This WACYV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Cross-domain and Cross-dimension Learning for Image-to-Graph Transformers

Alexander H. Berger', Laurin Lux'-, Suprosanna Shit'>, Ivan Ezhov',

Georgios Kaissis'**, Martin J. Menten'>*, Daniel Rueckert'>>, Johannes C. Paetzold>°
!'School of Computation, Information and Technology, Technical University of Munich, Germany
2 Department of Computing, Imperial College London, UK
3 Munich Center for Machine Learning (MCML), Munich, Germany
* Institute for Machine Learning in Biomedical Imaging, Helmholtz Munich, Germany
5 Department of Quantitative Biomedicine, University of Zurich, Switzerland
6 Weill Cornell Medicine, Cornell University, New York City, USA

a.berger@tum.de,

Abstract

Direct image-to-graph transformation is a challenging
task that involves solving object detection and relationship
prediction in a single model. Due to this task’s complex-
ity, large training datasets are rare in many domains, mak-
ing the training of deep-learning methods challenging. This
data sparsity necessitates transfer learning strategies akin
to the state-of-the-art in general computer vision. In this
work, we introduce a set of methods enabling cross-domain
and cross-dimension learning for image-to-graph trans-
formers. We propose (1) a regularized edge sampling loss
to effectively learn object relations in multiple domains with
different numbers of edges, (2) a domain adaptation frame-
work for image-to-graph transformers aligning image- and
graph-level features from different domains, and (3) a pro-
jection function that allows using 2D data for training 3D
transformers. We demonstrate our method’s utility in cross-
domain and cross-dimension experiments, where we utilize
labeled data from 2D road networks for simultaneous learn-
ing in vastly different target domains. Our method con-
sistently outperforms standard transfer learning and self-
supervised pretraining on challenging benchmarks, such as
retinal or whole-brain vessel graph extraction.'

1. Introduction

Representing physical relationships via graph represen-
tations has proven to be an efficient and versatile concept
with vast utility in machine learning. Prominent examples
are road network graphs [2], neuron representations and
connections in the brain [45], blood vessels [8], and cell
interactions [55]. Here, typically used voxelized images
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Figure 1. Direct image-to-graph transformation. Whole brain ves-
sel (top) and Agadez road dataset (bottom). The predicted graph
is visualized as an overlay on the real image.

disregard the physical structure’s semantic content. Hence,
constructing graph representations from images (image-to-
graph, see Fig. 1) is a critical challenge for unlocking the
full potential in many real-world applications [27].

Traditionally, image-to-graph transformation involves a
complex multi-stage process of segmentation, identifica-
tion of physical structures and their relations, and itera-
tively pruning the constructed graph, which leads to inac-
curacies and information loss at each step [14]. These dis-
advantages negatively impact prediction accuracy and limit
the application to downstream tasks that require more infor-
mation from the underlying image (e.g., [43,44]). Hence,
there is a clear need for machine learning solutions that fa-
cilitate accurate image-to-graph transformation in a single
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Figure 2. Conceptual overview of our framework. We use a transformer for single-stage image-to-graph transformation. Our three
methodological contributions enable knowledge transfer between vastly different domains in 2D and 3D.

step [4,22]. Recently, vision transformers have been pro-
posed for this task and showed superior performance to tra-
ditional multi-stage approaches [42,54]. However, these ap-
proaches require large sets of annotated 2D data and have
not been shown to generalize to diverse 3D datasets where
graph-level annotations are not widely available.

To address this challenge, we adopt and extend concepts
from the field of inductive transfer learning (TL) (see tax-
onomy in [38]), which have not been explored for image-
to-graph transformation. Inductive TL simultaneously uses
large annotated datasets in the source domain (e.g., 2D
satellite images) and a small set of labeled data in the target
domain (e.g., 3D microscopy images of vascular networks).

Our contribution. Guided by the hypothesis that the un-
derlying graph representations of physical networks are
similar across domains, we introduce a set of methodologi-
cal innovations for image-to-graph transformation:

1. We introduce a loss formulation that regularizes the
number of sampled edges during training, allowing si-
multaneous learning in domains that differ in terms of
the number of objects and relations (Sec. 3.1).

2. We propose a supervised domain adaptation frame-
work for image-to-graph transformers that aligns fea-
tures from different domains (Sec. 3.2).

3. We propose a framework for training 3D image-to-
graph models with 2D data. Our framework introduces
a projection function from the source representation to
a space similar to the target domain (Sec. 3.4).

In extensive experiments on six datasets, we demonstrate
our method’s utility and outperform all baselines, validat-
ing our initial hypothesis. Our method leads to four main
results: 1) we show compelling improvements in image-to-
graph transformation on existing datasets; 2) our method

enables image-to-graph transformation in previously un-
solvable sparse data scenarios; 3) our method outperforms
self-supervised pretraining by a margin and 4) our method
bridges dimensions during training, i.e. we solve the pre-
viously unsolved direct image-to-graph inference for com-
plex 3D vessel images by utilizing 2D road data in an addi-
tional training step. Further ablation studies highlight that
each of our methodological contributions addresses a spe-
cific weakness in the state-of-the-art.

2. Related Works

Image-to-graph transformation. Image-to-graph trans-
formation is an increasingly important field in computer
vision with application to various domains, including road
network extraction from satellite images [51] or 3D vessel
graph extraction from microscopy images [ !,3]. Traditional
methods solve this task through a multi-step approach in-
volving input segmentation [2, 7, 1 1], skeletonization, and
pruning to generate the graph [14,51]. Deep learning-based
approaches frequently use an object detector followed by
relation prediction [, 3] or require a segmentation map as
input [54]. These approaches’ performances are determined
by the performance of the pipeline’s intermediate stages.
Furthermore, information loss at each stage limits perfor-
mance and applicability to downstream tasks. Lastly, these
methods are tailored to specific domains, rendering them
unsuitable for cross-domain applications, including TL.

We select the Relationformer as our base concept be-
cause it is the most general single-stage transformer concept
that can directly predict the graph from diverse image data
in various domains [39,42]. This generalizability makes it
especially suitable for cross-domain TL.

Transfer learning for transformers. Recent studies
showed effective pretraining for transformers on natural im-
ages. Prevailing architectures involve supervised pretrain-
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ing of the model’s backbone on, e.g., ImageNet, coupled
with random initialization of the encoder-decoder compo-
nent [7,33,42]. Dai et al. [12] extend DETR [7] with a
specific pretext task for object detection. Li et al. [28] com-
pared self- and supervised pretraining methods with ran-
dom initialization of a ViT-backbone [13]. They showed
how self-supervised pretraining improves downstream ob-
ject detection without a specific pretext task. Ma et al. [33]
pretrained a transformer architecture on synthetic data and
outperformed self-supervised methods for object detection.
However, generating synthetic data, especially for special-
ized tasks, is typically domain-specific or requires expert
knowledge [25]. Ma et al. [33] find that random weight ini-
tialization remains a robust baseline, often achieving com-
petitive downstream performance. To this date, no study has
explored TL for image-to-graph transformers.

Cross-domain transfer learning. Existing cross-domain
TL approaches are generative or discriminative. Genera-
tive approaches translate images from source to target do-
main on a pixel-level using a generative network [56]. In
restricted settings, they have shown promising results, e.g.,
object detection for day-/nighttime shifts in road scenes [23]
or MRI to CT translation [21]. However, generative ap-
proaches require additional training of the translation net-
work, which is computationally expensive and suffers from
training instability [31]. Discriminative approaches train a
single model to learn a general representation that is trans-
ferable between domains [50]. Some utilize a domain ad-
versarial network that distinguishes whether a sample is
from the source or target domain based on its feature repre-
sentation. Combined with a gradient reversal layer (GRL)
[17], this approach has proven effective in classification
[17], segmentation [49], and object detection [10]. Chen
et al. [10] introduced a domain adaptation (DA) framework
for object detection using the GRL concept with two do-
main classifiers at the image and instance levels. Both are
based on H-divergence theory [5]. To reduce the bias to-
wards the source domain, a consistency regularization pe-
nalizes the Lo-distance between the domain classifiers [10].
To this day, all existing approaches are limited to a rela-
tively small domain shift (e.g., from day to night scenes or
synthetic to real images) instead of a fundamental domain
shift, such as from satellite images to medical scans. Also,
none of the existing approaches have been applied to the
image-to-graph transformation problem.

Cross-dimension transfer learning. 2D to 3D TL is a
highly challenging but promising research direction be-
cause of the abundance of labeled 2D data compared to
the scarcity of 3D data. The few existing approaches
[29,41,52, 53] address the challenge, either data-based or
model-based. Data-based approaches augment and project

2D data into 3D space, while model-based approaches aim
to adjust the model to work with multi-dimensional input.
Shen et al. [41] introduced a method that projects 3D point
clouds to pseudo-2D RGB images. Liu et al. [29] intro-
duced a pixel-to-point knowledge transfer that pretrains a
3D model by generating 3D point cloud data from 2D im-
ages with a learned projection function. A model-based ap-
proach by Xie et al. [53] used dimension-specific feature
extractors and a dimension-independent Transformer. Sim-
ilarly, Wang et al. [52] proposed a special tokenizer that
creates 2D-shaped patch embeddings in a standard 2D ViT-
model. All existing approaches either require changes to the
target model, which may limit performance, a specifically
crafted projection function, or additional training (e.g., for
learning an explicit projection function). In our approach,
we seek simplicity in implementation and training as well
as generalizability to new domains and tasks.

3. Methodology

In this section, we describe our three key contributions to
efficiently transfer knowledge from a source domain with
image and graph space denoted as a (Z°,G%) to a target
domain with image and graph space denoted as (Z7,G7)
for an image-to-graph transformer.

3.1. Regularized Edge Sampling Loss

A leading difference between the source and target do-
main in our cross-domain TL setting is the different node
and edge distribution, which poses a challenge because they
dictate the relation loss calculation. Previous works arbi-
trarily pick the number of ground truth edges and fix it
for the relation loss calculation (L,),,) for a specific dataset
[42], which evidently generalizes poorly across varying do-
mains. Generally, such a loss originates from object detec-
tion, where pair-wise relations are classified with a cross-
entropy (CE) loss over a fixed number of edges m. This
includes all active edges .A and an irregular number of ran-
domly sampled background edges B C B. An active edge is
defined as a pair of nodes g, h that is connected by an edge,
ie., ef,lhn — 1. Similarly, for a background edge, ¢%" = 0
holds. Then, L.y, is the CE loss on the set of sampled edges
R = AU B with | A|+|B|< m:

Low= Y Ler(el &) (1)
{g,;h}eR
where &% € {0, 1} is the model’s relation prediction for the

respective pair of nodes. Crucially, this formulation ignores
the subset 3 \ B when calculating the loss.

In previous works [42], m is a manually chosen global
hyperparameter, strongly affecting the model’s perfor-
mance. If m is too small, not enough background edges are
sampled; hence, the loss does not penalize over-prediction.
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If m is too large, background edges dominate the edge loss
calculation because the edge space is sparse. In that case,
the network under-predicts edges. Furthermore, with only
a small subset of all edges being sampled, the loss gives a
noisy signal regarding edge prediction, which worsens the
learning process overall.

To address these limitations, we introduce our regular-
ized edge sampling loss for transformers, short Lgregc. In
simple terms, Lgeg1¢ adaptively chooses the number of sam-
pled edges. If necessary, Lresit upsamples the edges up to a
fixed ratio between active and background edges. With our
novel approach, we achieve a consistent loss across samples
from different domains. Formally, we introduce our regu-
larized edge sampling below:

R = AU Bis the set of a batch’s upsampled edges. The
number of elements in the upsampled multisets A and B
have the pre-defined ratio r = % where r € [0, 1]. Multi-
sets are necessary because the ratio is achieved by duplicat-
ing random edges in A or 5.

A batch’s labels consist of a ground-truth graph G,, for
each sample n. G, is defined as a tuple of the sample’s
nodes and edges, G,, = (V,,, £,). The set of a batch’s nodes
V and edges & is thus defined as:

N
v=_J V.
n=0

Each active edge a € A = £ is a tuple of two nodes (g, h)
that are connected by the respective edge:

N
and &€ = U En ()

n=0

a=(g,h) €& where g,heV 3)

Each background edge b € B is a tuple of two nodes (j, k)
that are not connected by an edge:

b= k) e (VxV)\E=B )
Then, the upsampled multiset of active edges Ais:
A=EU 2]z = a; moa Bl &)

with [€|< @ < |B[+r and ¢ € N. Similarly, we define
the upsampled multiset of background edges B as:

B =BU [$1|$1 = bi mod \B|] (6)

with: |[B|<i < @ Notably, only one of the sets is upsam-

pled while the other stays the same because only one of the

conditions in Eq. (5) or Eq. (6) can produce a valid i.
Hence, we define our regularized edge sampling loss as:

»CR,eslt = Z 'CCE (631};, éfl}rll) %)
{g.h}eR

Although the edge ratio r is a hyperparameter, the
model’s performance is relatively insensitive to its value. A

default value of 0.15 showed good results across all datasets
(see Sec. 4 and Supplement), which makes Lgegst benefi-
cial compared to the previous works’ stochastic edge losses.
Furthermore, Lreqt gives a precise signal regarding edge
prediction and increases convergence speed.

3.2. Supervised Domain Adaptation

In our setting, the stark differences between the source
and target domain in image and graph features further am-
plify the TL challenge. Specifically, source and target do-
mains significantly differ in image characteristics such as
background and foreground intensities, signal-to-noise ra-
tio, and background noise, as well as graph characteristics
such as the structures’ radii or edge regularity. Edge reg-
ularity refers to the geometrical straightness of the under-
lying structure. While roads in the U.S. (e.g., highways)
typically have a high edge regularity, vessels in microscopic
images are highly irregular (i.e., the vessel does not follow a
straight line and has high intra-edge curvature). To address
this challenge, we utilize a domain adversarial network on
the image and graph level, respectively. These adversarial
networks are used when jointly pretraining in both domains.
Similar to previous methods [17,30,48], the image-level ad-
versarial network is a small neural network that classifies
the domain based on a sample’s feature representation after
the feature extractor. We treat each image patch p*-¥ at po-
sition u, v as an individual sample and compute the CE loss

Ling = = |Dlogp"" + (1= D) log (1 - p"")| ®)

u,v

where D € {0, 1} denotes whether the respective sample is
from the source or target domain [10].

To align graph-level features, we view the concatenated
tokenized transformer output 7' € R(#o+#7)xd a5 3 sam-
ple’s abstract graph representation where #o and #r are
the numbers of object and relation tokens, respectively, and
d is the amount of the tokens’ hidden channels. We train a
domain classifier on this abstract graph representation using
the CE loss:

Lgraph = —|D1logT + (1 — D) log (1 -1T) 9)

Both domain classifiers are preceded by a GRL [17] revers-
ing the gradient such that the main network is learning to
maximize the domain loss. This framework forces the net-
work to learn domain invariant representations and, thus,
aligns the source and target domain. Furthermore, we apply
a consistency regularization between both domain classifi-
cations to reduce the bias towards the source domain, as
shown in [10]. This consistency regularization is expressed
by an objective function minimizing the L,-distance be-
tween the domain classifiers’ predictions (i.e., the output
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of the classification functions dim,g and dgrapn):
1 U, U
Loxe = || 77 2o i 0) = dirn ()|, 10

where we take the average over the image-level patch clas-
sifications of a sample consisting of || patches.

3.3. Combined Training Loss

Our new regularized edge loss is combined with the other
essential loss components to a final optimization function.
The final loss consists of the L; regression 10ss (Lieg),
the scale-invariant, generalized intersection over union loss
(Lg10v) for the box predictions (with predicted boxes ¥,
and ground truth vy, ), and a CE classification loss (L)
for object classification [42]. Further, our new regularized
edge sampling loss Lresi; and our three DA losses (Limg,
Loraph, and L) are included. Furthermore, in order to
achieve unique predictions, we compute a bipartite match-
ing between the ground truth and predicted objects utilizing
the Hungarian algorithm [42]. L,eg, Lgiou, and Lres are
calculated over all object predictions v that are matched to a
ground truth, i.e. where véls = 1, whereas L is calculated
over all object predictions. The combined loss term for our
N object tokens in a batch is defined as:

N
L= Z |:>\rcg£rcg (vf)oxv /Dii)ox)

i=1, [v}_=1]

cls

+ )\gIoULgIOU (U]?)oxv rz}lfz)ox)]

N
+ )\cls Z ‘cClS(Ul’L;)O)U ﬂliaox) (1 1)

i=1
+ >\DA (ﬁimg + Lgraph + ‘Ccst)
+ AResit Z Log(edn, &)
{g,h}eR

LReslt

Wwith Areg, AgloUs Aclss AReslt> and Apa as weights.
3.4. Framework for 2D-to-3D Transfer Learning

This section describes our framework for the challeng-
ing setting of a 2D source domain and a 3D target domain.
This setting is especially relevant given the scarcity of com-
pletely annotated 3D image datasets. At the core of our
framework is a simple projection function II that transforms
source instances into a space similar to the target space,
ie., Il : (Z%,G°) — (Z,G). Since our regularized edge
sampling loss (Sec. 3.1) and domain adaptation framework
(Sec. 3.2) automatically optimize the alignment of source
and target domain characteristics, we do not need to engi-
neer our projection to resemble the target domain character-
istics (e.g., signal-to-noise ratio or the structures’ radiuses).

Thus, we can design our projection function in the most
simple and generalizable form. Intuitively, II projects 2D
data to a 3D space by simply creating an empty 3D volume,
placing the 2D image as a frame in it, and randomly rotating
the entire volume. Formally, II is described by:

1. Resize 7% from (HZ" x WZ°) to the target domain’s
spatial patch size (HT x W7T) by a linear down-
. !
sampling operator D : I% — ZI5, where D €
S S
RE"WTxH" W™ " & remains unchanged as we use
normalized coordinates.

2. We initialize T in 3D with I = 07" W' D" and place
75" in I at slice location z = 0.5. We also augment
the node coordinates of G := V, E by V' = {[v,0.5] :
v € V}. New graph G’ := (V' E).

3. We apply a random three dimensional rotation matrix
R on I and obtain I € Z. We apply the same R on the
nodes of G’ and obtain V" = {Rv : v € V}. New
graph G := (V" E) € G.

Notably, our approach works out of the box without re-
quiring segmentation masks, handcrafted augmentations,
specifically engineered projections, or changes to the target
model. Furthermore, it naturally extends to new domains
and is trainable end-to-end together with the target task.

4. Experiments and Results

Datasets. We validate our method on a diverse set of six
public image datasets capturing physical networks. We
choose two 2D road datasets, namely a dataset from Mu-
nich (a European city with green vegetation-dominated land
cover) and from Agadez (a historic Tuareg city in Niger
in the Sahara desert). The appearance in satellite images
of these cities and their network structure substantially dif-
fer from the pretraining set as well as from each other; see
Fig. 2. Accurately extracting road graphs is a highly im-
portant task for traffic forecasting and traffic flow model-
ing [15,34]. Next, we choose a synthetic OCTA retina
dataset [35] and a real OCTA dataset [26]. Additionally, we
present experiments on two 3D datasets, namely a synthetic
vessel dataset [40] and a real whole-brain microscopy ves-
sel dataset [47]. Details on the datasets and data generation
can be found in the Supplement.

Training. We pretrain our method on the 20 U.S. cities
dataset [22] jointly with the target dataset. We crop the
source images to overlapping patches, in which we elim-
inate redundant nodes (i.e., nodes of degree 2 with a cur-
vature of fewer than 160 degrees) to train our model on
meaningful nodes [4]. After pretraining, we finetune the
model on the target dataset for 100 epochs. For more de-
tails, please refer to the Supplement and our repository.
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Table 1. Main results. Quantitative Results for our cross-domain and cross-dimensional image-to-graph transfer learning framework. The
domain shift increases from top to bottom. We outperform the baselines across all datasets. The best scores per respective metric across
all models for a dataset are highlighted in bold. * Results for supervised pretraining on D) and E) (3D data) are not reported because it is

technically not possible. Additional metrics and standard deviations are given in the Supplement.

Fine Tuning (Pre-)Training Node- | Node- Edge- | Edge- SMD | Topo- Topo-
Training Set Strategy mAPT | mAR?T | mAP{ | mAR?T Prec.t | Rec.t
A) TL from roads (2D) to roads (2D)

No Pretraining [ 18] 0.067 0.122 0.021 0.043 0.062 0.369 0.261
Agadez [20] Self-supervised [9] 0.083 0.156 0.030 0.071 0.030 0471 0.459

gade Supervised 0161 | 0237 | 0115 | 0177 | 0023 | 0.783 | 0.711

Ours 0.163 0.244 0.116 0.172 0.022 0.816 0.614

No Pretraining [ 18] 0.083 0.120 0.034 0.054 0.235 0.260 0.247
Munich [20] Self-supervised [9] 0.088 0.145 0.060 0.097 0.155 0.339 0.384

Supervised 0.277 0.336 0.207 0.272 0.091 0.682 0.660

Ours 0.285 0.344 0.224 0.277 0.090 0.726 0.655
B) TL from roads (2D) to synthetic retinal vessels (2D)

No Pretraining [ 18] 0.273 0.375 0.140 0.339 0.005 0.181 0.948
Synthetic Self-supervised [9] 0.136 0.260 0.069 0.223 0.031 0.093 0.927
OCTA [35] Supervised 0.291 0.384 0.170 0.338 0.004 0.211 0.957

Ours 0.415 0.493 0.250 0.415 0.002 0.401 0.890
C) TL from roads (2D) to real retinal vessels (2D)

No Pretraining [ 18] 0.189 0.282 0.108 0.169 0.017 0.737 0.634
OCTA-500 [26] Self-supervised [9] 0.214 0.305 0.135 0.213 0.016 0.763 0.706

Supervised 0.366 0.447 0.276 0.354 0.014 0.862 0.775

Ours 0.491 0.571 0.366 0.489 0.012 0.877 0.817
D) TL from roads (2D) to brain vessels (3D)

No Pretraining [18] 0.162 0.250 0.125 0.201 0.013 - -
Synthetic Self-supervised [9] 0.162 0.252 0.120 0.193 0.014 - -
MRI [40] Supervised * * * * * * *

Ours 0.356 0.450 0.221 0.322 0.013 - -
E) TL from roads (2D) to real whole-brain vessel data (3D)

No Pretraining [ 18] 0.231 0.308 0.249 0.329 0.017 - -
Microscopic Self-supervised [9] 0.344 0.404 0.363 0.425 0.017 - -
images [47] Supervised * * * * * * *

Ours 0.483 0.535 0.523 0.566 0.017 - -

Metrics. We evaluate our method on six metrics from ob-
ject detection and graph similarity tasks. For graph similar-
ity, we report the 2D TOPO-score [6] and the street mover
distance (SMD), which approximates the Wasserstein dis-
tance of the graph [4]. From object detection, we report
mean average recall (mAR) and mean average precision
(mAP) for node- and edge-detection. For more implemen-
tation details, please refer to the Supplement.

Baselines. No prior work has developed transfer learning
techniques for the structural image-to-graph transformation
problem. To evaluate the significance of our proposed meth-
ods, we compare the downstream task performance against
three competing approaches with varying pretraining and
initialization methods. Our first baseline, no pretraining,
is random weight initialization [18], which is considered
standard practice for model initialization when no suitable

pretraining is available. Second, we benchmark against
a state-of-the-art method for self-supervised pretraining,
MoCo v3 [9], which even outperformed supervised pre-
training in some tasks [9]. Self-supervised pretraining is
typically used when the amount of unlabeled data signif-
icantly exceeds that of labeled data in the same (or very
similar) domain. Hence, we pretrain on a large set of un-
labeled data from the same domain in each experiment for
the self-supervised baseline. For more details regarding the
unlabeled dataset, please refer to the Supplement. Third, su-
pervised pretraining, where we pretrain the target model on
the source data without using our methodological contribu-
tions. This approach has been successfully applied for var-
ious vision transformers, including the relationformer [42].
Note that the supervised pretraining baseline is impossible
in 3D scenarios; only a projection function enables the use
of 2D data for pretraining 3D models.
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Figure 3. Qualitative results. From left to right: Image, ground
truth graph, no pretraining-baseline, and our method. Datasets in
each row are indicated by the letters for the datasets as in Tab. 1.
Our method consistently outperforms the no pretraining baseline,
which overpredicts the edges and nodes in all datasets but the
OCTA-500, where the fine-tuning set is uncharacteristically large.

4.1. Results on Cross-domain TL (2D)

Our proposed transfer learning strategy shows excellent
results across 2D datasets. We outperform the baseline
without pretraining and self-supervised pretraining on all
datasets across all object detection and graph similarity met-
rics; see Tab. 1. As the domain shift increases, we signifi-
cantly outperform naive pretraining.

Roads in diverse locations. First, we show that we can
learn to extract road graphs in topographically diverse loca-
tions with vastly variant land cover via TL. On both datasets
(see Tab. 1 A), we tripled the performance across almost all
metrics compared to our baseline. Our results show that
edge detection fails without any form of transfer learning.
Although the self-supervised method improves the baseline
across all metrics, the performance does not reach the level
of supervised pretraining. While our approach yields the
best performance, the difference to the baseline with naive
pretraining is small. We attribute this small difference to the
small domain shift between the source (U.S. roads) and the

target domains, which eases knowledge transfer.

Retinal blood vessels. In the next experiment, we intro-
duce a larger domain shift in our TL. Our target sets are
two retinal blood vessel datasets (see Tab. 1 B and C). Our
method doubles the node and edge detection performance
on the OCTA-500 dataset [26] compared to "no pretrain-
ing.” Furthermore, we significantly increase object detec-
tion and graph similarity metrics across both datasets com-
pared to all baselines. The qualitative examples (Fig. 3)
indicate that this improvement is associated with identify-
ing more correct nodes and edges. We observe that the
self-supervised method does not improve performance on
the synthetic dataset but still achieves minor improvements
for OCTA-500. We attribute this to the differences between
the target sets: in the OCTA-500, only the arterioles and
venules are annotated, leading to an easy topological struc-
ture. The main difficulty here lies in differentiating fore-
ground from background, a task in which contrastive self-
supervised training shows excellent performance. While
this differentiation is easy in the synthetic OCTA dataset,
the main difficulty is learning the topological structure with
many (often overlapping) edges (see Fig. 3 and the Sup-
plement). Learning this complex structure requires label
information, as visible in the superior performance of the
supervised pretraining methods. Naive pretraining still im-
proves performance, but we observe a large (compared to
A) performance difference between naive pretraining and
our method. We attribute this to the larger domain shift,
which is better addressed by our proposed methodology.

4.2. Results on Cross-dimension TL (2D to 3D)

Finally, we explore dimensional shifts in addition to
a stark domain shift. Leveraging our new proposed loss
(Sec. 3.1), our DA framework (Sec. 3.2), and our 2D-3D
projection function (Sec. 3.4), we pretrain models on raw
satellite images for the challenging task of 3D vessel graph
extraction on a synthetic and a real dataset. Our experi-
ments on the VesSAP dataset [47] show strong improve-
ments in all graph similarity and object detection scores
(see Tab. 1 E). The self-supervised method also displays
improvements, which, however, do not reach our method’s
performance. Similarly, our method roughly doubles the
object detection metrics on the 3D MRI dataset compared
to the baselines (see Tab. 1 D).

We do not report results for naive pretraining because,
in contrast to our method, it simply does not allow for 2D-
to-3D TL. Our ablation in Sec. 4.3 shows results for ap-
plying our projection function only, without any use of our
other proposed contributions. When studying the lower-
performing baselines, we observe that self-supervised pre-
training with MoCo v3 leads to higher improvements in
the real microscopic vessel data compared to the synthetic
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Table 2. Ablation study on our proposed Loss (Lgresit) and DA
framework in a transfer learning setting (experiments congruent to
Tab. 1). Performance improvements are associated with both our
loss and DA. Both components combined lead to the best results.

Exper- C DA Node | Node | Edge | Edge
iment Reslt mAP | mAR | mAP | mAR
X X 0.389 | 0475 | 0294 | 0.383

C X v 0.456 | 0.538 | 0.351 | 0.464
v v 0.491 | 0.571 | 0.366 | 0.489

X X 0.190 | 0.285 | 0.122 | 0.210

D X v 0.349 | 0443 | 0219 | 0.320
v v 0.356 | 0450 | 0.221 | 0.322

Table 3. Ablation study on our proposed Loss (Lgesit) With and
without pretraining (experiments congruent to Tab. 1). We find
that our loss improves performance in an arbitrary image-to-graph
learning setting. Here, the DA is employed in all experiments.

Exper- Pre- r Node | Node | Edge | Edge
iment | training Reslt | mAP | mAR | mAP | mAR
X X 0.231 | 0.308 | 0.249 | 0.329

E X v 0.410 | 0.464 | 0468 | 0.512
v X 0.424 | 0.488 | 0.449 | 0.510

v v 0.483 | 0.535 | 0.523 | 0.566

MRI dataset. Both datasets have complex topologies that
require supervised training (see Sec. 4.1 ), but only the
real dataset has high-intensity variations, which can be effi-
ciently learned in a self-supervised setting. The qualitative
results in Fig. 3 and the Supplement indicate that the 3D
tasks were often unsolvable without our contributions.

4.3. Ablations on our Methods

In Tab. 2 and 3, we present ablations on the regularized
edge sampling loss (3.1) and DA framework (3.2) for the
2D OCTA-500 [26] (Tab. 2 C), the 3D MRI [40] (Tab. 2 D),
and the 3D brain vessel dataset [47] (Tab. 3 E). Expectedly,
we observe that our DA alone leads to compelling perfor-
mance gains for the 3D setting (almost double the perfor-
mance) and 2D setting across all metrics; see Tab. 2. This is
expected since the domain shift between the source dataset
of satellite images and our medical images is large. Note
that our projection function is always employed for the 3D
dataset since pretraining is otherwise impossible. We fur-
ther observe that employing the projection function alone
diminishes the performance because of the domain gap,
which is only alleviated by our other contributions.

Next, we ablate on our loss. When applying the DA,
adding our Lgegt loss further improves the performance
(Tab. 2), indicating its strength in stabilizing and improving
the loss landscape to train better networks. Additionally, we
ablate our proposed Lges)y in an experiment with and with-
out TL. Importantly, our experiments show that Lregt is

a general contribution that improves image-to-graph trans-
formation for TL as well as for general network training
(Tab. 3). In a TL setting, Lgegit is particularly useful as
it reduces the data-specific hyperparameter search. Inter-
estingly, our loss improves not only edge detection but also
node detection metrics across our ablations. These improve-
ments can be attributed to the transformer’s cross-attention
modules, which treat node and edge detection as joint pre-
diction tasks instead of separate problems. Consequently,
both metrics improve jointly. For further ablation studies,
e.g., experiments without the domain adversarial networks
or an alternative over-sampling of the parameter r, please
refer to the Supplement. In conclusion, we note that each
individual contribution enhances the overall performance of
the graph prediction task.

5. Discussion and Conclusion

In this work, we propose a framework for cross-domain
and cross-dimension transfer learning for image-to-graph
transformers. At the core of this work are our strong empiri-
cal results, which show that our proposed inductive transfer
learning method outperforms competing approaches across
six benchmark datasets that contain 2D and 3D images by a
margin. We achieve these results through our three method-
ological contributions, which we ablate individually. We
conclude that transfer learning has the potential to substan-
tially reduce data requirements for highly complex geomet-
ric deep learning tasks, such as transformer-based image-to-
graph inference, see Supplement. Our work shows that this
holds especially when the targeted graph representations are
defined by a similar physical principle or physical network.
In the presented work, this shared principle is the transport
of physical units (cars and blood) in a physical network.

Limitations and future work. Our problem setting is
specific to image-to-graph tasks and our learning scenario
in which we have some labeled data in both domains. Fu-
ture work should investigate how our solution translates to
different settings. Furthermore, we use a dimensionality-
dependent feature extractor, which might limit generaliz-
ability to other dimensions. Future work should explore the
development of strong dimension-invariant graph extractors
to allow further generalization.
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