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Abstract

Magnetic Resonance Imaging (MRI) is a powerful imag-
ing technique widely used for visualizing structures within
the human body and in other fields such as plant sciences.
However, there is a demand to develop fast 3D-MRI re-
construction algorithms to show the fine structure of ob-
jects from under-sampled acquisition data, i.e., k-space
data. This emphasizes the need for efficient solutions that
can handle limited input while maintaining high-quality
imaging. In contrast to previous methods only using 2D,
we propose a 3D MRI reconstruction method that lever-
ages a regularized 3D diffusion model combined with op-
timization method. By incorporating diffusion-based pri-
ors, our method improves image quality, reduces noise, and
enhances the overall fidelity of 3D MRI reconstructions.
We conduct comprehensive experiments analysis on clini-
cal and plant science MRI datasets. To evaluate the al-
gorithm effectiveness for under-sampled k-space data, we
also demonstrate its reconstruction performance with sev-
eral undersampling patterns, as well as with in- and out-of-
distribution pre-trained data. In experiments, we show that
our method improves upon tested competitors.

1. Introduction
In order to speed up the acquisition time, MRI instru-

ments acquire sub-sampled k-space data, a technique where
only a fraction of the total k-space data points are sam-
pled during the imaging process. Several attempts have
been proposed to develop two-dimensional (2D) and three-
dimensional (3D) image reconstruction techniques for sub-
sampled k-space, as discussed in [11, 13, 31]. Advance-
ments in 3D MR imaging methods can address the chal-
lenges posed by complex anatomical structures of human
organs and plant growths. Consequently, the demand for
developing 3D MR image reconstruction methods has in-
tensified.

Currently, most works reconstruct a 3D volumetric im-
age by stacking 2D reconstructions because MR images are
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acquired slice by slice. This method doesn’t consider the
inter-dependency between the slices, thus can lead to in-
consistencies and artifacts, as discussed in [4, 8, 50]. This
particularly affects datasets that have equally distributed in-
formation and structures with high continuity on all dimen-
sions, such as roots and vessels [4, 38, 50].

Before the deep learning-based models, which learn the
data-driven prior, the model-based iterative reconstruction
method proved its effectiveness in the 3D MRI reconstruc-
tion problem [15,54]. The problem is formulated as an opti-
mization problem where a data consistency term is applied
to ensure fidelity, and a regularisation term, such as the To-
tal Variation (TV) penalty [24] is utilized to provide gen-
eral prior knowledge of MRI data. Recent developments
in generative models, especially the diffusion model, show
significant improvement in reconstructing 2D and 3D MR
images. This pivots to the idea of combining both data-
driven and model-based reconstruction techniques, as pre-
sented in [22, 36, 40, 48].

One recent works applying the hybrid approach is Dif-
fusionMBIR [8]. The proposed method can be seen as a
two-stage process. First, images are generated from a pre-
trained 2D diffusion model as in [11]. Then, optimization
methods and regularization techniques are applied on the
z−axis to produce consistency in the sequence of 3D im-
ages. In this approach, the consistency of volumetric im-
ages highly depends on regularization. One possibility to
directly improve the reconstruction of 3D data is leveraging
3D representations of the data-driven prior. As discussed
in [49], 3D representations capture volumetric information
more accurately and describe the details of the observed
object. This enhancement contributes to a more compre-
hensive understanding of the underlying data, making the
model outperforming its 2D counterpart.

In this article, we propose a reconstruction method that
takes into account the 3D nature of MR images. At the same
time, it utilizes a hybrid approach that combines the general
prior given by the model-based reconstruction techniques
with the data-driven prior from the generative model. The
workflow can be seen in Figure 1. and our contributions are
summarized below:
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Figure 1. Workflow of the proposed algorithm generating volumetric data from a random distribution and guiding the reconstruction for
specific k-space data to have a unique reconstruction. The reverse diffusion process is performed using a pre-trained diffusion model.

• We propose a Regularized 3D Diffusion Model
(R3DM), an optimization algorithm to improve 3D
MRI diffusion-based reconstruction.

• We demonstrate the effectiveness and robustness of
our method via extensive experiments that compare its
reconstruction quality to that of state-of-the-art meth-
ods, with in-distribution and out-of-distribution data.

• We study the need of 3D representation and that of the
model-based method for 3D MRI reconstruction. We
demonstrate in ablation studies that both are important
for good performance.

2. Related work
In this section, we discuss the state of the art of MRI

reconstruction from the classical to generative model-based
approaches.

Model-based methods Conventional methods imple-
mented in current MR scanners for accelerating data ac-
quisition are e.g. parallel imaging and compressed sens-
ing [26, 28, 34]. In parallel imaging, multiple receiver coils
are used in the acquisition process, where each coil receives
an under-sampled amount of k-space data. By incorporat-
ing estimated sensitivity maps for each coil, the informa-
tion of these coils can then be merged to reconstruct one
final image. For this purpose, algorithms such as SENSE
and GRAPPA are used [18,35], where the process to fill the
missing information either in image space or k-space is per-
formed. While parallel imaging can accelerate the acquisi-
tion time by a factor of 2 or 3, the use of compressed sensing
can accelerate the acquisition time by an even higher fac-
tor of about 4-8. Compressed sensing uses prior knowledge
about the MR signal to iteratively minimize data fidelity and

a regularization term and reconstruct the under-sampled k-
space data to a high-quality image. With this general prior
knowledge, these approaches can be applied to any MR im-
age data. However, to further improve their performance,
advanced prior knowledge is needed.

Data-driven methods As the aforementioned methods
have the limitations of e.g. defining the most suitable prior,
the use of Deep Learning methods for MR image recon-
struction becomes more and more popular [1, 12, 43, 55].
Hereby, traditional Convolutional Neural Networks (CNNs)
with different architectures have demonstrated promising
results such as e.g. the Automap framework [55] or other
deep networks especially designed for MR image recon-
struction [14]. Additionally, the effort to accelerate acquisi-
tion time by using deep learning has been discussed in [52],
where the challenge is to incorporate a machine learning-
based approach to reduce measurement time in the MRI sys-
tem. Several methods such as fastMRI U-Net, and MoDL
[1,42,52] outperform conventional methods for the MRI re-
construction for undersampling measurements. While these
models with learned prior knowledge perform better than
the conventional methods, they only work for in-distribution
MR images on which the model is trained. Given the high
data requirements of deep learning-based methods, training
such models requires an effort to collect high-quality data,
which is not always possible.

The development of deep learning-based MR image re-
construction is becoming prevalent due to the development
of generative models, such as Generative Adversarial Net-
works (GAN), Normalizing Flows, Denoising Score Match-
ing, and Diffusion Models [11, 29, 40, 48, 51, 53], where it
is demonstrated that those approaches can generate high-
quality images from under-sampled k-space data. In those
approaches, the model learns the data distribution of the
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specific MR image, e.g., knee, brain. In the inference
process, joint reconstructions are proposed by incorporat-
ing under-sampled k-space data for a unique reconstruc-
tion. Moreover, the Diffusion Model is robust to out-of-
distribution data on which it has not been trained [11, 22],
which makes it more data efficient than other deep learning-
based models.

In this article, we propose a new hybrid method that
combines model-based and data-driven methods.

3. Methods and Algorithms
We first briefly review the MRI reconstruction problem

and diffusion model in sections 3.1 and 3.2, respectively. In
3.3 we present the proposed method. The notations used
throughout this article are summarized below.

Notations Vectors x ∈ CL and matrices are written in
bold small-cap and bold big-cap letter A ∈ CK×L, re-
spectively. Volumetric data is written as bold italic letter
A ∈ CS×K×L or indexing matrix As ∈ CK×L for s ∈ [S].
Here the C and R are complex and real fields. The set of
integers is written as [N ] := {1, 2, . . . , N}. We denote the
two-dimensional and one-dimensional Fourier transform by
F2D and F1D, respectively. For both matrices and vec-
tors, the notation ◦ is used to represent element-wise or
Hadamard product. For a matrix X ∈ CK×L, the Frobe-

nius norm is denoted by ∥X∥F :=
√∑K

k=1

∑L
ℓ=1 |xkℓ|2.

3.1. 3D MRI Reconstruction

We first present the conventional 2D reconstruction for
full sample k-space data and develop the model for under-
sampled measurement. Afterward, we will discuss the chal-
lenge of 3D MRI reconstruction.

Full and Under-sampled Reconstruction. The relation
between fully sampled k-space and the image space, i.e.,
image of interest, in MRI is given by the Fourier trans-
form [25,27,39]. Suppose we acquire S single-coil slices of
a fully sampled k-space image Ys ∈ CNy×Nx for s ∈ [S].
Hence, the direct reconstruction in image space can be writ-
ten as

Xs = F−1
2D (Ys) for s ∈ [S]. (1)

Accelerating MRI acquisition is achieved by reducing
the number of scan lines during k-space acquisition. As
a result, under-sampled k-space is recorded with fewer data
points. We can write this as

X̂s = F−1
2D (M ◦Ys) for s ∈ [S], (2)

where the matrix Ŷs = M ◦ Ys and X̂s are the noisy
under-sampled k-space and the reconstruction, called zero-
filled image for all slices, respectively. Applying a two-

dimensional inverse Fourier transform directly on under-
sampled k-space yields low-quality reconstructed images as
it results in aliasing and ambiguities.

Challenges in 3D reconstruction. It should be straight-
forward to construct the 3D image by stacking slice-by-slice
reconstruction. However, as discussed in [8], the under-
sampled k-space could yield inconsistencies in reconstruc-
tion for the z− axis direction. Additionally, reconstruc-
tion for the data that have sparse structures in all directions,
such as roots and angiography, stacking slice-by-slice re-
construction can also yield non-smoothness in all possible
directions. One way to address this problem is by adding
constraints in the reconstruction algorithm such that the
continuity on z−y, x−z, as well as x−y can be pertained.
Here, we will use the knowledge of projection of 3D data
on the image space and its relation to the k-space by using
the relation between 3D k-space and projection of 3D im-
age space, as described in Appendix D, combined with 3D
diffusion model. The visualization can be seen in Figure 2

3.2. Diffusion Model

The key idea in diffusion models is to learn the training
data distribution, i.e., image, such that we can generate new
images corresponding to the learned distribution.

Training. In Denoising Diffusion Probabilistic Models
(DDPM) [19, 20], estimating data distribution can be per-
formed by perturbing the training data with a sequence of
positive noise scale 0 < β1, β2, . . . , βT < 1 as follows

xt =
√

1− βtxt−1 +
√
βtzt−1, for t ∈ {1, 2, . . . , T}

where z ∼ N (0, I). In this case, the original data x0 ∼
pdata (x) is perturbed by a random Gaussian vector with in-
creased variance for each time index. Hence, for each time
step of perturbation, the neural network model sθ, for in-
stance, the U-Net architecture, is trained to approximate the
conditional distribution from perturbed data.

Sampling. The pre-trained neural network model sθ∗ is
used later to remove the perturbation aspect in order to
generate an image similar to the training data distribution.
The sampling3 procedure is usually performed, for instance
with the Euler-Maruyama scheme, as procedure, as follows:

xt−1 =
1√

1− βt

(xt + βtsθ∗ (xt, t)) +
√
βtzt

for t ∈ {T, T − 1, . . . , 1}, (3)

3In this article the term sampling should not be confused with undersam-
pling in MRI definition. Here sampling in the generative model describes
generating data from a certain probability distribution.

702



It should be noted that, the index is reversed because we
perform reverse process in the sampling mechanism. For
the complete derivation, we refer the interested reader to
the literature and references therein [19, 20, 41].

Diffusion Model for MRI Reconstruction Sampling
from a pre-trained diffusion model generates MR images
randomly. Guidance is needed to reconstruct a high-fidelity
image conditioned on the measurement. Previous works
[9,10] proposed to solve the reconstruction, or inverse prob-
lem in general, using conditional diffusion models. The
idea is to alternatively update the sampling and optimiza-
tion steps so that the transformation of the generated images
asymptotically approach to the measurements. We apply the
same procedure in our proposed method.

3.3. Proposed Method

In this article, we propose an optimization method for
3D reconstruction by leveraging information about the 2D-
projected image and its relation to the measurement data (k-
space). The relation is from the nature of Fourier transform
on 3D image space [6,7]. The algorithm allows us to recon-
struct 3D MRI data with enhanced continuity on the z−axis
using a pre-trained Diffusion Model, i.e. the algorithm is
only applied during the sampling process.

3D Representation of data-driven prior As mentioned
in Section 1, a 3D representation that captures the volumet-
ric information is needed for an accurate 3D reconstruction.
However, training and sampling a 3D Diffusion Model is in
general computationally expensive. As highlighted in [46],
the 2D U-Net with cross-attention on the 3rd dimension is
more efficient than the 3D U-Net version for video data
generation. As MR images are taken sequentially, the 3rd
dimension of MR images can be regarded as temporal di-
mension. We called this architecture the 2D+A architecture
hereafter. In order to directly reconstruct a 3D volumetric
image from a given sub-sampled k-space, the 2D+A diffu-
sion model should be combined with an algorithm that di-
rectly processes 3D volumetric data. In Section 5, we com-
pare the performance with and without cross attention to
demonstrate its importance.

Optimization problem. To incorporate the measurement
process in the image generation in MRI reconstruction, a
certain relation between k-space data and the target image
space is developed. In this section, we discuss the connec-
tion of 3D k-space data and 3D image space.

Suppose we have under-sampled 3D k-space data given
as Ŷs ∈ CNy×Nx for all depth slices s ∈ [S]. The zero fre-
quency of k-space at x−axis4, i.e., kx = 0, can be written

4Since the matrix represents the image per slice, the zero frequency on x−
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Figure 2. Relation between the projected image and a slice of k-
space from plant roots data

as ŷky
s = Ŷs|(kx=0) ∈ CNy , here we use superscript ky to

inform that this vector is obtained for kx = 0. Addition-
ally, the projection of the 3D image space on the y− axis is
given by summing in x−direction, i.e. xs,i = Py (Xs) |i =∑Nx

j=1 xs,i,j ∈ C. The relation between the under-sampled
k-space slice and the projection image is given by

ŷky
s = mky ◦ F1D (xs) ∈ CNy for s ∈ [S], (4)

where F1D is the one-dimensional Fourier transform and
mky = M|(kx=0) ∈ CNy is the slice of the under-sampling
operator at kx = 0. The same concept can be adopted to ob-
tain the projected image space on the x-axis from the pro-
jecting function Px. The complete derivation is presented
in Appendix D. Figure 2 visualizes the relationship of pro-
jected volume data and image space and its relation to the
Fourier transform. From this information, we can form an
optimization problem to reconstruct three-dimensional im-
ages from under-sampled k-space, as follows:

X∗ = arg min
X∈CS×N×N

S∑
s=1

∥∥∥Ŷs −M ◦ (F2D (Xs))
∥∥∥2

F
+R (X)

subject to ŷ
ky
s = mky ◦ F1D (Py (Xs)) for s ∈ [S]

ŷkx
s = mkx ◦ F1D (Px (Xs))︸ ︷︷ ︸

G(X)

(5)
The regularization functions R (X) used in this article can
be written as

α

S∑
s=1

N∑
i=1

N∑
j=1

|xs,i,j |︸ ︷︷ ︸
sparsity

+

S∑
s=1

N∑
i=1

N−1∑
j=1

|xs,i,j+1 − xs,i,j |2︸ ︷︷ ︸
smoothness

+

S∑
s=1

N−1∑
i=1

N∑
j=1

|xs,i+1,j − xs,i,j |2︸ ︷︷ ︸
smoothness

(6)

and y− axis is given in the middle of row or column space
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In general, the optimization problem G (X) as in (5) de-
scribes the objective and the constraint functions to estimate
the 3D image space given the relation between its under-
sampled 3D k-space and the projection image. This ensures
the reconstructed image corresponds to the given measure-
ment.

Algorithm 1 Regularized 3D Diffusion Model (R3DM)

1: Initialization:
• Timesteps T and optimization iterations m

• Volume sampling from prior distribution XT ∈
RS×N×N ∼ N (0, I)

2: for each reverse iteration t = T to 1 do
3: Generate Z ∼ N (0, I) if t > 1 else Z = 0
4: Update sample (3)

X(0) =
1√

1− βt

(Xt + βtsθ∗ (Xt, t)) +
√

βtZt

5: for each iteration i = 1 to m do
6: Solving the optimization

problem in (5)
X(i) = G

(
X(i−1)

)
7: end for
8: Xt−1 = X(m)

9: end for
10: return X0 ∈ CS×N×N

Regularization In addition, we use regularization for
each element of volumetric data in terms of ℓ1-norm that
enforces sparsity structure, left side constraint in (6), and
the approximated total variation norm that enforces smooth-
ness, right side constraint in (6). These terms are used for
imposing the result with certain structures, i.e., sparsity or
smoothness [32, 37]. The importance of the regularization
terms is discussed in Section 5. In practice, the implemen-
tation can be performed in terms of alternating minimiza-
tion combined with proximal methods for the regularization
function. Note that the ℓ1-norm constraint is non-smooth,
the proximal method is used to avoid calculating its deriva-
tive. The analytic proximal of ℓ1-norm is the well known
soft thresholding function [5,16,32], which is also presented
in theAppendix E. Hence, the algorithm can be seen as ap-
plying a proximal function on the gradient update of the
loss function. This is done by applying all constraints in
the optimization formula (5) as a single loss equation. This
process is also called proximal gradient method [5,32]. The
implementation detail will be presented in Appendix E.

Regularized 3D Diffusion Model (R3DM) The above
optimization steps are inserted in the sampling process of

a pre-trained Diffusion Model. Therefore, the proposed
Regularized 3D Diffusion Model (R3DM), consists of two
parts. The Diffusion Model part provides the data-related
prior knowledge. The optimization method incorporates the
k-space measurement to ensure the fidelity of the generated
data. In addition, the regularisation term in (6) gives general
prior knowledge of the MRI data, i.e. sparsity and smooth-
ness. The overall algorithm is described in Algorithm 1.
The algorithm starts with generating a 3D MR image via
the sampling process of DDPM, which is guided by the op-
timization method in (5) to incorporate the under-sampled
k-space. I.e. the optimization method is guided such that
a specific 3D MR image is reconstructed from the k-space
measurement. It should be noted that the superscript (i)
and subscript index t refers to the iteration index between
both optimization update and the DDPM sampling. Hence,
the algorithm performs DDPM sampling and optimization
updates alternately.

4. Experiments
In this section, we discuss the evaluation of proposed al-

gorithms in terms of several metric, such as structural simi-
larity index (SSIM) and peak signal-to-noise ratio (PSNR).

4.1. Experiment setup

Datasets In this paper, we use one dataset consisting of
MR images of the knee from the fastMRI dataset [52] for
training, and three datasets for testing our approach, namely
MR images of the knee from the fastMRI dataset [52], the
BRATS brain [2, 3, 30], and plant roots [33, 45]. For the
knee data, we use the central slices to avoid noise-only im-
ages. Therefore the input data dimension is N ×N × S =
320 × 320 × 16 with voxel size of 0.5 mm × 0.5 mm × 3
mm. All 973 training volumetric knee data from fastMRI
are used for training. The brain dataset BRATS has a di-
mension of 240× 240× 155. The voxel size of each image
is 1 mm3. For plant roots data the full k-space data are ac-
quired with a single coil MR scanner. The k-space data as
well as the reconstructed images yield the image dimension
192× 192× 100 and voxel size 0.5 mm × 0.5 mm × 0.99
mm. To evaluate in-distribution reconstruction, we use 30
randomly chosen volumetric data provided in the validation
set of fastMRI knee data. For out-of-distribution, we evalu-
ate the algorithm with 30 and 25 randomly chosen volumet-
ric data for BRATS and plant roots, respectively. During
the evaluation of BRATS data, the noise-only slices are re-
moved.

Diffusion Model Training Procedure The experiments
conducted below utilize the model that was trained on the
fastMRI knee dataset [52]. We trained the model for 70, 000
iterations using ℓ1 loss and a learning rate of 10−4. Due to
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Figure 3. Single slice from the volume reconstruction of file1000758 (top) and file1001862 (bottom) from fastMRI knee data. The numbers
on the top right corner represent the PSNR/SSIM of the slice. The subplots on the lower left corner represent the difference map between
the reconstruction and ground truth. The color range is between −0.02 (bluish) and 0.02 (reddish). Note that the volumetric ground truth
data has been normalized. The subplots on the lower right are a zoomed-in view.

Table 1. Mean of SSIM and PSNR from fastMRI knee data. The bold and underline represent the best and second best result.

SSIM (↑) PSNR (↑)

Mask Types Methods 3D Axial Sagittal Coronal 3D Axial Sagittal Coronal

Uniform
(2x, 0.15)

GRAPPA [18] 0.868 0.733 0.783 0.805 31.33 29.15 26.27 27.53
U-Net [23] 0.839 0.687 0.743 0.770 30.36 28.01 25.24 26.46
MoDL [1] 0.867 0.721 0.792 0.807 31.12 28.92 26.12 27.28
DiffusionMBIR [8] 0.850 0.700 0.764 0.783 30.53 28.23 25.48 26.67
Proposed 0.909 0.818 0.859 0.870 32.89 30.63 27.80 29.02

Gaussian
(8x, 0.08)

GRAPPA 0.794 0.572 0.672 0.698 28.81 26.68 23.88 25.05
U-Net 0.789 0.561 0.661 0.692 29.25 26.93 24.21 25.37
MoDL 0.795 0.566 0.678 0.701 29.01 26.81 24.07 25.24
DiffusionMBIR 0.761 0.514 0.631 0.656 28.08 25.78 23.13 24.27
Proposed 0.823 0.626 0.722 0.743 29.83 27.61 24.84 26.00

the large size of the 3D data, the batch size is set to 1 while a
gradient accumulation technique is applied to ensure train-
ing stability. In general, we follow the parameter setting
given in [19] for training a U-Net to estimate the data dis-
tribution.

Description of the comparative methods We perform a
comparison with several existing algorithms for MRI re-
construction, namely GRAPPA [18], fastMRI U-Net [23],
MoDL [1], and DiffusionMBIR [8]. For each method,
we perform reconstruction with the same under-sampling
operator, i.e., masking. In contrast to all other methods,
GRAPPA is a classical reconstruction algorithm that is ap-
plied directly for image reconstruction of under-sampled k-
space data. We report method details in the Appendix A.

4.2. Results

Volumetric reconstruction is performed with under-
sampled k-space data from the specified under-sampling op-

erator. For each algorithm, we calculate the image quality
metrics SSIM and PSNR [17, 21, 47]. We report the aver-
age of those metrics for the testing datasets. For our op-
timization method G (X) in (5), we use the learning rate
η = 0.01, number of iteration m = 10, scaling for ℓ1-norm
α = 0.02 and approximated total variation tv = 1, as a re-
sult of a hyper-parameter grid search, reported in Appendix
B. In what follows, we will discuss the reconstruction per-
formance for in-distribution and out-of-distribution data.

In Distribution In-distribution reconstruction measures
the performance of the network model on data from the
same distribution as the training data. We perform an eval-
uation of in-distribution reconstruction by using pre-trained
fastMRI knee data for fastMRI U-Net, MoDL, DiffusionM-
BIR, and our method. In contrast to this, GRAPPA works
directly without pre-training. Table 1 shows the mean SSIM
and PSNR values for all methods applied on several under-

705



Table 2. Mean of SSIM and PSNR from BRATS and plant roots data. The bold and underline represent the best and second-best results.

SSIM (↑) PSNR (↑)

Dataset Mask Types Methods 3D Axial Sagittal Coronal 3D Axial Sagittal Coronal

Roots

Uniform
(2x, 0.15)

GRAPPA [18] 0.966 0.878 0.795 0.797 44.40 37.39 32.21 32.16
U-Net [23] 0.853 0.731 0.630 0.629 37.71 30.81 26.01 25.93
MoDL [1] 0.963 0.872 0.778 0.789 43.47 36.52 31.54 31.63
DiffusionMBIR [8] 0.908 0.666 0.504 0.494 40.18 32.93 27.79 27.55
Proposed 0.975 0.902 0.835 0.830 46.92 39.68 34.54 34.30

Gaussian
(8x, 0.08)

GRAPPA 0.945 0.802 0.666 0.660 41.83 34.88 29.87 29.78
U-Net 0.885 0.725 0.580 0.573 38.32 31.59 26.94 26.96
MoDL 0.941 0.797 0.656 0.653 41.09 34.24 29.41 29.52
DiffusionMBIR 0.876 0.588 0.418 0.409 38.58 31.34 26.21 25.97
Proposed 0.954 0.823 0.698 0.687 44.11 36.93 31.82 31.59

BRATS

Uniform
(2x, 0.15)

GRAPPA 0.950 0.927 0.891 0.892 37.70 35.60 31.48 33.58
U-Net 0.806 0.675 0.691 0.653 36.69 33.23 30.93 31.74
MoDL 0.950 0.927 0.887 0.883 37.84 35.21 31.81 32.70
DiffusionMBIR 0.947 0.867 0.859 0.858 41.12 37.31 36.17 36.36
Proposed 0.971 0.958 0.932 0.938 39.43 38.18 33.29 36.50

Gaussian
(8x, 0.08)

GRAPPA 0.894 0.848 0.834 0.779 33.97 31.40 27.80 29.48
U-Net 0.742 0.610 0.654 0.545 34.69 31.30 28.98 29.68
MoDL 0.872 0.821 0.817 0.735 33.93 31.01 27.95 28.88
DiffusionMBIR 0.909 0.796 0.780 0.779 37.21 33.54 31.79 32.27
Proposed 0.932 0.908 0.856 0.863 33.72 31.43 27.61 29.85

sampling measurements. Apart from directly evaluating the
SSIM and PSNR per volume, we also evaluate those metrics
for all 2D slices of x, y, and z axes.

We observe that in Uniform masking, the proposed al-
gorithm outperforms other methods in terms of SSIM and
PSNR. Given the 8× acceleration factor applied in Gaus-
sian masking, there is a decrease in both overall SSIM and
PSNR when compared to Uniform masking with a 2× ac-
celeration factor due to the reduced amount of information
available in the k-space data for the reconstruction process.
For SSIM evaluation the proposed algorithm still performs
better than other algorithms. A single slice taken from the
3D reconstruction of fastMRI knee data for different each
mask type is presented in Figure 3. Overall, all methods
yield visual similar results, however with clearly notice-
able differences on close inspection. For 2× as well as
for 8× acceleration we observe that DiffusionMBIR recon-
structs somewhat noisy-looking images, while fastMRI U-
Net yields crisp-looking results with the highest contrast.
However, as the metric scores support, the high contrast
surpasses the contrast of the ground truth and this may indi-
cate mild hallucination of structures. In addition, it smooths
low-contrast regions generating a mildly cartoonish impres-
sion. GRAPPA produces blurrier images, especially in the
8× case. Quantitatively, the proposed method is closest to
the ground truth.

Out of Distribution An out-of-distribution (OOD) evalu-
ation shows the robustness of algorithms for the reconstruc-
tion task. As discussed in Section 1, general prior knowl-
edge can be applied to any MRI data, however, with lim-
ited representativeness. While deep learning-based meth-
ods usually only work for in-distribution data, the hybrid
Diffusion Model has been shown to be robust to OOD data
where it has not been trained [11, 22]. The proposed algo-
rithm utilizes both conventional optimization methods and
diffusion models and is therefore expected to achieve good
performance in OOD evaluation.

We here measure the performance of all methods ap-
plied to OOD data, i.e., to reconstruct images that are differ-
ent from the training images. Table 2 presents the evalua-
tion of average Structural Similarity Index Measure (SSIM)
and Peak Signal-to-Noise Ratio (PSNR) for both plant roots
and BRATS data. In BRATS case, the fastMRI U-Net per-
forms the worst compared to all other algorithms. Mean-
while, the Diffusion MBIR struggles to perform for plant
roots data. The proposed method effectively enhances the
reconstruction, specifically improving the structure and fea-
ture properties of the images. Since each slice in the roots
data only represents the sparse distribution of a root, we
perform the maximum intensity projection on each axis to
visualize the fine roots structure. When assessing PSNR
for BRATS data,DiffusionMBIR mostly outperforms other
methods. This observation suggests that the Diffusion
MBIR primarily contributes to reducing the absolute error
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Table 3. Mean of SSIM and PSNR for 2D + A and stacking 2D Architecture to generate 3D knee images. The bold represents the best
result. The regularization terms are not activated.

SSIM (↑) PSNR (↑)

Mask Types Methods 3D Axial Sagittal Coronal 3D Axial Sagittal Coronal
Uniform
(2x, 0.15)

2D + A [20] 0.815 0.648 0.742 0.756 28.41 26.61 23.44 24.70
2D [19] 0.769 0.579 0.684 0.698 26.88 24.57 21.93 23.29

Gaussian
(8x, 0.08)

2D + A 0.673 0.404 0.567 0.584 25.46 23.44 20.54 21.65
2D 0.558 0.304 0.454 0.464 22.79 20.38 17.82 19.02

between pixels and the ground truth than features and struc-
tures of images. We report qualitative results for the BRATS
and plant roots data Appendix F.

Figure 4. Ablation study to investigate the effect of regularization
for reconstruction in terms of SSIM (↑) metric for uniform mask.
The optimization iteration m = 10 and the learning rate 0.01.

5. Ablation studies

We perform ablation studies to highlight the effects of
regularization on the optimization method and to compare
the impact of the 2D + A architecture versus the stacking
2D architecture in generating 3D images

5.1. Importance of regularization

In Figure 4, we demonstrate that both regularization
terms are essential for improving reconstruction based on
the SSIM metric across all datasets. In the roots dataset,
dominated by sparse regions, the ℓ1-norm significantly in-
fluences performance more than the approximated total
variation (tv). Conversely, in the knee dataset, both the ap-
proximated total variation and ℓ1-norm exhibit similar ef-
fects on performance. The result for the Gaussian mask is
presented in Section C.

5.2. Importance of 3D representation

While the 2D + A architecture directly generates 3D vol-
umetric images, the 2D architecture constructs 3D volumet-
ric images by stacking the 2D image slice by slice for both
Uniform and Gaussian masks. It can be seen that, as dis-
cussed in Section 3.1, stacking 2D images to generate a 3D
image leads to inconsistency as shown in Table 3, yielding
low SSIM metric for all combination axes.

6. Conclusion
In this study, we present a novel 3D reconstruction ap-

proach by integrating 2D + A diffusion model and pro-
posed anoptimization method as a guiding constraint for
refining the diffusion model’s sampling process. Our pro-
posed method enables a pre-trained 3D diffusion model to
faithfully reconstruct MR images from both in- and out-of-
distribution input data. This capability has been validated
both quantitatively and qualitatively through comprehen-
sive comparisons with existing methods. For fastMRI Knee
and plant roots datasets, the proposed method outperforms
all other tested methods.

Moving forward, we plan to investigate various diffusion
model architectures to further enhance the performance and
capabilities of the proposed method for a broader range of
applications. Moreover, we aspire to augment the quantity
and diversity of data utilized by the model, thereby enrich-
ing its generalization capabilities. Additionally, we are keen
on enabling parallelization techniques to facilitate real-time
inference, thus advancing the practical applicability of the
models in real-world scenarios.
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Rüdiger Reichel, Siegfried Jahnke, and Robert Koller. Non-
invasive imaging of plant roots in different soils using mag-
netic resonance imaging (mri). Plant Methods, 13(1):1–9,
2017. 5

[34] Klaas P Pruessmann. Encoding and reconstruction in parallel
mri. NMR in Biomedicine: An International Journal Devoted
to the Development and Application of Magnetic Resonance
In vivo, 19(3):288–299, 2006. 2

[35] Klaas P Pruessmann, Markus Weiger, Markus B Scheideg-
ger, and Peter Boesiger. Sense: sensitivity encoding for fast
mri. Magnetic Resonance in Medicine: An Official Jour-
nal of the International Society for Magnetic Resonance in
Medicine, 42(5):952–962, 1999. 2

[36] Tran Minh Quan, Thanh Nguyen-Duc, and Won-Ki Jeong.
Compressed sensing mri reconstruction using a generative
adversarial network with a cyclic loss. IEEE transactions on
medical imaging, 37(6):1488–1497, 2018. 1

[37] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear
total variation based noise removal algorithms. Physica D:
nonlinear phenomena, 60(1-4):259–268, 1992. 5

[38] Hannes Schulz, Johannes A Postma, Dagmar van Duss-
choten, Hanno Scharr, and Sven Behnke. Plant root sys-
tem analysis from mri images. In Computer Vision, Imaging
and Computer Graphics. Theory and Application: 7th Inter-
national Joint Conference, VISIGRAPP 2012, Rome, Italy,
February 24-26, 2012, Revised Selected Papers, pages 411–
425. Springer, 2013. 1

[39] Charles P Slichter. Principles of magnetic resonance, vol-
ume 1. Springer Science & Business Media, 2013. 3

[40] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solv-
ing inverse problems in medical imaging with score-based
generative models. In International Conference on Learning
Representations, 2021. 1, 2

[41] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In International Conference on Learning Represen-
tations, 2020. 4

[42] Anuroop Sriram, Jure Zbontar, Tullie Murrell, Aaron De-
fazio, C Lawrence Zitnick, Nafissa Yakubova, Florian Knoll,
and Patricia Johnson. End-to-end variational networks for
accelerated mri reconstruction. In Medical Image Computing
and Computer Assisted Intervention–MICCAI 2020: 23rd
International Conference, Lima, Peru, October 4–8, 2020,
Proceedings, Part II 23, pages 64–73. Springer, 2020. 2

[43] Maarten L Terpstra, Matteo Maspero, Federico d’Agata,
Bjorn Stemkens, Martijn PW Intven, Jan JW Lagendijk, Cor-
nelis AT Van den Berg, and Rob HN Tijssen. Deep learning-
based image reconstruction and motion estimation from un-
dersampled radial k-space for real-time mri-guided radio-
therapy. Physics in Medicine & Biology, 65(15):155015,
2020. 2

[44] Philipp Thörnig. Jureca: Data centric and booster mod-
ules implementing the modular supercomputing architecture
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