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Abstract

Simplicity bias is a critical challenge in neural net-
works since it often leads to favoring simpler solutions
and learning unintended decision rules captured by spuri-
ous correlations, causing models to be biased and dimin-
ishing their generalizability. While existing solutions rely
on human supervision, obtaining annotations of the dif-
ferent bias attributes is often impractical. To tackle this,
we present Debiasify, a novel self-distillation approach
that works without any prior information about the nature
of biases. Our method leverages a new distillation loss to
distill knowledge within a network; from a deep layer where
complex, highly-predictive features reside, to a shallow
layer where simpler yet attribute-conditioned features are
found in an unsupervised manner. In this way, Debiasify
learns robust, debiased representations that generalize well
across various biases and datasets, enhancing worst-group
performance and overall accuracy. Extensive experiments
on computer vision and medical imaging benchmarks show
the efficacy of our method, significantly outperforming the
previous unsupervised debiasing methods (e.g., a 10.13%
improvement in worst-group accuracy on Wavy Hair classi-
fication in CelebA) while achieving comparable or superior
performance to supervised methods. Our code is publicly
available at the following link:Debiasify.

1. Introduction

Deep neural networks have emerged as a fundamen-
tal technology in numerous applications that profoundly
impact various aspects of society, such as facial recogni-
tion [17], AI-enabled recruitment [20], and healthcare diag-
nostics [3, 11]. Given the significant societal implications
of these algorithms, it is increasingly crucial to ensure their
resilience against simplicity bias [4, 31, 35]; in other words,
these networks’ learning process should not prioritize weak
predictive features over complex features that underpin the
actual mechanisms of the task of interest. For instance, on
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the CelebA dataset [24], which is a real-world dataset where
different attributes are strongly correlated, networks tend to
classify hair color based on gender, frequently associating
Blond Hairwith Female. Such an unintended rule per-
forms adequately across the majority of training instances
but leads to unforeseen extreme errors in minority exam-
ples that lack the spurious correlation, thereby hindering the
model’s ability to adapt to new testing scenarios that exhibit
changes in data distributions.

Effective ways for network debiasing include upweight-
ing or upsampling of examples that lack spurious cor-
relations [29], data augmentation [12], adversarial learn-
ing [11,37], robust learning [31], and architecture optimiza-
tion [2]. Nevertheless, most of these efforts rely on explicit
bias attribute labels in their debiasing recipes. This compro-
mises their practicality, as identifying and manually label-
ing the types of biases, to determine which attributes involve
spurious correlations without a thorough analysis of the
model and dataset, present significant challenges. Only re-
cently, the focus has been shifted towards debiasing without
the bias attribute labels. This is usually achieved by identi-
fying the minority group within each class – flagged based
on indicators such as misclassification [22], high loss [28],
or sensitive representations [9], and subsequently upweight-
ing/upsampling them during training.

Despite being promising, these methods have two major
drawbacks. First, they are heavily dependent on hyperpa-
rameter tuning using bias attribute information in the vali-
dation set, which might not be accessible for datasets in the
real world [19]. Second, they are designed to address only
a single bias attribute within a class, neglecting the poten-
tial existence of multiple bias sources within the same class;
e.g., skin tone, gender, image background.

To overcome the aforementioned problems, we propose
Debiasify, a simple yet effective unsupervised debias-
ing technique via feature clustering and self-distillation.
Rooted in the observations that images sharing the same
label for certain bias attribute(s) (other than the target at-
tribute) tend to have similar representations in the feature
space, particularly in the shallow layers of the neural net-
work stack [10,37], we propose clustering the shallow layer

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3227



Figure 1. Debiasify leverages clustering in the feature space
of a shallow layer in the network to identify attribute-conditioned
groups (3 groups shown) for each class (e.g., Attractive),
where images in each group are clustered based on common, non-
target bias attributes (e.g., Female, Smiling, etc.)

features to identify attribute-conditioned groups for each
class, as depicted in Figure 1. To exploit these groups
for learning debiased representations, we introduce a novel
self-distillation loss that encourages their distributions to
converge while simultaneously aligning them with the dis-
tribution of their highly-predictive class features in the deep
layer. In summary, our contributions are:

• We introduce Debiasify, a new method for un-
supervised bias mitigation through a self, deep-to-
shallow, distillation technique.

• We propose a hybrid loss that maintains high classifi-
cation performance while effectively debiasing repre-
sentations by minimizing the distance between class-
specific, bias attribute-conditioned groups in the shal-
low layers and their corresponding class attribute-
agnostic distributions in the deep layers.

• We conduct experiments and ablation studies on
CelebA, Waterbirds, and Fitzpatrick, benchmarking
against bias-unsupervised methods, including previ-
ous SOTA: CFix [7], and the uper-bound super-
vised method: GDRO [32]. Our results highlight
Debiasify’s superior performance, especially in
worst-group accuracy.

2. Related Work
2.1. Simplicity Bias in Neural Networks

Neural networks have been found to be prone to sim-
plicity bias [5, 35]. That is, they tend to learn the simplest
features to solve a task, even in the presence of other, more

robust but more complex features. This bias towards sim-
pler features can lead to models lacking robustness against
shifts that do not adhere to the simplistic characteristics cap-
tured by the learned features. Extensive efforts have been
made to address the simplicity bias problem, categorized
broadly into three approaches based on the stage of inter-
vention during the modeling process. Pre-processing tech-
niques aim to modify the training data in order to reduce
the correlations between bias and target attributes [6, 26];
in-processing techniques modify the learning algorithms to
eliminate bias during the model training process [8, 11];
and post-processing techniques treat the learned model as a
black-box and try to mitigate bias by leveraging the predic-
tions [30, 41]. Nevertheless, most of these techniques have
limitations in real-world scenarios since they rely on access
to bias attribute annotations in the training or validation sets
for effective bias mitigation.

2.2. Bias Mitigation without Supervision

Recently, efforts have been directed towards mitigating
bias in the absence of explicit bias attributes, primarily
through in-processing techniques [1, 3, 27, 37, 39, 42]. One
such technique involves identifying minority samples as
those misclassified by an initial network and then reweight-
ing them. Nam et al. [28] achieve this by training an ad-
ditional biased model, where images that are not easily
trained by the biased model are considered minority. Liu et
al. [22] define minority samples as those misclassified by a
model trained using empirical risk minimization and priori-
tize them during the training of a debiased model. Another
technique synthesizes images having similar characteristics
to the minority group and employs them to train a debiased
model. Kim et al. [18] synthesize images without bias at-
tributes by leveraging an image-to-image translation model.
Lee et al. [21] and Hwang et al. [16] augment minority sam-
ples in the feature space by employing disentangled repre-
sentations and mixup, respectively.

Our work aligns closely with a third technique, which
involves acquiring bias pseudo-labels through the unsuper-
vised learning technique of clustering in the feature space of
the network. Examples in this category include BPA [34],
which proposes a cluster-wise reweighting scheme, lever-
aging pseudo-attribute information from feature clustering
results; CFix [7], which uses cluster error (i.e., the dis-
crepancy in correctly classifying examples within clusters)
to identify examples potentially influenced by network in-
ductive bias, subsequently upweighting them to enhance
worst-group performance; and George [36], which approx-
imates bias attributes with cluster assignment and weights
the objective function to maximize the worst-group accu-
racy. However, these clustering-based methods have a key
limitation: they rely solely on reweighting of images within
their respective clusters, which can be problematic given

3228



Figure 2. Debiasify identifies attribute-conditioned groups Pak,y (represented by for all ak attributes, k = 1, 2, 3) found through
clustering in feature space of a shallow network layer. The goal is to bring their distributions closer to each other while aligning them with
their class distribution Py (represented by ) in the deep layer using a novel self-distillation loss LAKD (yellow arrows).

that formation of clusters (their size and shape) is sensitive
to outliers and noisy images that are commonly encountered
in real-world datasets. In contrast, our Debiasify takes
a fundamentally different approach by naturally examining
cluster distributions and promoting their alignment through
a novel self-distillation loss, without any reweighting.

3. Methodology
Figure 2 presents an overview of our proposed self-

distillation method for unsupervised bias mitigation, termed
Debiasify. Our self-distillation loss directs a shallow
network layer to learn more predictive features instead of
simpler ones that might be correlated with unwanted char-
acteristics to improve performance. Assuming bias infor-
mation is unknown, Debiasify first performs clustering
in the feature space of a shallow layer to identify class-wise
attribute-conditioned groups, which are then guided to get
closer to each other while simultaneously mirroring their
class, attribute-agnostic counterparts in the deep layer. Ob-
servations and details are given next.

3.1. Observations

Objective. Let x be an image associated with a set of pos-
sible bias attributes a ∈ A. The primary objective of our
Debiasify is to predict a target attribute y by estimat-
ing the ground truth relationship p (y | x), while mitigating
any undesired correlations with other bias attributes; i.e.,
ensuring that p (y | x) = p (y | x, a) ,∀ a ∈ A. During the

training phase of Debiasify, information regarding bias
set A is neither available nor provided.

Preliminary Study. Previous works [7, 34] have used the
CelebA dataset to analyze the feature semantics over the
target and bias attributes. The studies revealed that images
from certain groups, defined by a combination of target and
bias attribute values, are clustered in the feature space, even
without using the bias information during training. Expand-
ing on their analysis, we conduct the following experiments
to investigate the layer where the clustering could be more
pronounced. We begin by training a ResNet18 model for 50
epochs to classify a target attribute (e.g., Blond Hair).
Next, we assess feature decodability at different network
depths to evaluate how well the bias attribute Male can be
decoded, keeping the network parameters frozen. A de-
coder, consisting of a single linear layer and softmax, is
trained using activations from a specific layer and an unbi-
ased validation set labeled with the bias attribute. Figure 3 –
(a, blue bars) shows the decodability of Male across layers.
We observe that bias decodability generally decreases with
network depth, indicating that shallower layers are more ef-
fective at detecting bias. In more complex scenarios, where
the bias involves combinations of attributes, a similar trend
is observed (Figure 3 – (b, blue bars)). These findings align
with previous studies that identified bias detection in shal-
low layers [10,37,38] and were theoretically validated [15].
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Figure 3. Results of Linear Decodability (LD): Panel (a) com-
pares LD of the Male bias attribute from a frozen baseline net-
work (blue) and our method (orange), both pretrained on different
target attributes. Panel (b) shows LD of multiple bias attributes
from networks pretrained on Blond Hair, comparing the base-
line (blue) and our method (orange).

3.2. Formulation

Preliminaries. We aim to train a network f to enhance
the classification performance and generalization by learn-
ing debiased representations. We denote the shallow and
deep layers of f as ls and ld, respectively. To align the fea-
ture distributions across ls and ld, a simple auxiliary branch
is introduced after ls, comprising an alignment layer and a
classifier, as illustrated in Figure 2. The alignment layer en-
sures that the feature dimensionality in ls matches that of ld.
Additionally, we denote the predicted labels of sample x by
the shallow and deep classifiers as cs and cd, respectively.
Generating Attribute-conditioned Groups. We begin by
training f for a few epochs using an averaged cross entropy
loss LACE to predict the ground truth y for each sample x,
as follows;

LACE =
1

2

∑
y

[
Ls
CE (cs, y) + Ld

CE (cd, y)
]
. (1)

Once the network is trained and potentially learned the bias,
we cluster the feature embeddings from ls to generate K
attribute-conditioned groups for each class, given our em-
pirical observations in Sec 3.1 and previous findings con-
firming that clustering effectively groups images sharing
common non-target attributes. In our implementations, we
opt to use K-means [25] with adaptive K value to mitigate
the risk of failing to capture smaller clusters if K is small
or the emergence of unwanted clusters if K is large. We de-
termine the value of K as the smallest integer such that the
mean within-cluster variance of the features is lower than a
pre-defined upper bound γ. As a result, we obtain a set of
clusters that comprehensively cover each class, where im-

ages within each cluster share common attributes other than
the target attribute.
Learning Debiased Representations. Next, we aim
to learn debiased representations by minimizing the dis-
crepancy between the class-wise feature distribution Py

extracted from ld, and the distribution of each attribute-
conditioned cluster Pak,y derived from ls and associated
with the same class. Note that k ranges from 1 to K. Specif-
ically, we define our attribute-based knowledge distillation
loss as follows;

LAKD =
∑
y

∑
k

D2 (Py, Pak,y) , (2)

where D is a distance metric between two distributions. In
our experiments, we use the Maximum Mean Discrepancy
(MMD) [13], a powerful method for comparing distribu-
tions without relying on specific assumptions about their
shapes. MMD works by evaluating the difference in av-
erage values across functions in a special space called a
Reproducing Kernel Hilbert Space (RKHS). To facilitate
this comparison, it employs a kernel, such as the Gaus-
sian Radial Basis Function (RBF) in our context, to con-
vert the distributions into the RKHS, thereby enabling eas-
ier analysis. We experiment with different distance metrics
in Sec. 4.6. By optimizing LAKD, i.e., D2(Py, Pak,y) →
0 =⇒ Pak,y ≈ Py , the group features are encour-
aged to mirror their respective class distribution, allowing
the model to learn representations that capture the unique
characteristics of each class while washing out the attribute-
specific features that could lead to biased learning. The final
objective for Debiasify’s training is given as follows;

Lhybrid = LACE + αLAKD + LKL , (3)

where LKL = KL(cs, cd) is the Kullback-Leibler diver-
gence between the shallow and deep classifier logits, and α
is a hyperparameter that controls the balance between clas-
sification accuracy and knowledge transfer.

4. Experiments
We conduct experiments to assess the performance of

Debiasify across various benchmarks and compare it
with state-of-the-art (SOTA) methods for bias mitigation.
To ensure a fair comparison with other clustering-based de-
biasing methods, we adopt the experimental settings in the
previous SOTA, CFix [7], when applicable.

4.1. Evaluation Benchmarks

We evaluate Debiasify using three datasets:
CelebA [23], Waterbirds [32] and Fitzpatrick [14].
CelebA is a real-world dataset for face attribute recognition
containing 202,599 celebrity face images, each annotated
with 40 binary attributes. Following other works [7, 34],
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we designate Male as the bias attribute, and we diversify
the target label by selecting other attributes that exhibit the
strongest correlation with the bias.
Waterbirds is a synthesized dataset created by combining
two other datasets to establish a strong correlation between
bird types (waterbird, landbird) and their backgrounds (wa-
ter, land). It consists of 4,795 training examples; 95% of
them having matching bird types and backgrounds; e.g., wa-
terbirds with water background, while the other do not.
Fitzpatrick is a well-known medical dataset for skin lesion
analysis consisting of 16,012 clinical images with 3 class
labels. Each image is annotated with a Fitzpatrick score
representing the skin tone, which we designate as the bias
attribute. The Fitzpatrick scale consists of six scores, rang-
ing from 1 (the lightest skin tone) to 6 (the darkest skin
tone). As in previous work [40], we group skin tones 1 to
3 into a category representing lighter skin tones, and skin
tones 4 to 6 into a category representing darker skin tones.
The dataset is imbalanced, with significantly more images
of lighter skin tones compared to darker skin tones (11,060
vs. 4,952, respectively).

4.2. Evaluation Metrics

We evaluate the accuracy for each combination of tar-
get and bias attribute values (y, a), reporting the results
as average-group accuracy (unbiased accuracy) and worst-
group accuracy [7, 34]. The results are averaged over three
independent runs.

4.3. Baseline and Competitors

Baseline. We compare Debiasify against a vanilla-
trained model, which does not incorporate any specific
countermeasures for bias mitigation.
Competitors. We benchmark against several SOTA unsu-
pervised debiasing methods: LfF [28], CFix [7], BPA [34],
and George [36], where the latter three are clustering-based
methods. Additionally, for an upper-bound performance
comparison, we include GDRO [32], a method that opti-
mizes worst-group performance over a distributionally ro-
bust uncertainty set using explicit bias supervision.

4.4. Implementation Details

We use a ResNet18 model, pretrained on ImageNet, as
the backbone for all methods. ResNet18 consists of four
module layers, and we select the layers at the end of the
second module and the final module as our shallow and
deep layers, respectively. Before clustering, we apply PCA
for dimensionality reduction. For preprocessing, images
are resized to 224x224 for CelebA and Fitzpatrick, and
256x256 for Waterbirds, with standard augmentations in-
cluding cropping, flipping, and normalization. We use offi-
cial data splits and train Debiasify with Adam (learning
rate: 1 × 10−4, batch size: 100, weight decay: 0.01) for

50 epochs. We set α to 0.1 and perform grid search for γ,
yielding best results of 0.003-0.01 for the different labels in
CelebA, 0.02 for Waterbirds, and 0.06 for Fitzpatrick.

4.5. Main Results

Qualitative Results. Table 1 (top) demonstrates that
Debiasify outperforms all competitors, including the su-
pervised GDRO and the previous unsupervised CFix, in
most of the classification tasks on CelebA dataset; e.g., for
the Wearing Necklace target, our method achieves the
highest accuracy at 71.14%, surpassing CFix at 68.99% and
GDRO at 62.89%. Similarly, for Pale Skin, our method
leads with 92.77%, compared to CFix at 91.17% and GDRO
at 90.55%. Moreover, the improvements in worst-group ac-
curacy achieved by Debiasify are notable, as detailed
in Table 1 (bottom). Our method demonstrates gains, over
second best performing method, of approximately 10% for
Wavy Hair, 9% for Brown Hair, 5% for Wearing
Necklace, and 4% for Double Chin. This achieve-
ment is significant given that Debiasify does not specif-
ically target worst-group accuracy, unlike methods such
as George and GDRO, which explicitly optimize for this
metric. These improvements in worst-group accuracy are
achieved without compromising the performance across
other groups, thereby ensuring a balanced enhancement, as
reflected in the unbiased accuracy.

Additionally, experiments on Waterbirds in Table 2 con-
firm the effectiveness of our method even in a challenging
controlled environment. We observe improvements in the
worst-group performance, with gains of 1.15% and 2.49%
compared to CFix and GDRO, respectively.

In the medical domain, Debiasify demonstrates su-
perior performance on the Fitzpatrick dataset (Table 3),
achieving the highest accuracies of 82.69% and 59.18%,
surpassing the second-best method by 4.08% and 3.06% in
terms of unbiased and worst-group accuracy, respectively.
Feature Space Visualization. In Figure 4, we present the
t-SNE visualizations of feature embeddings generated by
the baseline model (left) and our proposed model (right)
on the CelebA dataset, specifically for the task of classi-
fying the Blond Hair label. The embeddings are ex-
tracted from the penultimate layer of each model. In these
plots, we focus solely on the negative examples (Blond
Hair = False) to provide a clearer visualization of the
data distribution. The colors represent the gender attribute,
with blue indicating female and green indicating male. The
baseline model’s embeddings show a more segregated dis-
tribution based on gender, while our model’s embeddings
exhibit a more intermixed distribution of female and male
samples within the same class. This intermixing indicates
that Debiasify is effective at reducing the influence of
the gender bias attribute, promoting a more debiased repre-
sentation of the data.
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Table 1. Performance evaluation of Debiasify against others on CelebA dataset. Cells in blue and green represent the best and second-
best results, respectively. Improvement gain compared to the second-best method is given between brackets in red.

(a) Unbiased Accuracy (%)
Unsupervised Supervised

Target Baseline LfF George BPA CFix Ours GDRO
Double Chin 64.61±0.82 68.47±0.22 76.23±0.11 82.92±0.54 85.13±0.30 86.19±0.21 (+1.06) 83.19±1.11
Pale Skin 71.50±1.60 75.23±0.74 78.22±3.75 90.06±0.75 91.17±0.04 92.77±1.38 (+1.60) 90.55±0.84

Wearing Necklace 55.04±0.59 57.21±0.76 58.79±0.10 68.96±0.12 68.99±1.19 71.14±0.52 (+2.15) 62.89±3.69
Wearing Hat 93.53±0.37 94.81±0.15 95.72±0.71 96.80±0.26 97.88±0.09 97.65±0.37 (–0.23) 96.84±0.46
Big Lips 60.87±0.58 62.15±0.06 64.99±0.13 66.50±0.24 65.40±0.48 67.73±0.44 (+1.23) 63.70±0.44
Bangs 89.04±0.47 89.04±0.50 92.62±0.12 93.94±0.57 94.67±0.16 95.56±0.93 (+0.89) 94.45±0.17

Receding Hairline 69.72±0.78 74.58±0.21 78.86±0.40 84.95±0.49 87.00±0.12 86.84±0.33 (–0.16) 85.15±1.31
Wavy Hair 73.10±0.56 74.53±0.17 77.39±0.15 79.89±0.71 79.42±0.12 80.80±1.26 (+1.38) 79.65±0.63
Brown Hair 78.07±0.87 78.93±1.24 83.07±0.07 83.83±0.66 85.30±0.47 86.20±0.67 (+0.90) 84.87±0.07

(b) Worst-Group Accuracy (%)
Unsupervised Supervised

Target Baseline LfF George BPA CFix Ours GDRO
Double Chin 21.33±2.24 28.24±0.46 50.00±0.41 67.78±0.91 74.26±3.94 78.69±0.32 (+4.43) 72.94±1.14
Pale Skin 36.64±3.53 43.26±1.40 62.03±16.50 88.60±1.48 87.01±1.46 89.76±0.62 (+1.16) 87.68±2.37

Wearing Necklace 02.72±0.83 06.67±2.07 13.82±0.41 41.93±2.47 55.56±0.38 60.98±0.20 (+5.42) 24.34±7.81
Wearing Hat 85.12±0.31 88.31±0.12 92.93±0.76 94.94±0.19 96.58±0.63 96.75±0.33 (+0.17) 94.67±0.41
Big Lips 30.85±0.62 38.54±0.18 44.51±0.83 56.99±3.05 57.27±0.58 57.79±0.15 (+0.52) 47.55±1.03
Bangs 76.91±3.27 82.37±0.52 85.90±0.24 92.21±1.24 93.01±0.36 92.66±0.38 (–0.35) 92.12±1.03

Receding Hairline 35.69±0.35 45.53±0.55 57.30±0.90 79.11±1.91 84.15±0.82 84.68±0.19 (+0.53) 79.12±2.11
Wavy Hair 38.01±0.85 45.24±0.83 53.17±0.43 65.74±1.13 69.92±0.38 80.05±0.39 (+10.13) 66.79±1.62
Brown Hair 59.58±2.55 60.68±3.62 73.20±0.88 71.50±0.97 79.18±0.50 88.10±0.28 (+8.92) 78.92±1.61

Table 2. Performance evaluation of Debiasify against others on Waterbirds dataset. Cells in blue and green represent the best and
second-best results, respectively. Improvement gain compared to the second-best method is given between brackets in red.

Unbiased Accuracy (%) Worst-Group Accuracy (%)
Unsupervised Sup. Unsupervised Sup.

Baseline LfF BPA CFix Ours GDRO Baseline LfF BPA CFix Ours GDRO
87.99 85.05 88.44 92.17 91.49 (–0.68) 89.20 73.34 60.00 79.16 86.61 87.76 (+1.15) 85.27

Table 3. Performance evaluation of Debiasify against others
on Fitzpatrick dataset. Cells in blue and green represent the best
and second-best results, respectively. Improvement gain compared
to the second-best method is given between brackets in red.

Unbiased Accuracy (%) Worst-Group Accuracy (%)
Unsupervised Sup. Unsupervised Sup.

Baseline LfF Ours GDRO Baseline LfF Ours GDRO

77.90 82.69 77.12 36.73 42.17 59.1878.61
(+4.08) (+3.06)

56.12

Model Explainability. In Figure 5, we use Grad-
CAM [33] to explore the interpretability of Debiasify
for the Wearing Necklace, Wearing Hat, and
Wavy Hair classification tasks in CelebA dataset. Our
method consistently focuses on regions highly relevant to
the target attribute, while the baseline often emphasizes
unrelated bias-based features. For instance, in Wearing
Necklace classification task, our model focuses on the
necklace, whereas the baseline focuses on the mouth. We
further demonstrate the effectiveness of our method on im-
ages from the worst-group category in the Waterbirds and
Fitzpatrick datasets (Figure 5). In Waterbirds, our method
clearly focuses on the bird, while the baseline emphasizes
the background. Similarly, in Fitzpatrick, our method tar-
gets the specific skin lesion, whereas the baseline highlights
the surrounding skin surface.

Figure 4. The t-SNE plots of feature embeddings for the base-
line model (left) and our model (right) trained to classify Blond
Hair. The plots display the distribution of samples with the tar-
get value Blond Hair = False. Blue and green colors rep-
resent female and male genders, respectively. Our Debiasify
promotes a better mix of samples with the same target but differ-
ent bias attribute values, which reduces the bias.

Multiple Bias Attributes. Thanks to the unsupervised de-
sign of Debiasify, we can seamlessly evaluate its perfor-
mance in multi-bias scenarios without modifying the net-
work or training framework. Table 4 shows the unbiased
accuracy of Debiasify compared to other methods for
the Blond Hair classification task when multiple bias
attributes are present. Our method consistently achieves
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Figure 5. Visualization of the class activation maps generated by GradCAM for the baseline and Debiasify (ours) on images from the
CelebA (left), Waterbirds (middle), and Fitzpatrick (right) datasets.

Table 4. Performance evaluation (Unbiased Accuracy %) of Debiasify against others for Blond Hair classification with multiple
bias attributes in the CelebA dataset. Cells in blue and green represent the best and second-best results, respectively. Improvement gain
compared to the second-best method is given between brackets in red.

Method
Bias

Male, Young
Male, Big

Nose
Male, Smiling

Male, Heavy
Makeup

Male, Wearing
Lipstick

Male, Wearing
Necklace

Baseline 78.39 81.18 79.75 83.64 80.34 79.25
LfF 81.21 84.10 82.91 88.82 84.13 81.03

U
ns

up
.

Ours 88.35 (+0.39) 91.24 (+0.41) 89.78 (–1.95) 88.71 (–0.11) 87.21 (+1.28) 90.96 (–1.30)

Sup. GDRO 87.96 90.83 91.73 81.09 85.93 92.26

superior results across various bias sets compared to other
unsupervised methods. Additionally, it performs close to
the supervised GDRO, which is very sensitive to the bias
sets, as it trains a separate model for each bias. In contrast,
Debiasify can be applied to any bias set without further
fine-tuning.
Linear Decodability. As discussed in Sec 3.1, we repeat
the linear decodability experiments using our Debiasify.
Figure 3 shows that bias decodability, whether for a sin-
gle or combined attributes, is consistently lower with our
method (orange bars) compared to the baseline (blue bars),
demonstrating its effectiveness in mitigating bias across all
layers.

4.6. Ablation Studies

We perform five sensitivity analyses on the CelebA
(Double Chin and Wearing Necklace), Water-
birds, and Fitzpatrick datasets, summarized in Table 5.
1. Cluster Assignment. In Exp. A, we evaluate the im-
pact of using true bias distributions versus pseudo clus-
ters derived from the shallow layer on the performance
of Debiasify. Specifically, we replace the attribute-
conditioned clusters Pak,y in Eq. 2 with the true bias dis-
tributions, assuming they are available during training. The

results demonstrate that utilizing our pseudo clusters de-
rived from the shallow layer is generally effective, with
performance comparable to or marginally better than us-
ing true bias distributions in Exp. A. Particularly no-
table improvements are observed in the Fitzpatrick dataset,
where Debiasify achieves a higher accuracy, especially
in worst-group performance, compared to using true bias
distributions. A possible explanation for this result lies in
the inherent noise or imperfections in the true bias labels.
Clustering through Debiasify allows for a more nuanced
understanding and adaptation to subtle variations within the
dataset that may not be fully captured by the explicit bias
labels, leading to improved performance.

2. Distillation Depth. We assess how different distilla-
tion depths impact Debiasify by fixing the deep layer
at the default position (layer 4) and systematically adjust-
ing the shallow layer involved in the distillation process.
Specifically, we evaluate the following shallow layer con-
figurations: Layer 1 (Exp. B), layer 3 (Exp. C), the com-
bination of layers 1 and 2 (Exp. D), and the combination
of layers 1, 2, and 3 (Exp. E). Our findings are as follows:
Interestingly, our method is effective across different shal-
low layer configurations; i.e., distilling knowledge from the
deep layer into any shallow layer consistently improves de-
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Table 5. Performance evaluation, given as unbiased (worst-group) accuracy, of Debiasify from different ablation studies on CelebA,
Waterbirds and Fitzpatrick datasets.

CelebA (Double Chin) CelebA (Wearing Necklace) Waterbirds Fitzpatrick

Exp.
Default 86.19 (78.69) 71.14 (60.98) 91.49 (87.76) 82.69 (59.18)

A 84.37 (80.15) 71.34 (61.87) 91.16 (88.32) 81.36 (54.64)

B 84.26 (78.13) 68.36 (61.75) 90.26 (85.36) 81.24 (57.83)
C 84.37 (77.62) 69.22 (59.17) 91.67 (86.42) 80.65 (58.27)
D 83.82 (78.45) 68.29 (59.54) 89.28 (86.19) 81.44 (58.67)
E 85.11 (80.62) 71.88 (62.30) 90.85 (87.44) 83.09 (60.31)

F 83.82 (69.83) 70.32 (56.28) 88.65 (83.21) 81.67 (57.24)
G 84.61 (73.29) 69.88 (58.39) 89.27 (84.69) 82.35 (58.61)

H 83.82 (69.85) 70.93 (56.36) 89.54 (83.29) 80.35 (46.54)
I 83.45 (78.68) 70.32 (59.11) 90.73 (84.68) 82.11 (57.29)

J 84.00 (72.06) 68.74 (56.37) 90.23 (85.41) 81.68 (58.67)
L 83.63 (73.53) 69.35 (59.21) 91.16 (86.32) 82.35 (59.27)
M 85.17 (83.09) 69.21 (63.48) 91.25 (86.27) 82.24 (58.91)

biasing, leading to superior worst-group accuracy compared
to all SOTA methods across all datasets (Tables 1, 2, 3).
This demonstrates the strong impact of our proposed deep-
to-shallow distillation mechanism. 2) The multi-layer dis-
tillation in Exp. E achieves the highest worst-group accu-
racy across the other configurations, which is expected as
it guides all layers to learn debiased representations. How-
ever, it requires longer training and increased complexity
due to the multi-layer clustering and distillation. 3) Based
on average results across datasets, the default Debiasify
configuration (i.e., layer 2) offers the best performance bal-
ance while avoiding the computational overhead of Exp. E .
3. Distance Metric Selection. To assess the sensitivity of
Debiasify to the choice of distance metric used for the
learning of debiased representations, we replace MMD in
Eq. 2 with Kullback-Leibler (KL) divergence (Exp. F) and
Mahalanobis distance (Exp. G). We observe that while both
alternative metrics show a slight decline in unbiased accu-
racy, the use of Mahalanobis distance (Exp.G) results in a
relatively smaller decrease in worst-group accuracy com-
pared to KL divergence (Exp. F). Overall, the results sug-
gest that MMD is the most effective distance metric for our
method, providing the best balance between unbiased accu-
racy and worst-group performance.
4. Hybrid Loss Components. In Exp. H and I, we
evaluate the impact of omitting different components of
the hybrid loss Lhybrid (Eq. 3). We notice that omit-
ting LAKD (Exp. H) significantly decreases worst-group
accuracy across all datasets, underscoring its crucial role
in learning debiased representations. Conversely, omitting
LKL (Exp. I) results in less performance degradation, as
this component primarily aids in knowledge transfer be-
tween logits, which is less essential for developing robust,
debiased features.
5. Number of Clusters. We investigate the performance of
Debiasify by varying the threshold value γ to obtain dif-
ferent number of clusters per class. Specifically, we experi-
ment with K = 2, 4 and 16 in Exps. J , L, and M, respec-

tively. Note that the default values of γ reported in Sec. 4.4
result in K = 8 for the CelebA and Waterbirds datasets, and
K = 2 for the Fitzpatrick dataset. We observe that using
a higher number of clusters (K = 16 in Exp. M) gener-
ally improves the worst-group accuracy across the datasets.
However, this comes at the cost of decreased unbiased accu-
racy and increased computational complexity and training
time. Conversely, fewer clusters (K = 2 in Exp. J ) result
in a notable drop in performance in the CelebA dataset, par-
ticularly in worst-group accuracy, while having less impact
on the Waterbirds and Fitzpatrick datasets. This suggests
that a moderate number of clusters is sufficient to capture
the necessary attribute-conditioned variations while main-
taining the model’s overall robustness and efficiency.

5. Conclusions

We present a robust unsupervised debiasing frame-
work that leverages feature clustering and self-distillation.
Debiasify is based on the observation that images with
similar non-target attribute labels cluster prominently in
shallow neural network layers. Building on this, we intro-
duce a novel clustering-based method, Debiasify, which
leverages these attribute-conditioned clusters to learn de-
biased representations using a self-distillation technique.
Our technique enforces the distributions of these clusters
to converge towards each other while simultaneously align-
ing them with the distribution of their respective class in
the deepest layer, where more complex and predictive fea-
tures reside. We demonstrate Debiasify’s effectiveness
through extensive experiments, outperforming previous de-
biasing methods, particularly in worst-group accuracy.
Future Work. While Debiasify has proven robust
across different shallow layer configurations, future work
could develop a systematic approach or trainable module to
automatically select the optimal layer(s) for enhanced debi-
asing, improving adaptability across a wider range of archi-
tectures and datasets.
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