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Abstract

This paper introduces MixDiff, a new self-supervised

learning (SSL) pre-training framework that combines real

and synthetic images. Unlike traditional SSL methods that

predominantly use real images, MixDiff uses a variant of

Stable Diffusion to replace an augmented instance of a real

image, facilitating the learning of cross real-synthetic im-

age representations. Our key insight is that while models

trained solely on synthetic images underperform, combin-

ing real and synthetic data leads to more robust and adapt-

able representations. Experiments show MixDiff enhances

SimCLR, BarlowTwins, and DINO across various robust-

ness datasets and domain transfer tasks, boosting Sim-

CLR’s ImageNet-1K accuracy by 4.56%. Our framework

also demonstrates comparable performance without need-

ing any augmentations, a surprising finding in SSL where

augmentations are typically crucial. Furthermore, MixDiff

achieves similar results to SimCLR while requiring less real

data, highlighting its efficiency in representation learning
1
.

1. Introduction

Self-supervised learning (SSL) has enjoyed significant
advancements in recent years [26]. The capability of joint-
embedding SSL architectures to generate high-quality fea-
tures using pretext tasks now parallels, and in some cases
surpasses, that of supervised learning. Joint-embedding
SSL methods can include distillation [12, 25, 76] or con-
trastive strategies [13, 29, 38, 81], where multiple network
branches aim to learn representations by maximizing agree-
ment between differently augmented views of the same data
example in the embedding space. Even though such recent
advancements in SSL save annotation costs, preparing train-
ing data is still challenging. Current research within SSL
predominantly concentrates on the development of the pre-
text tasks, while the characteristics of the data being utilized

*Joint first-authorship.
1We have made the source code and generated data available to the pub-

lic at: https://github.com/cryptonymous9/mixing-ssl

Figure 1. Comparison of SimCLR performance on real, syn-
thetic (Syn), and mixed real and synthetic images (MixDiff).
The radar charts show normalized accuracy across 8 transfer
learning datasets (left) and ImageNet-1K plus 6 distribution shift
datasets (right), with values from 0.5 to 1.1. MixDiff enhances
in-distribution and robustness performance and generalizes better.
More details in Sec. 4.

for learning remain less explored.
This focus on pretext tasks, however, has led researchers

to consider alternative data sources to further improve
model performance. In particular, there has been a growing
interest in using synthetic images for self-supervision [62,
70, 74]. The appeal of synthetic image datasets lies in their
ease of generation, a wider range of semantic content, and
minimal human intervention, addressing key concerns in
computer vision like cost efficiency and fairness in data col-
lection and annotation. Although generative models address
the issue of data scarcity, exclusive reliance on synthetic im-
ages for supervision is not without drawbacks. The main
challenge has been the domain gap between synthetic and
real-world data. Models trained only on synthetic images
often struggle to adapt to real-world settings due to their
limited exposure to the variability and complexity of natural
images [66]. This issue is particularly pronounced in large-
scale image recognition tasks, where models trained on syn-
thetic data typically underperform those trained on real im-
ages [36, 67]. In response to this, our research proposes a
novel training framework that integrates both real and syn-
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thetic images, aiming to harness the strengths of each data
source while mitigating their individual weaknesses.

In this paper, we introduce MixDiff to explore the poten-
tial of combining synthetic images generated by generative
models without any labeled data with real-world images for
SSL training. MixDiff is a simple framework that replaces
an augmented instance of a real image in an existing joint-
embedding SSL pipeline with a synthetic image from a gen-
erative model. The simplicity of the framework allows it to
incorporate it in existing SSL methods like SimCLR [13],
BarlowTwins [81] and DINO [12] as shown in Figure 2.

MixDiff works on the idea that synthetically generated
images generate harder positive pairs that makes the overall
training objective less trivial [55]. We find that SSL mod-
els pre-trained exclusively on synthetic images underper-
form compared to those pre-trained with real images across
most scenarios. Interestingly, our proposed MixDiff, which
uses both real and synthetic images, improves model perfor-
mance in SSL not only on in-distribution datasets but also
on various out-of-distribution tasks as we show in Figure 1,
suggesting enhanced representation learning. Specifically,
we observe an average increase in top-1 accuracy of about
26.92% across six distributional datasets and a 7.36% im-
provement in transfer learning across eight datasets. This
observation suggests that while synthetic images alone may
be insufficient for optimal pre-training, MixDiff capitalizes
on the synergistic approach of leveraging the strengths of
both image types to learn more robust SSL representations.

Building on these results, we investigated how synthetic
image quality affects model performance in SSL. Prior re-
search has shown a strong correlation between the quality
of diffusion-generated synthetic images and model perfor-
mance. Our study reveals that MixDiff is less sensitive
to variations in synthetic image quality, potentially reduc-
ing the need for precise quality optimization. We also find
that integrating synthetic data in models like DINO may
de-emphasize background features, suggesting enhanced
scene layout understanding beneficial for image segmen-
tation. Despite the computational cost of generating syn-
thetic images, MixDiff requires fewer real images to match
SimCLR performance, indicating more efficient SSL pre-
training. The reduced reliance on large real datasets and
high-quality synthetic images, coupled with robustness to
distributional shifts and transfer learning, positions MixD-
iff as a promising approach for enhancing SSL pre-training.

2. Related Work

Self-supervised Learning. While SSL techniques exist in
different forms, one of the most successful self-supervised
learning paradigms is joint-embedding SSL [13, 29, 46, 48,
78,81]. The main focus of joint-embedding SSL is instance-
based discriminative learning [3, 22], where each image is
considered to be its own class, and a model is trained by

discriminating different views of the same image gener-
ated using data augmentation [12, 13, 29, 81]. One such
example is SimCLR [13], which uses an InfoNCE-based
formulation [48] to bring in the representation of differ-
ent views of the same image closer (positive pairs) and re-
pel representations of views from different images (negative
pairs) apart. In most cases, joint-embedding SSL methods
work in a Siamese setting [14] where two branches have
identical architectures and share weights. However, net-
works such as the Siamese setting are vulnerable to collaps-
ing to trivial representations. BarlowTwins [81] brings co-
variance regularization to the contrastive setting to enforce
a non-collapsing solution. More recently, works such as
DINO [12] have shown alternative ways to prevent collapse
using architectural strategies inspired by knowledge distil-
lation [34] and addressing catastrophic forgetting [6]. We
provide an improved pre-training mechanism for represen-
tation learning in such joint-embedding SSL techniques.

Learning using Synthetic Data. Recent advancements
in machine learning have increasingly leveraged synthetic
data across a variety of domains [28, 44, 45, 60]. This
type of data is particularly crucial for tasks that demand
extensive labeled datasets, such as human pose estimation
[27, 42], semantic segmentation [15, 54], optical flow esti-
mation [61,73], and language models [1,24,68]. In the task
of image classification, several studies have demonstrated
the effectiveness of synthetic data [72]. [30, 65] illustrates
its application in data-scarce settings and transfer learn-
ing; [71] explores its role in enhancing adversarial train-
ing; [23] diversifies images; [7, 59] evaluates model robust-
ness against natural distribution shifts using synthetic data;
and [4, 65] discusses augmentation of images through fine-
tuned diffusion models. It is important to note that all of
these studies focus on supervised learning. Our work, how-
ever, is distinct in its concentration on SSL. Recently, there
has been significant interest in leveraging synthetic data for
SSL [62, 70, 74]. [62] employ text-to-image diffusion mod-
els to generate multiple images from a single caption, while
our approach uses image-to-image diffusion models to pro-
duce one image per source, reducing the dependency on la-
beled data and associated costs. [74] introduces a data gen-
eration framework to enhance contrastive learning, with the
generator trained with the SSL model. [70] train diffusion
models and mix real and synthetic data to boost contrastive
learning through data augmentation and inflation. Unlike
these methods, our approach does not require training a new
generative model. Instead, we utilize off-the-shelf variants
of Stable Diffusion [56, 77] to improve the quality of repre-
sentations in existing SSL models.

Generative Models. The landscape of synthetic image
generation has seen a significant evolution, with Generative
Adversarial Networks (GANs) such as BigGAN [11] ini-
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tially setting a high standard. These models have been piv-
otal in pushing the boundaries of image realism and quality.
Recently, diffusion models have emerged as a promising al-
ternative, demonstrating impressive results in both condi-
tional [19, 58] and unconditional [35] synthetic image gen-
eration. Text-to-image diffusion models like DALL-E [52]
and Imagen [57] are notable examples, showcasing the abil-
ity to create detailed and contextually accurate images from
textual descriptions. Our research takes a unique turn by
focusing on the image-to-image diffusion model, specifi-
cally a fine-tuned version of Stable Diffusion [56]. This
model distinguishes itself by utilizing CLIP [51] image em-
beddings instead of text embeddings.

3. Method

In this work, we focus on Self-Supervised Learning
(SSL) techniques, particularly those that consolidate repre-
sentations from different perspectives or augmentations of
the same instance [2, 13, 29, 75]. The main idea behind this
technique is, through iterative processes, these representa-
tions gradually become less sensitive to the transformations
generating these varied views. Consequently, this leads to
the learning of image representations that are notably effec-
tive for vision tasks such as classification [13, 29, 81]. In
this section, we introduce our framework, MixDiff, which
uniquely employs both real and synthetically generated data
through stable diffusion, and see how it can be incorporated
in some of the existing SSL frameworks.

3.1. Description of MixDiff

Consider x1 and x
→
1, two augmented patches from an

image, randomly selected from a dataset. These augmen-
tations can include a variety of changes, such as altering
spatial positions within an image, adding varying noise and
applying random color adjustments, etc. Existing instance-
based discriminative SSL methods primarily rely on real
images [12, 13, 29, 81]. In these methods, the representa-
tion derived from the first augmentation, x1, of a real image
is anticipated to closely align with the representation of the
second augmentation, x→

1, of the same image as shown in
Figure 1. Our MixDiff framework modifies this approach
by incorporating synthetically generated images alongside
real ones. The primary objective of MixDiff is to synchro-
nize the representations of real and synthetic images, thus
enhancing existing SSL methodologies such as SimCLR,
DINO, and BarlowTwins.

The synthetic images employed by MixDiff have a
unique characteristic that they share a variation of the same
semantic component or object with that of the real image.
To achieve this, we employ Image Variation Diffuser [50]2,
a variant of Stable Diffusion (SD) [56] tailored to generate

2https://huggingface.co/lambdalabs/sd-image-variations-diffusers

diverse images while preserving semantic categories or in
simple terms, the image class. In the SD-based generative
model, represented as g

k
SD(·), where k indicates the guid-

ance scale influencing the generative features from the input
image, an input xi → D yields a synthetic counterpart x̃i,
such that x̃i = g

k
SD(xi) The innovative aspect of MixDiff

lies in substituting a portion of the augmentation process,
i.e, the second branch of augmentation x

→
i within the SSL

framework with these synthetic images x̃i, to learn cross
real-synthetic image representations a shown in Figure 1.

3.2. Mixing in joint-embedding SSL

SimCLR + MixDiff: In SimCLR’s contrastive setup [13],
’positive‘ and ’negative‘ pairs of images are identified, with
the goal of either converging or diverging their representa-
tions. In SimCLR, two augmented views are generated for
each image in a mini-batch, resulting in 2N images for a
mini-batch size of N . Each view is paired with its corre-
sponding alternate view as a ’positive‘ pair, while the re-
maining 2(N ↑ 1) images are treated as ’negative’ pairs.
We now propose to incorporate mixing into SimCLR. We
first define a new set {xk, x̃k} for k ↓ [1, 2, ..., N ], where
x̃k denotes the synthetically generated counterpart of xk,
thus establishing pairs like x1 and x̃1 as positive examples.
The contrastive prediction task of the modified, which we
term as SimCLR+MixDiff now involves identifying x1 and
x̃1 in {xk, x̃k} ↔ k ↓ [1, N ]. The modified loss function for
the mixed version of SimCLR, denoted as LMixSR, for a
positive pair of examples (xi, x̃i), is defined as:

Li
MixSR ↭ ↑ log

exp(sim(zi, z̃i))/ω

!z↑{zj ,z̃j↓j↑[1,N ]} z ↔=zi,z̃i exp(sim(zi, z))

where for a given two feature vectors, u and v, their
‘sim’ refers to the cosine similarity and is calculated as
sim(u, v) = uT v

||u||,||v|| , representing the dot product of the
l2 normalized vectors u and v. And zi and z̃i are the out-
puts of the network f(·) we are developing, expressed as:

zi = f(xi) and z̃i = f(x̃i) = f(gkSD(xi))

Barlow Twins + MixDiff: The Barlow Twins frame-
work [81], while maintaining a Siamese network struc-
ture similar to SimCLR [13], adopts a distinct approach to
representation alignment. The difference lies in the Bar-
low Twins’ objective function, which assesses the cross-
correlation matrix between the embeddings from two iden-
tical networks. These networks process distorted versions
of a batch of samples, with the aim of aligning this matrix
closely with the identity matrix. This alignment ensures that
the embeddings of distorted versions of a sample are sim-
ilar, while simultaneously reducing redundancy among the
components of these embeddings.
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Figure 2. Existing SSL methods, including (A) SimCLR, (B) Barlow Twins, and (C) DINO, have been enhanced with our novel MixDiff
approach. In both (A) SimCLR and (B) Barlow Twins, we replace a branch representing the positive pair with a synthetic image generated
without the label using Stable Diffusion. This modification enables the learning of real-synthetic view prediction. (C) DINO utilizes a
distillation framework with two global views for the teacher and a mix of two global and eight local views for the student. Our adaptation
integrates a blend of global and local synthetic and real images facilitating learning correspondences between global-to-local on top of
real-to-synthetic image views.

In our modified approach, as we show in Figure 2 (B), we
innovate by introducing a synthetic element into this frame-
work. Instead of solely using distorted versions of the same
real image, we integrate a distorted version of a synthetic
image. Following the notation from the previous section,
let zi represent the distorted version of a real image and z̃j

that of a synthetic image. The objective function for this
adapted version of Barlow Twins, denoted as LBT , is for-
mulated as:

LBT ↭ !i(1↑ Cii)2 + ε!i!j ↔=i C
2
ij

Here, ε is a positive constant that balances the first and sec-
ond terms in the loss function. The cross-correlation matrix,
C, is computed between the outputs of the two identical net-
works, one fed with real images and the other with synthetic
images, as follows:

Cij ↭
!bzb,i z̃b,j√

!b(zb,i)2
√
!b(z̃b,j)2

where b indexes the batch samples, while i and j index the
vector dimensions of the networks’ outputs. This updated
approach, which integrates synthetic images into the Bar-
low Twins framework, focuses on aligning the representa-
tions of real (zi) and synthetic images (z̃j) via the cross-
correlation matrix. We give more details regarding mixing
in joint-embedding SSL in the appendix B.

3.3. Mixing in Distillation SSL

DINO + MixDiff: In contrast to other SSL methods,
DINO [12] uses a multi-crop strategy to create multiple

views at different scales, including two high-resolution
global views (xg

1, xg
2) and multiple lower-resolution local

views (xl
k, k = 1 to 8). It employs a knowledge distilla-

tion (KD) framework where a student network gωs learns to
match the output of a teacher network gωt , with the student
processing both local and global views, while the teacher
focuses on global views to enhance ‘local-to-global’ learn-
ing. Building on this foundation, we introduce image mix-
ing in DINO, termed DINO + MixDiff, the model is adapted
to integrate both real and synthetic images. This is accom-
plished by adjusting the view composition to include one
global and six local views from a real image, plus one global
and two local views from a synthetic image. Consequently,
our modified set includes a global view from a real image
(xg

1), a global view from a synthetic image (x̃g
2), and four lo-

cal views each from the real (xl
r ↔ r ↓ [1, 6]) and synthetic

(x̃l
q ↔ q ↓ [1, 2]) images.

With a student network g(ϑs) and a fixed teacher net-
work gϑt updated via Exponential Moving Average (EMA),
the learning objective is to align these distributions. This
is achieved by minimizing the cross-entropy loss with re-
spect to the student network’s parameters ϑs, expressed
as: minωs H(Pt(Xt), Ps(Xs)) where H(a, b) = ↑a log b
denotes the cross-entropy function. Both the student and
teacher networks generate probability distributions denoted
as Ps and Pt, respectively, derived by normalizing the net-
works’ outputs using a softmax function. This learning
process involves passing all crops through the student net-
work, while the teacher network processes only the global
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views. This design fosters ‘local-to-global’ as well as ‘real-
to-synthetic’ learning correspondences. The loss objective
becomes:

min
ωs

!Xt↑{xg
1 ,x̃

g
2} !Xs↑Ṽ , Xs ↔=Xt

H(Pt(Xt), Ps(Xs))

We provide more details regarding mixing in distillation
SSL such as DINO in appendix C.1.

4. Experiments

In this section, we present experiments testing robust-
ness to distribution shifts, domain transfer across datasets,
and performance on low-quality images. We provide in-
sights into the learned representations using and without us-
ing MixDiff in SSL as described in Section 3.

Training Algorithms and Data. As the proposed solu-
tion is a simple change in one data branch of the SSL
pipeline, we can easily incorporate it into any existing
joint-embedding SSL methods. The substantial size of the
ImageNet-1K (IN-1K) [18] dataset, which contains approx-
imately 1.3 million images, presents challenges for exten-
sive experimentation. Consequently, we primarily utilize
the more manageable ImageNet-100 (IN-100) dataset [63]
for our studies, which include 100 classes and 1300 images
per class. This dataset’s smaller scale enables us to effi-
ciently run multiple variations of each synthetic dataset and
thoroughly evaluate the impact of various design choices.
Nonetheless, we extend our experiments to IN-1K with
SimCLR to validate our findings on a larger scale.

We trained variants of DINO, SimCLR, and Barlow
Twins models using only real, synthetic, and our proposed
mixed version of both image types (MixDiff) on the IN-100
dataset. For classification using the pre-trained features, un-
less stated, we always train the linear probes on the training
set of real images. For example, the models trained with
synthetic IN-100 images use the training set from real IN-
100 images to train the linear probes to evaluate them on the
IN-100 test set and other datasets. We leverage FFCV [39]
to accelerate training. We provide further details regarding
configurations in appendix D.1.

4.1. MixDiff boosts robustness to distribution shifts

To evaluate performance under domain shifts, we
choose a set of four datasets including ImageNet-A (IN-
A) [32], ImageNet-Sketch (IN-Sketch) [69], ObjectNet [8],
ImageNet-V2 (IN-V2) [53], VizWiz-Classification (VW-
C) [5], and ImageNet-R (IN-R) [31].

Figure 3 shows the average accuracy on the four distri-
bution shift datasets (excluding ObjectNet and WV-C due
to the lack of common objects with IN-100) and compares
it to the in-distribution IN-100. Models utilizing MixD-
iff (green) demonstrate superior accuracy on both IN-100

Figure 3. Top-1 classification accuracies (%) for various models
on ImageNet-100 (x-axis) and the average of four domain shift
datasets (y-axis). This figure compares the performance of models
trained on real, synthetic (Syn), and an equal combination of real
and synthetic images (MixDiff). Models in the top-right quadrant
exhibit better in-distribution and out-of-distribution accuracies.

and the distribution shift datasets on average, outperforming
models trained exclusively on real (grey) or synthetic (blue)
images. This suggests that MixDiff not only enhances
in-distribution performance but also enhances robustness
against distribution shifts. SimCLR+MixDiff is the most
robust, while DINO+MixDiff excels in in-distribution ac-
curacy. In Table 1, we drill down on the SimCLR variants
using IN-1K dataset, and these findings align with our pre-
vious observations from the IN-100 dataset. While DINO
outperforms on IN-100, we chose SimCLR for this experi-
ment owing to its markedly quicker training time, attributed
to its use of fewer crops and simpler overall setup. When
pre-trained on ImageNet-1K, we observe similar improve-
ments using mixing in SimCLR (SimCLR+MixDiff). Ad-
ditionally, The performance boost is consistent across the
four distribution-shift datasets.

SimCLR trained on synthetic images (SimCLR+Syn)
shows greater robustness on datasets like IN-Sketch and
IN-R compared to SimCLR trained on real images. This
improvement can be attributed to the datasets exhibiting
properties similar to synthetic images. For instance, IN-
Sketch contains human-drawn sketches, and IN-R includes
artistic and stylized object renditions. These characteris-
tics align well with the diverse and sometimes abstracted
nature of the synthetic images. We believe MixDiff’s ef-
fectiveness is due to synthetic images acting as hard posi-
tive samples. It is more challenging to bring generated im-
ages closer than to bring augmented samples closer. These
hard positive samples prevent the model from learning triv-
ial features, which enhances its ability to learn effective rep-
resentations [55,74]. However, it is crucial to highlight that
accuracy on more challenging datasets like ImageNet-A is
still low [20,64]. This may be attributed to the backbone of
the SimCLR model being ResNet-50. While ImageNet-A
was curated specifically as images that fool the ResNet-50
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MODEL IN-1K DISTRIBUTION SHIFTS DATASETS MEAN
IN-V2 IN-SKETCH IN-A IN-R OBJECTNET VW-C MEAN

SIMCLR 63.34 50.10 14.08 1.64 23.71 14.64 24.96 21.52 27.92
SIMCLR+SYN 57.58 44.70 16.19 1.72 26.12 11.35 23.25 20.55 26.28
SIMCLR+MIXDIFF 67.90 54.53 22.57 2.22 34.97 19.65 29.93 27.31 33.64

Table 1. Top-1 classification accuracies (%) of models trained on ImageNet-1K, evaluated on domain shift datasets. SimCLR+Syn
improves accuracy on IN-R and IN-Sketch, and this robustness extends to SimCLR+MixDiff. MixDiff enhances both in-distribution
accuracy and out-of-distribution robustness.

MODEL CIFAR-10 CIFAR-100 AIRCRAFT DTD FLOWERS FOOD PETS37 STL10 MEAN

SIMCLR 79.75 55.49 30.48 62.71 81.27 64.80 67.51 93.75 66.97
SIMCLR+SYN 77.67 53.74 29.82 58.83 82.16 60.91 67.92 92.02 65.38
SIMCLR+MIXDIFF 84.76 64.33 36.84 62.71 88.43 66.40 76.45 95.80 71.90

Table 2. Comparison of transfer learning performance on eight diverse datasets for models trained on ImageNet-1K. MixDiff outperforms
all other models, demonstrating superior generalization across these datasets

model [32]. More information and detailed numerical re-
sults are available in the appendix D.2.

4.2. MixDiff improves transfer learning

We evaluate the feature generality of the models by con-
ducting transfer learning experiments across various image
datasets and compare MixDiff’s effectiveness with other
models. The datasets include: Aircraft [43], DTD [16],
Flowers102 [47], Food101 [10], Pets37 [49], STL10 [17],
CIFAR-10 [37], and CIFAR-100 [37].

We pre-train the SimCLR model on the IN-1K dataset
using the three data variants: real images, synthetic images,
and MixDiff. For each variant, after pre-training the Sim-
CLR backbone, we subsequently froze these layers to train
linear probes on real data from the domains listed above.
Table 2 presents the top-1 accuracy results for each dataset.
Our approach consistently achieves higher top-1 accuracy
across all datasets compared to models trained solely on
real or synthetic images. We would like to point out that our
training iterations are lower (100 epochs) than the original
SimCLR (1000 epochs), resulting in slightly lower num-
bers, but our method still consistently outperforms the orig-
inal SimCLR model in relative terms. The superior trans-
ferability of representations learned using MixDiff can be
attributed to its exposure to a broader range of visual in-
puts. By combining real and synthetic images, MixDiff al-
lows the model to learn from a more diverse set of visual
features and variations. This expanded visual vocabulary
likely contributes to the development of more robust and
generalizable representations, which in turn transfer more
effectively to other datasets.

4.3. MixDiff learns more from limited data

We explore MixDiff’s effectiveness in limited data sce-
narios for SSL. We trained SimCLR models using both real

Figure 4. Left: Top-1 accuracy on IN-100 for SimCLR models
trained with and without MixDiff at different scales of training
images. Right: Average top-1 accuracy on four distribution shift
datasets. SimCLR+MixDiff outperforms SimCLR, as indicated by
the green area showing the performance gap.

images and MixDiff on 25%, 50%, and 100% subsets of the
IN-100 dataset, supplemented with proportional synthetic
images generated at a guidance scale of 8. Linear probes
were subsequently trained on the real images of each subset.
As shown in Figure 4, we observe noticeable performance
gains across different data-size regimes. As an example, us-
ing 25% of the images, MixDiff achieves a 5.14% increase
in accuracy. This trend extends well to robustness, where a
model trained with MixDiff on 50% of the data matches the
accuracy on distribution shift datasets of a model trained on
100% real images.

Notably, as indicated by the red line in Figure 4, MixD-
iff achieves comparable in-distribution accuracy and robust-
ness to SimCLR trained on 100% real images, while using
only 53% and 67% of the real data, respectively. These
findings demonstrate that MixDiff not only enhances per-
formance but also enables robust training with reduced data
requirements. It is important to note that while MixDiff of-
fers significant efficiency gains in terms of data usage, it
does require a one-time computational investment for gen-
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Figure 5. Top-1 classification accuracies for various models
on ImageNet-100 (x-axis) and the average of four domain shift
datasets (y-axis). The models use different approaches for mixing
real and synthetic images, as well as varying generation models.

erating synthetic images. We provide more discussion on
the strategies for reducing training times using MixDiff with
minimal performance impact in section E.5 in the appendix.

5. Ablation study

Here, we empirically study the properties of generated
synthetic images under varying guidance scales, mixing
configurations, augmentations and evaluate how these fac-
tors affect on MixDiff’s performance compared to other
SSL methods. We further visualize self-attention maps of
DINO over IN-100, and observe that DINO trained with
MixDiff tend to attend and segment objects well with much
less focus on the background (See section E.1).

5.1. Analysis of different configurations vs. MixDiff

We consider two new setups: training SimCLR on real
images for 50 epochs followed by synthetic images for 50
epochs (Sequential), and training on a combined dataset of
real and synthetic images for 50 epochs (Mixing), keeping
the total number of images the same. Figure 5 presents
the performance of these new setups alongside our base-
line configurations: SimCLR trained on synthetic images,
real images, and our proposed MixDiff pipeline. While the
new configurations surpassed SimCLR+Syn, they under-
performed compared to SimCLR and SimCLR+MixDiff.
We also replicated the MixDiff experiment using images
generated by Versatile Diffusion (VD) [77] with a guid-
ance scale of 8, as an alternative to Stable Diffusion (SD)
[50]. Results in Figure 5 demonstrate our MixDiff with VD-
generated images (SimCLR+MixDiff+VD) outperforms the
original SimCLR, indicating its generalizability across a
different generative model. Finally, Figure 5 shows the ac-
curacy of a supervised ResNet-50 model trained on real,
synthetic, and mixed data for 100 epochs, similar to the
training setup of prior works [4, 80]. The model with real
and mixed data achieves higher in-distribution accuracy, but
SSL models trained with MixDiff are more robust to distri-
bution shifts, which can be attributed to stronger SSL aug-
mentations and learning from synthetic images. We show

Figure 6. Left: Top-1 accuracy on IN-100. Right: Average top-1
accuracy on four distribution shift datasets. SimCLR+MixDiff is
more robust to changes in guidance scale than SimCLR+Syn.

that data mixing can make the supervised model more ro-
bust at the cost of in-distribution accuracy, while MixDiff
improves both. MixDiff narrows the gap between SimCLR
and the supervised setting. Details on numerical results are
in section E.4 of the appendix.

5.2. Impact of varying guidance scales

The guidance scale in generative models plays a crucial
role in balancing the diversity and quality of synthesized
images, which subsequently affects the learned represen-
tations, as demonstrated by [62]. To investigate this phe-
nomenon in our context, we generated images using various
guidance scales {2, 3, 6, 8, 12} and trained different Sim-
CLR configurations with these images.

Figure 6 illustrates our findings. Consistent with re-
sults from [62], we observe that altering guidance scales
impacts the robustness and in-distribution accuracy of mod-
els trained on synthetic images. This consistency is note-
worthy, given our use of different generative models. Inter-
estingly, MixDiff exhibits less variability to different guid-
ance scales, maintaining a consistent performance across
most scales, with a slight drop at a guidance scale of 12.
This consistency offers a significant computational advan-
tage, as it eliminates the need to fine-tune the guidance scale
as a hyperparameter. Furthermore, our results consistently
demonstrate that the SimCLR+Syn model underperforms
compared to the original SimCLR. This finding indicates
the constraints of using only synthetic data for training and
suggests the advantages of our combined method. These
findings collectively emphasize the importance of carefully
considering guidance scale selection in generative models
and suggest that our MixDiff method offers a more stable
and efficient alternative for using synthetic data in repre-
sentation learning tasks.

5.3. Properties of generated images

Building on our previous analysis of guidance effects on
MixDiff’s performance, we now investigate the properties
of the generated synthetic images. We use cosine distance
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Figure 7. Left: Mean cosine distance distribution between feature
vectors of IN-100 categories and generated images with varying
guidance scales. Right: Relationship between guidance scales and
FID scores. Generated images are more diverse than real images,
and higher guidance scales reduce image quality.

to measure diversity and Frechet Inception Distance (FID)
scores [33] to assess image quality in comparison to IN-
100 across different guidance scales. The left panel of Fig-
ure 7 reveals that generated images exhibit higher diversity
than real images, likely due to the generative model’s in-
herent randomness. The right panel illustrates the similarity
in quality between generated images and IN-100 source im-
ages across guidance scales. Drawing from the observations
in previous section, we observe an inverse relationship be-
tween the SimCLR+Syn model’s accuracy and image qual-
ity (as indicated by FID). For instance, a guidance scale of 8
yielded better performance despite a higher FID compared
to a scale of 3 with the lowest FID. This aligns with findings
from [62], suggesting that lower-quality generated images
with higher FID scores may be more beneficial for learning
solely from synthetic data. Interestingly, MixDiff’s perfor-
mance showed no clear trend relative to the FID scores of
synthetic data. This robustness across guidance scales sug-
gests that MixDiff may be effectively combining informa-
tion from both real and synthetic sources, potentially offset-
ting image quality variations. Further research is needed to
understand this phenomenon and its implications for using
synthetic data in representation learning.

5.4. Impact of data augmentation

Our study shows the effect of data augmentation on the
SimCLR model, comparing its performance when trained
with MixDiff versus solely real images of IN-100. Specif-
ically, for models trained without augmentation, we retain
only the random flip and remove all other augmentations.

As depicted in Figure 8, an interesting finding is that
omitting data augmentations, which is a key component
in self-supervised learning models, does not significantly
affect the performance of models trained with both real
and synthetic images. Surprisingly, MixDiff model without
augmentation generally outperforms the original SimCLR,
on all except for the ImageNet-Sketch dataset. Conversely,
SimCLR models trained exclusively on real images experi-
ence a significant drop in performance due to the absence

Figure 8. Top-1 accuracy comparison of SimCLR models trained
with and without MixDiff, and the impact of including versus
omitting SSL data augmentations.

of data augmentations. Specifically, the average accuracy
drop across five validation datasets is 15.52% for SimCLR
without augmentation, compared to a lesser accuracy drop
of 6.60% for SimCLR+MixDiff. Notably, removing these
augmentations can lead to faster training times, which is
significant considering that data augmentations are often
a major bottleneck in the training process, as highlighted
in [9]. Also, we observed that, for SimCLR+MixDiff, jit-
tering is the most effective augmentation for in-distribution
and robustness performance (See section E.3).

6. Conclusion

This work proposes MixDiff, a framework that demon-
strates the potential of mixing synthetic images gener-
ated without any labels, with real images for fully self-
supervised pre-training. We show that MixDiff consis-
tently enhances the performance of existing SSL techniques
across various benchmarks. Notably, MixDiff exhibits re-
duced variability to synthetic image quality and requires a
smaller quantity of real data to achieve performance com-
parable to models trained on real data, thus offering a more
robust and efficient SSL pre-training mechanism. More im-
portantly, these results suggest that the integration of syn-
thetic data with real images may serve as a viable alternative
to augmentation techniques in existing SSL methods.

Further investigation reveals a noticeable performance
gap between models trained solely on synthetic images and
those trained on real images. This indicates a significant un-
explored potential in the development of generative models
to improve efficiency and produce images that more closely
mimic the distribution of real images. In future work, we
aim to investigate advanced generative diffusion models
that could facilitate better mixing and enhance the robust-
ness of visual features.
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