacity and resolution, 2022. 8

[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In Int.
Conf. Comput. Vis., 2021. 2, 3, 6, 7

[33] Christopher Mei and Patrick Rives. Single view point omni-
directional camera calibration from planar grids. In Int. Conf.
on Robotics and Automation, 2007. 3, 5

[34] R. Melo, M. Antunes, J. P. Barreto, G. Falcão, and N.
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