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Abstract

High Dynamic Range (HDR) content (i.e., images and
videos) has a broad range of applications. However, cap-
turing HDR content from real-world scenes is expensive
and time-consuming. Therefore, the challenging task of
reconstructing visually accurate HDR images from their
Low Dynamic Range (LDR) counterparts is gaining atten-
tion in the vision research community. A major challenge
is the lack of datasets, which capture diverse scene con-
ditions (e.g., lighting, weather, locations) and various im-
age features (e.g., color, contrast, saturation). To address
this gap, we introduce GTA-HDR, a large-scale synthetic
dataset of photo-realistic HDR images sampled from the
GTA-V video game. We perform thorough evaluation of
the proposed dataset, which enables significant qualitative
and quantitative improvements of the state-of-the-art HDR
image reconstruction methods. Furthermore, we demon-
strate the effectiveness of the proposed dataset and its im-
pact on additional computer vision tasks including 3D hu-
man pose estimation, human body part segmentation, and
holistic scene segmentation. The dataset, data collection
pipeline, and evaluation code are available at: https:
//github.com/HrishavBakulBarua/GTA-HDR.

1. Introduction
High Dynamic Range (HDR) [3] content (i.e., images

and videos) has been adopted widely in various domains in-
cluding entertainment [23], gaming and augmented/virtual
reality [57], medical imaging [26], computational photogra-
phy [48], and robotics/robot vision [70]. However, captur-
ing HDR content from real-world scenes is costly and time-
consuming. Therefore, HDR image reconstruction from
Low Dynamic Range (LDR) counterparts has been an ac-
tive area of research in the last several years [29, 33, 62, 63,
65, 66]. The literature proposes a multitude of methods for

HDR image reconstruction that are gradually shifting from
traditional non-learning techniques [27, 35, 41, 44] towards
data-driven learning-based, such as Generative Adversarial
Networks (GAN) [17] and Diffusion Models [11].

Given that the performance of any data-driven learning-
based method for HDR image reconstruction largely de-
pends on the size and diversity of the datasets used for
development, there is a significant gap in the publicly
available datasets required to advance this research di-
rection. Specifically, the existing datasets are either: 1)
Not sufficiently large [13, 14, 28, 30, 38, 47, 50]; 2) Not
having satisfactory resolution [15, 73]; 3) Having limited
scene diversity [28, 30, 50]; 4) Having limited image varia-
tions [8,28,32,40]; or 5) Absence of ground truth HDR im-
ages [12,58,64]. Furthermore, currently, there are no avail-
able datasets that adequately address the problem of no-
reference HDR image quality assessment, which demands
vast collections of ground truth HDR and distorted HDR
pairs [2,4,5]. In summary, there is a substantial research gap
pertaining to benchmark datasets needed to advance the re-
search on HDR image reconstruction, hence motivating the
creation of an appropriate large-scale dataset.

Video games have been used for creation and annota-
tion of various large-scale datasets in diverse computer vi-
sion tasks [74] including 3D human pose and motion re-
construction [9, 72], semantic segmentation [1], 3D scene
layout and visual odometry [54], pedestrian detection and
tracking [16], object detection and 3D mesh recovery [25],
optical flow and depth estimation [36]. Drawing inspira-
tion from the success of various data-driven learning-based
methods developed with video game data, in this paper, we
propose GTA-HDR, a large-scale synthetic dataset for HDR
image reconstruction, sampled from the photo-realistic (i.e.,
HDR-10 enabled) game Grand Theft Auto V (GTA-V) by
Rockstar Games. Previous work has also used other video
games including Hitman [55], Witcher 3 [52], and Far
Cry Primal [71] which contain highly realistic and detailed
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Table 1. Publicly available datasets for HDR image reconstruction. GT: Ground truth; Dis: Distorted; *: Minimum image resolution.
Cf ., Section 3.2 for description of In-the-wild, Scene diversity and Image diversity

Dataset Year Type #HDRGT Resolution In-the-wild HDRDis Scene diversity Image diversity

HDR-Eye [47] 2015 Synthetic 46 512 × 512 ✗ ✗ ✗ ✗
City Scene [15, 73] 2017 Mixed 41222 128 × 64 ✗ ✗ ✓ ✗
Kalantari et al. [30] 2017 Real 89 1500 × 1000 ✗ ✗ ✗ ✗
Endo et al. [14] 2017 Synthetic 1043 512 × 512 ✗ ✗ ✗ ✗
Eilertsen et al. [13] 2017 Synthetic 96 1024 × 768 ✗ ✗ ✗ ✗
Lee et al. [38] 2018 Synthetic 96 512 × 512 ✗ ✗ ✗ ✗
Cai et al. [8] 2018 Synthetic 4413 3072 × 1620∗ ✗ ✗ ✗ ✗
Prabhakar et al. [50] 2019 Real 582 1200 × 900∗ ✗ ✗ ✗ ✗
LDR-HDR Pair [28] 2020 Real 176 1024 × 1024 ✗ ✗ ✗ ✗
HDR-Synth & HDR-Real [40] 2020 Mixed 20537 512 × 512 ✗ ✗ ✗ ✓
SI-HDR [20, 21] 2022 Real 181 1920 × 1280 ✗ ✗ ✓ ✗

GTA-HDR (ours) 2024 Synthetic 40000 512 × 512
1024 × 1024

✓ ✓ ✓ ✓

worlds with high fidelity. However, those games lack the
diversity of scenes, which is the main trait of GTA-V.

The thorough evaluation of the proposed dataset demon-
strates important advantages it brings to the state-of-the-art
in HDR image reconstruction: 1) The GTA-HDR dataset in
combination with other real and synthetic datasets enables
significant improvements in the quality of the reconstructed
HDR images; and 2) The GTA-HDR dataset fills a gap not
covered by any of the publicly available real and synthetic
datasets and as such, contributes towards better generaliza-
tion capabilities for HDR image reconstruction.

• We propose GTA-HDR, a large-scale synthetic dataset
to complement existing real and synthetic HDR image
reconstruction datasets (cf ., Sec. 3).

• We perform thorough validation to highlight the con-
tribution of GTA-HDR to the quality of HDR image
reconstruction (cf ., Sec. 5 and Supplementary).

• We demonstrate the impact of GTA-HDR on the state-
of-the-art in other tasks including 3D human pose es-
timation, human body part segmentation, and holistic
scene segmentation (cf ., Supplementary).

2. Related Work
2.1. Inverse Tone Mapping

Tone mapping [19] is the process of mapping the col-
ors of HDR images with a wide range of illumination lev-
els to LDR images appropriate for standard displays with
limited dynamic range. Inverse tone mapping [66] is the
reverse process accomplished with either traditional non-
learning methods or data-driven approaches. Given the
sensor irradiance E and exposure time ∆t, the function
fcrf (E∆t) represents the tone mapping process, which out-
puts ILDR given IHDR images captured by the camera. The
main goal of any HDR image reconstruction technique is
to reverse the tone mapping process using another func-
tion f−1

crf (ILDR)/∆t, which outputs reconstructed ˆIHDR

given ILDR images. The main challenge is that the steps
in fcrf (E∆t) are generally not reversible [37].

Khan et al. [31] proposed a feedback mechanism based
on Convolutional Neural Network (CNN) to generate HDR
images from single-exposed LDR. Barua et al. [7] utilized
multi-exposed features and perceptual losses along with
low- and mid-level feature guidance in generating visually
accurate HDR images. Le et al. [37] leveraged a Neural
Network (NN) architecture for camera response inversion
to generate pixel radiance and details for various exposures.
Liu et al. [40] proposed an architecture consisting of three
CNN that approximates the three sub-tasks in the tone map-
ping process but in the reverse order. Li et al. [39] pre-
sented a combination of an attention mechanism and CNN
that can recover over/underexposed regions of LDR images.
Santos et al. [56] leveraged a feature masking mechanism
that helps in reconstructing saturated pixels of LDR images
resulting in better visual and perceptual quality of the re-
constructed HDR images. Eilertsen et al. [13] proposed
CNN for accurate prediction of HDR pixels from the un-
der/overexposed counterparts in LDR images. Luzardo et
al. [42] addressed the low peak brightness issues in the
reconstructed HDR images to enhance the artistic intent.
Cao et al. [10] proposed a method that combines the out-
puts of preliminary HDR results from a channel-decoupled
kernel and pixel-wise output from another architecture re-
sulting in high-quality HDR images. Jang et al. [28] ex-
plored the concept of histogram and color differences be-
tween HDR and multi-exposed LDR pairs. Neural Radi-
ance Fields (NeRF) [46] have been used to learn implicit
color and radiance fields and perform HDR view synthe-
sis [26]. Some methods address dynamic scenes [30], while
others address multiple tasks, e.g., denoising and deblurring
and fuse them into an HDR image reconstruction pipeline.

2.2. Datasets

There has been a shift in the research on HDR image re-
construction from traditional non-learning methods to data-
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Figure 1. GTA-HDR dataset collection pipeline. GT: Ground truth; Dis: Distorted; EV: Exposure value; CL: Contrast level. Note: The
GTA-V logo is retrieved from Google Images. Cf ., Section 3.1 for detailed description of the dataset collection pipeline.

driven approaches based on GAN [51], CNN [59], Diffu-
sion Models [11], and NeRF [26]. These data-driven tech-
niques require a significant amount of training data drawing
attention to the limitations of the current publicly available
datasets. Table 1 summarizes existing public datasets.

Real datasets [12,20,21,28,30,50,58,64] include images
with sufficient resolution, however, their main limitation is
their size (i.e., low number of images). It is difficult, time-
consuming, and costly to collect real-world data using an
HDR camera that covers a variety of scenes (e.g., indoor,
outdoor, in-the-wild), lightning conditions, and image char-
acteristics (e.g., different levels of contrast, radiance, satu-
ration). The RAISE dataset [12] consists of real images and
is of moderate size but it lacks ground truth HDR images
and therefore is applicable for evaluation purposes only.

Synthetic datasets [8, 13, 14, 38, 47], on the other hand,
provide ground truth HDR images, however, only a few
consist of large number of images. In addition, these
datasets generally lack images with appropriate resolution
and diversity. The synthetic video dataset proposed in [32],
originally designed for the development of super-resolution
video generation methods, could potentially support the de-
velopment of data-driven HDR image reconstruction meth-
ods after appropriate data pre-processing.

Several datasets [15, 40, 73] include images from both
real and synthetic scenes. These datasets provide a suffi-
cient amount of ground truth HDR images, however, they
lack appropriate image resolution and diversity.

3. GTA-HDR Dataset

The GTA-HDR dataset addresses some of the limita-
tions of the existing datasets for HDR image reconstruction.
The main characteristics of GTA-HDR are the diversity of
scenes and variety of images included in the dataset (e.g.,
forests, mountains, coasts, cities). GTA-HDR includes
scenes from different times (e.g., morning, evening, day-
time, night) and different weather conditions (e.g., rainy,
snowy, sunny, misty). This variety of scenes is an expensive
and effort-demanding task to collect in a real-world con-

text. To our knowledge, this work is the first to use video
game data to collect and curate synthetic {LDR,HDR} im-
age pairs to support the development of inverse tone map-
ping data-driven methods.

3.1. Dataset Collection

We performed a thorough data collection and curation,
adopting a similar approach as described in [74]. We used
2 full game-play sequences (i.e., playing the story from the
beginning until the end) from the GTA-V game to extract
{LDR,HDR} image pairs at multiple resolutions (i.e., 512×
512 and 1024×1024). GTA-V has built-in HDR-10 support
for displaying video sequences on HDR displays. Fig. 1
depicts the entire data collection pipeline for GTA-HDR.

Similar to [74], we used Script Hook V plugin to cap-
ture HDR images from GTA-V game-play sequences. Other
tools for GTA-V game data extraction include RenderDoc
Debugger and customized RenderDoc for the Game Data
platform. The normal duration of a GTA-V game-play is
approximately 31.5 hours (i.e., going through all basic as-
pects of the story), and it can extend up to about 82 hours
(i.e., visit all aspects of the story thoroughly). We col-
lected data from 2 game-play sequences, one of around 15
hours and another of approximately 20 hours. We sampled 1
frame per second, resulting in approximately 54K and 72K
{LDR,HDR} image pairs, respectively.

The steps in the data collection process are as follows:
1) We used Script Hook V to extract {LDR,HDR} image
pairs with 1Hz frequency; 2) We removed frames that are
similar to the previous or next frames in the sequence. The
similarity between two consecutive frames in the sequence
is based on [34]; we discarded frames that have a similar-
ity score higher than 0.8. We also did a manual cleaning
of the collected data to remove unwanted scenes (e.g., im-
ages containing violence and other objectionable actions or
items). Finally, we ensured that the collected data has an
even distribution of scenes from indoor, outdoor, and in-the-
wild environments, resulting in a total of 40K {LDR,HDR}
pairs; and 3) We performed transformations on the original
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Figure 2. GTA-HDR dataset scene diversity. Samples from the dataset with multiple variations in location, weather, objects and time.

LDR images to generate multi-exposed LDR images (i.e.,
exposure values EV 0, ±1,±2,±3, and ±4) [37] and differ-
ent contrast levels [8]. This step results in 40K × 25 = 1M
LDR images. Apart from the 40K original HDR images, we
also generated 40K distorted HDR images by utilizing the
following state-of-the-art methods: 20K images were gen-
erated using [31], 10K with [37], and [40, 48] were used to
produce 5K images each.

3.2. Dataset Characteristics

One of the limitations of existing datasets is the low di-
versity of scenes and images. To address this limitation, the
GTA-HDR dataset includes a wide variety of scenes (e.g.,
indoor, outdoor, in-the-wild, multiple locations, weather
conditions, lighting conditions, and time-of-day) and im-
ages (e.g., LDR images with 9 different exposure values EV
0, ±1,±2,±3, and ±4 and contrast levels).
Scene Diversity. Real-life scenes can have a wide range of
variety in terms of locations, landscapes, objects, humans,
animals, buildings, weather, and lighting conditions. Fig. 2
depicts samples from the GTA-HDR dataset with multiple
variations in location, weather, objects and time. The di-
verse set of locations ensures a thorough coverage of pixel
colors, brightness, and luminance. The weather conditions
contribute to the rich gamut of brightness levels, e.g., sunny
weather scenes will have a larger number of bright pixels
than cloudy or rainy scenes. Scenes at different time (i.e.,
morning, midday, evening, and night) also contribute to dif-
ferent lighting conditions. The diversity of objects captures
different color hues, contrast and saturation levels.
Image Diversity. Images can have a diverse range of color
hues, saturation, exposure, and contrast levels. For any
image-to-image translation dataset, it is important to in-
clude a sufficient amount of samples from these categories.
Therefore, we introduced different exposure, brightness,

and contrast levels in the GTA-HDR dataset. Considering
all variations, the dataset includes 24 versions of the origi-
nal LDR images. The final set of images amounts to a total
of 40K × 25 = 1M LDR, 40K HDR, and 40K distorted
HDR images. Fig. 3 provides samples from the GTA-HDR
dataset with 9 exposure levels (i.e., exposure values EV 0,
±1,±2,±3, and ±4) and 9 contrast levels of the LDR im-
ages. The first two rows show the LDR images with varying
contrast and EV levels. The LDR images with normal con-
trast level are shown in the middle, while LDR images with
increasing EV and contrast are shown in sequential order
toward the right, and vice versa. On the extreme right, the
corresponding HDR and a sample of distorted HDR (i.e.,
saturation altered HDR) images are illustrated. Here, sat-
uration alteration, contrast alteration, color hue alteration,
and noise addition are applied to the HDR to produce the
respective distorted HDR images. Similarly, the second and
third rows show the LDR images with only varied EV while
the contrast is kept constant (i.e., keeping the contrast level
of the original LDR image). Finally, in the fifth and sixth
rows, the EV is kept constant (i.e., keeping the EV 0 of the
original LDR image) and the contrast levels are varied.

4. Experiments
4.1. Experimental Setup

Methods. To demonstrate the effectiveness of GTA-HDR
for HDR image reconstruction, we evaluated state-of-the-
art methods including FHDR [31], SingleHDR [37, 40],
HDRCNN [13], HDR-GAN [49], DrTMO [14], ArtHDR-
Net [7], and HistoHDR-Net [6]. Most of these meth-
ods are designed for single-exposed LDR image inputs,
while HDR-GAN is designed for three multi-exposed LDR
image inputs, SingleHDR [37] for two or more multi-
exposed LDR image inputs without HDR supervision, and
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Figure 3. GTA-HDR dataset image diversity. Samples from dataset with multiple exposure values, contrast levels and their combinations.

ArtHDR-Net attempts to reconstruct perceptually realistic
HDR images using features from multi-exposed LDR im-
ages. HistoHDR-Net uses histogram-equalized LDR along
with original LDR images to facilitate the recovery of color,
contrast, saturation, and hue in over/underexposed regions.

We used the official implementations and training strate-
gies for these methods. Since SingleHDR [37] generates
multi-exposed LDR images as output, we used the state-of-
the-art tool Photomatix [22] to merge the LDR stack and
obtain an HDR image. For single-exposed LDR image in-
put methods, we consider all available LDR images in the
datasets. For multi-exposed LDR image inputs: 1) For
methods with three inputs, we consider an overexposed, a
normally exposed, and an underexposed LDR image; and 2)
For methods with two inputs, we consider an overexposed
and an underexposed LDR image. For datasets with single-
exposed LDR images, we generated the missing exposure
versions. The diversity of the considered methods enables a
thorough evaluation of the proposed GTA-HDR dataset.

Datasets. We considered most publicly available datasets
for HDR image reconstruction in our experiments [15, 28,
30, 40, 50, 73]. We split the data into a train set consisting
of the datasets proposed in [15, 28, 30, 50, 73] and test set
including the dataset proposed in [40]. We considered dif-
ferent datasets for training and testing to demonstrate that
GTA-HDR both enables significant improvements in the
quality of the reconstructed HDR images and contributes
towards better generalization capabilities of the considered
state-of-the-art HDR image reconstruction methods. Iden-
tical protocol for training and testing was used in all experi-
ments to ensure a fair comparison. All images were resized
to 512× 512 resolution. All HDR images displayed in this
text have been tone-mapped using the method in [53].

4.2. Evaluation Metrics

We used three metrics to report the quantitative results.
High Dynamic Range Visual Differences Predictor (HDR-
VDP-2) [43] or Q-Score (Mean Opinion Score Index) is
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Table 2. Impact of the GTA-HDR dataset on the performance of the state-of-the-art in HDR image reconstruction. R: Real data
combines the datasets proposed in [28, 30, 50] and real images from the datasets proposed in [15, 73]; R ⊕ S: Real and synthetic data
combines all five datasets [15, 28, 30, 50, 73]; GTA-HDR: Proposed synthetic dataset; E2E: End-to-end training; FT: Finetuning of the
original pre-trained models. Note: The performance of all methods is evaluated on a separate dataset proposed in [40].

Method Configuration Datasets PSNR↑ SSIM↑ Q-score↑

HDRCNN [13] E2E R 19.1 0.67 59.2
DrTMO [14] E2E R 19.2 0.68 60.3
FHDR [31] E2E R 24.4 0.80 65.1
SingleHDR [40] E2E R 29.1 0.81 66.2
HDR-GAN [49] E2E R 36.9 0.92 65.3
SingleHDR [37] E2E R 34.7 0.91 66.9
ArtHDR-Net [7] E2E R 35.1 0.91 67.2
HistoHDR-Net [6] E2E R 35.2 0.92 67.4

HDRCNN [13] E2E R ⊕ S 20.1 (+1.0) 0.69 (+0.02) 60.8 (+1.6)
DrTMO [14] E2E R ⊕ S 20.3 (+1.1) 0.68 (+0.00) 61.5 (+1.2)
FHDR [31] E2E R ⊕ S 26.7 (+2.3) 0.81 (+0.01) 65.3 (+0.2)
SingleHDR [40] E2E R ⊕ S 30.4 (+1.3) 0.82 (+0.01) 66.1 (-0.1)
HDR-GAN [49] E2E R ⊕ S 37.8 (+0.9) 0.94 (+0.02) 66.7 (+1.4)
SingleHDR [37] E2E R ⊕ S 35.2 (+0.5) 0.92 (+0.01) 67.1 (+0.2)
ArtHDR-Net [7] E2E R ⊕ S 35.3 (+0.2) 0.93 (+0.02) 67.4 (+0.2)
HistoHDR-Net [6] E2E R ⊕ S 35.3 (+0.1) 0.94 (+0.02) 67.5 (+0.1)

HDRCNN [13] E2E / FT GTA-HDR 22.4 (+2.3) / 22.1 (+2.0) 0.72 (+0.03) / 0.71 (+0.02) 61.3 (+0.5) / 61.4 (+0.6)
DrTMO [14] E2E / FT GTA-HDR 23.5 (+3.2) / 23.4 (+3.1) 0.71 (+0.03) / 0.71 (+0.03) 64.3 (+2.8) / 64.5 (+3.0)
FHDR [31] E2E / FT GTA-HDR 27.7 (+1.0) / 27.6 (+0.9) 0.84 (+0.03) / 0.84 (+0.03) 68.0 (+2.7) / 68.1 (+2.8)
SingleHDR [40] E2E / FT GTA-HDR 32.3 (+1.9) / 32.1 (+1.7) 0.86 (+0.04) / 0.85 (+0.03) 68.8 (+2.7) / 69.0 (+2.9)
HDR-GAN [49] E2E / FT GTA-HDR 38.7 (+0.9) / 38.5 (+0.7) 0.94 (+0.00) / 0.93 (-0.01) 69.5 (+2.8) / 69.7 (+3.0)
SingleHDR [37] E2E / FT GTA-HDR 41.2 (+6.0) / 41.5 (+6.3) 0.96 (+0.04) / 0.96 (+0.04) 70.2 (+3.1) / 70.0 (+2.9)
ArtHDR-Net [7] E2E / FT GTA-HDR 41.6 (+6.3) / 41.5 (+6.2) 0.97 (+0.04) / 0.97 (+0.04) 70.4 (+3.0) / 70.2 (+2.8)
HistoHDR-Net [6] E2E / FT GTA-HDR 41.7 (+6.4) / 41.5 (+6.2) 0.98 (+0.04) / 0.98 (+0.04) 70.5 (+3.0) / 70.4 (+2.9)

HDRCNN [13] E2E / FT R ⊕ S ⊕ GTA-HDR 22.6 (+0.2) / 22.3 (+0.2) 0.70 (-0.02) / 0.69 (-0.02) 61.6 (+0.3) / 62.0 (+0.6)
DrTMO [14] E2E / FT R ⊕ S ⊕ GTA-HDR 23.6 (+0.1) / 23.5 (+0.1) 0.71 (+0.00) / 0.72 (+0.01) 64.6 (+0.3) / 64.8 (+0.3)
FHDR [31] E2E / FT R ⊕ S ⊕ GTA-HDR 27.9 (+0.2) / 27.4 (-0.2) 0.83 (-0.01) / 0.83 (-0.01) 67.5 (-0.5) / 68.1 (+0.0)
SingleHDR [40] E2E / FT R ⊕ S ⊕ GTA-HDR 32.5 (+0.2) / 31.6 (-0.5) 0.85 (-0.01) / 0.84 (-0.01) 68.7 (-0.1) / 68.8 (-0.2)
HDR-GAN [49] E2E / FT R ⊕ S ⊕ GTA-HDR 40.1 (+1.4) / 39.4 (+0.9) 0.95 (+0.01) / 0.97 (+0.04) 69.2 (-0.3) / 69.5 (-0.2)
SingleHDR [37] E2E / FT R ⊕ S ⊕ GTA-HDR 41.5 (+0.3) / 41.9 (+0.4) 0.97 (+0.01) / 0.98 (+0.02) 70.3 (+0.1) / 70.0 (+0.0)
ArtHDR-Net [7] E2E / FT R ⊕ S ⊕ GTA-HDR 41.6 (+0.0) / 42.1 (+0.6) 0.98 (+0.01) / 0.98 (+0.01) 71.2 (+0.8) / 70.9 (+0.7)
HistoHDR-Net [6] E2E / FT R ⊕ S ⊕ GTA-HDR 41.8 (+0.1) / 42.3 (+0.8) 0.99 (+0.01) / 0.99 (+0.01) 71.5 (+1.0) / 71.4 (+1.0)

used for evaluation based on the human visual system. For
structural similarity, luminance, and contrast evaluation,
the Structural Similarity Index Measure (SSIM) [67–69]
is used. For pixel-to-pixel evaluation, the Peak Signal-to-
Noise Ratio (PSNR) [18] is applied.

5. Results
5.1. HDR Reconstruction

This section presents the results from state-of-the-art
HDR image reconstruction methods trained with different
configurations of data, including real data, mixed data, and
synthetic data. The results are based on two training strate-
gies chosen to evaluate the contributions of the proposed
GTA-HDR dataset: 1) End-to-end training (i.e., the models
are fully trained with different combinations of data) and 2)
Finetuning (i.e., only the final layers of the pre-trained orig-
inal models are trained with different combinations of data).
The results of this experiment are summarized in Table 2.

The results show a consistent improvement in PSNR,
SSIM, and HDR-VDP-2 (Q-score) for all methods after in-
cluding the GTA-HDR dataset in the training process. Fur-
thermore, the results also demonstrate that all considered
state-of-the-art methods trained with GTA-HDR data alone

achieved better performance than when they are trained
with existing real and synthetic datasets (third sub-table).
Moreover, Table 2 shows how the performance of the state-
of-the-art methods improve consistently when we add more
variations to the training data (first sub-table and second
sub-table). Further improvements are achieved when mix-
ing the existing datasets with GTA-HDR in both end-to-end
and fine-tuning strategies. It is noteworthy that these con-
sistent improvements are based on evaluation on a separate
dataset, thus both demonstrating the contribution of the pro-
posed GTA-HDR dataset towards increased quality of the
reconstructed HDR images and better generalization capa-
bilities of the state-of-the-art methods.

5.2. Scene Diversity

We studied the feature space coverage of differ-
ent datasets as reported by common feature extraction
backbones including MobileNet [24], InceptionV3 [61],
ResNet50 [59], and VGG19 [60]. The results reveal a gap
in the feature space, i.e., certain regions are not covered
by existing datasets. These regions are filled, to a certain
extent, by the proposed GTA-HDR dataset. Fig. 4 illus-
trates the feature plots for different datasets and backbones.
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Figure 4. Feature space covered by different HDR image reconstruction datasets. We used UMAP [45] to visualize the features
extracted from common pre-trained feature extraction backbones. Real Datasets: Real datasets proposed in [28,30,50]; City Scene: Mixed
datasets proposed in [15, 73]; HDR-Synth & HDR-Real: Mixed dataset proposed in [40]; GTA-HDR: Proposed synthetic dataset.

Features extracted with different backbones can be signifi-
cantly different based on the underlying architecture, which
affects the performance on downstream tasks e.g., HDR im-
age reconstruction. The main goal of backbones in LDR
to HDR image conversion is the recognition of bright and
dark regions and detection of the light source [59] to ensure
that underexposed and overexposed regions are treated sep-
arately. The first column in Fig. 4 shows the output of Incep-
tionV3 on existing datasets (top) and the GTA-HDR dataset
included (bottom). There is a significant gap in the fea-
ture space between the HDR-Synth & Real dataset (red) and
City Scene dataset (blue) as well as real datasets combined
(yellow), which is filled, to some extent, by GTA-HDR
(green). In the second column (ResNet50), GTA-HDR fills
the gap in the lower right corner of the feature space. Here,
we also observed a significant overlap of GTA-HDR with
other datasets. In the third column (VGG19), GTA-HDR
alone covers a significant area of the feature space which is
covered by all other datasets combined. Finally, in the last
column (MobileNet), GTA-HDR extends the feature space
by covering a considerable area of the upper left corner
along with some overlap with existing datasets.

To further investigate the contribution of the GTA-HDR
dataset, we replaced the feature extraction block of one of
the most recent state-of-the-art methods, SingleHDR [37]
(which originally utilizes VGG19), with the described fea-
ture extraction backbones. Table 3 summarizes the quan-
titative results of this experiment in terms of PSNR and
SSIM. When the model is trained with existing real and
mixed datasets in an end-to-end fashion, the observed im-
provements are proportional to the size of the backbones
(i.e., the number of parameters). However, when using
only GTA-HDR data for training, there is a significant im-

Table 3. Performance of SingleHDR [37]. Different versions
of the state-of-the-art method utilizing different feature extraction
backbones, trained with and without GTA-HDR data in an end-
to-end fashion. R ⊕ S: Real and synthetic data combines all five
datasets [15,28,30,50,73]; GTA-HDR: Proposed synthetic dataset.
Note: Evaluated on a separate dataset proposed in [40].

Method #Param Datasets (training) PSNR↑ SSIM↑

+MobileNet 13M R ⊕ S 32.3 0.89
+InceptionV3 24M R ⊕ S 32.8 0.89
+ResNet50 25.6M R ⊕ S 33.2 0.90
+VGG19 144M R ⊕ S 35.2 0.92

+MobileNet 13M GTA-HDR 38.4 (+6.1) 0.94 (+0.05)
+InceptionV3 24M GTA-HDR 38.8 (+6.0) 0.95 (+0.06)
+ResNet50 25.6M GTA-HDR 39.5 (+6.3) 0.95 (+0.05)
+VGG19 144M GTA-HDR 41.2 (+6.0) 0.96 (+0.04)

+MobileNet 13M R ⊕ S ⊕ GTA-HDR 38.6 (+0.2) 0.95 (+0.01)
+InceptionV3 24M R ⊕ S ⊕ GTA-HDR 39.5 (+0.7) 0.95 (+0.00)
+ResNet50 25.6M R ⊕ S ⊕ GTA-HDR 40.1 (+0.6) 0.96 (+0.01)
+VGG19 144M R ⊕ S ⊕ GTA-HDR 41.5 (+0.3) 0.97 (+0.01)

provement for all the backbones. It is worth noting that re-
gardless of the size of the backbone feature extractor, there
is an improvement in both PSNR and SSIM when using
GTA-HDR. Interestingly, when including the GTA-HDR
dataset, the performance of the considerably smaller (e.g.,
MobileNet) backbones is better than the large ones (e.g.,
VGG19) trained without using GTA-HDR.

5.3. Image Diversity

The existing datasets include either single-exposed or
multi-exposed LDR images and the corresponding HDR
images. GTA-HDR also introduces LDR images with
multi-contrast levels for each HDR image. In this sec-
tion, we report the results of an experiment that aims
to establish the contribution of multi-exposed and multi-
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Figure 5. Histograms of different versions of the GTA-HDR
dataset. (a) GTA-HDRSE: Only single-exposed LDR images; (b)
GTA-HDRME: Only multi-exposed LDR images; and (c) GTA-
HDRFULL: All LDR images.

contrast LDR images on the HDR image reconstruction
performance. The experiment includes three versions of
the GTA-HDR dataset: 1) GTA-HDRSE consists of only
single-exposed LDR images; 2) GTA-HDRME comprises
only multi-exposed LDR images; and 3) GTA-HDRFULL
includes all LDR images (i.e., multi-exposed and multi-
contrast). Fig. 5 illustrates the histograms of the three ver-
sions of the dataset (we treat RGB channels as intensity val-
ues). The histogram for GTA-HDRSE reveals that there is a
miss-balance in the dataset, where most image pixel inten-
sity values are on the left-hand side of the histogram (i.e.,
underexposed pixels [0, 150]). The histogram for GTA-
HDRME demonstrates that a portion of the miss-balance has
been addressed (with a small gap in the interval [200, 250]).
The histogram for GTA-HDRFULL confirms that the inten-
sity values are more evenly distributed.

Table 4 summarizes the quantitative results of this anal-
ysis. In this experiment, we consider the recent state-of-
the-art method ArtHDR-Net [7]. The first three rows re-
port the performance of ArtHDR-Net trained with each ver-
sion of the GTA-HDR dataset and tested on reconstructing
HDR images from underexposed LDR images. The per-
formance of the model trained with GTA-HDRSE dataset
is surprisingly good in the case of underexposed LDR im-
ages, supporting the qualitative results from the left his-
togram in Fig. 5. The middle three rows report the per-
formance of ArtHDR-Net trained with each version of the
GTA-HDR dataset and tested on reconstructing HDR from
overexposed LDR images. In this case, the performance
steadily increases with the addition of exposure and con-
trast levels in the training set. A similar trend can be ob-
served on the combined over/underexposed LDR images,
reported in the bottom three rows. Images of real-life scenes
have diverse exposure and contrast levels suggesting a data
distribution similar to the proposed GTA-HDRFULL dataset.
In addition, multi-exposed and multi-contrast LDR images
help mitigate model bias towards certain classes of images.

6. Conclusions

This paper describes GTA-HDR, a large-scale synthetic
dataset and data collection pipeline to complement existing

Table 4. Performance of ArtHDR-Net [7]. Assessment of
the state-of-the-art method utilizing different training and testing
datasets. SE: GTA-HDR without exposure and contrast variations;
ME: GTA-HDR with different exposure levels; FULL: Proposed
synthetic dataset; U: Underexposed LDR images; O: Overexposed
LDR images; N: Normally exposed LDR images. Note: Evaluated
on a separate dataset proposed in [40].

Datasets (training) Datasets (testing) PSNR↑ SSIM↑ Q-score↑

GTA-HDRSE U 42.9 0.99 73.3
GTA-HDRME U 40.7 0.97 71.2
GTA-HDRFULL U 39.1 0.95 69.4

GTA-HDRSE O 32.8 0.89 64.9
GTA-HDRME O 33.9 0.92 65.7
GTA-HDRFULL O 34.7 0.93 66.4

GTA-HDRSE U + O + N 37.2 0.93 66.2
GTA-HDRME U + O + N 39.7 0.95 68.5
GTA-HDRFULL U + O + N 41.6 0.97 70.4

real and synthetic datasets for HDR image reconstruction.
The thorough experimental validation using existing real
and synthetic datasets and state-of-the-art methods high-
lights the contribution of the proposed dataset, specifically
to the quality of HDR image reconstruction and the recov-
ery of image details with high fidelity (cf ., Supplementary).
In the paper Supplementary, we further demonstrate the im-
pact of GTA-HDR on the state-of-the-art in other computer
vision tasks, including 3D human pose estimation, human
body part segmentation, and holistic scene segmentation.
The proposed dataset represents an important contribution
that will enable the development of advanced techniques for
visually accurate HDR image reconstruction. Preliminary
discussion has been presented for developing no-reference
quality assessment methods utilising the GTA-HDR dataset.
This is possible direction for future research in addition to
creating a video-based HDR reconstruction dataset.
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