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Abstract

Classical approaches to Vanishing Point Detection
(VPD) rely solely on the presence of explicit straight lines in
images, while recent supervised deep learning approaches
need labeled datasets for training. We propose an alter-
native unsupervised approach: Recurrence-based Vanish-
ing Point Detection (R-VPD) that uses implicit lines discov-
ered from recurring correspondences in addition to explicit
lines. Furthermore, we contribute two Recurring-Pattern-
for-Vanishing-Point (RPVP) datasets: 1) a Synthetic Image
dataset with 3,200 ground truth vanishing points and cam-
era parameters, and 2) a Real-World Image dataset with
1,400 human annotated vanishing points. We compare our
method with two classical methods and two state-of-the-
art deep learning-based VPD methods. We demonstrate
that our unsupervised approach outperforms all the meth-
ods on the synthetic images dataset, outperforms the clas-
sical methods, and is on par with the supervised learning
approaches on real-world images. Code and data can be
found here: http://vision.cse.psu.edu/data/data.shtml

1. Introduction
Under perspective projection, parallel lines in 3D meet

at a point called the vanishing point (VP) [32] which may
lie inside or outside of the 2D image (Figure 1). Vanishing
Point Detection (VPD) plays a vital role in computer vision
applications such as structure from motion [16, 23], 3D re-
construction [17, 41, 47], camera calibration [6, 9, 11, 17],
scene understanding [14], SLAM [21,22,45], facade detec-
tion [27] and autonomous driving [20]. VPD algorithms can
typically be separated into two categories: classical meth-
ods that are based on projective geometry [10,24,30,39,48]
and deep learning methods [5, 7, 25, 28, 46]. Classical VPD
methods usually consist of two stages - 1) Line Segment
Detection (LSD) [13] and 2) VP estimation using line clus-
tering [3,31] or voting [4,15]. Deep learning VPD methods
are data-driven approaches using filters learned by training
on hundreds of thousands of annotated images [18, 19].

We propose an alternative approach to detect VPs using

Figure 1. Two images containing examples of “things that re-
cur” (Recurring Patterns). Top row: images with ground truth VP
(×) indicated. Bottom row: VP prediction results from four VPD
methods R-VPD (our method), NeurVPS [46], GPVPD [25] and
J-Linkage [42] respectively, where VP predictions that are too far
from the ground truth are not shown in the images ((a) 2 misses,
(b) 3 misses). Due to a lack of explicit straight lines, automatic
vanishing point detection on these images poses challenges to ex-
plicit line-based methods.

implicit lines discovered from Recurring Patterns (RPs), de-
fined as “things that recur” [26], which have common and
frequent appearances in real-world images (Figure 1). Dif-
ferent from existing methods on VPD, we use groups of
corresponding feature points, discovered during the RP de-
tection process, to construct and validate the co-linearity of
implicit lines. We hypothesize intersections of these virtual
lines in addition to explicit lines and find the VP through a
robust, joint, weighted RANSAC procedure. An overview
of this approach is shown in Figure 2. Our Recurrence-
based VP method (R-VPD) provides additional robustness
for VPD on images without explicit lines leading to VPs.
Our contributions include:

1. We propose a novel methodology, Recurrence-based
Vanishing Point Detection (R-VPD), to detect vanish-
ing points in an unsupervised manner using the im-
plicit lines obtained from feature correspondences of
RPs in addition to explicit image lines.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Recurrence-based Vanishing Point Detection: An overview of R-VPD is presented in the above image. SIFT features are extracted
from the input image and are clustered hierarchically. Forward selection of the features is performed using geometric constraints based on
linearity, angle, and scale. Implicit lines are fitted to the selected feature clusters, and a weighted RANSAC algorithm is employed to find
the intersection of both implicit and explicit lines to locate the vanishing point. For this image, there are no explicit long lines.

2. We provide two benchmark datasets - (a) Synthetic
images (RPVP-Synthetic) comprised of 3,200 images
created in Blender with the ground truth VP and cam-
era parameters (intrinsic and extrinsic matrices) used
to create the 2D images, and (b) Real-world images
(RPVP-Real) with 1,400 annotated real-world images
containing RPs, where the ground truth VP is hand-
labeled using a LabelMe tool [38].

3. We establish the first VPD benchmark on RP-datasets
by comparing four VPD algorithms including two clas-
sical approaches: a simple baseline Line Segment De-
tection (LSD) and J-Linkage [42] and two state-of-
the-art deep learning approaches: NeurVPS [46] and
GPVPD [25].

2. Related Work

Broadly speaking, VPD methods can be separated into
two categories: 1) Classical methods; and 2) Deep learning
methods. Early classical methods detect VPs as intersec-
tions of straight line segments, typically using the Hough
transform [29, 37] followed by line clustering [31] or other
voting schemes [15]. Barnard [2] introduced a Gaussian
sphere representation where lines in the image map to great
circles on a sphere, a bounded space more representative of
the projective plane than the unbounded image plane and
thus better able to support the detection of vanishing points
formed by parallel image lines. Motivated by this represen-
tation, Collins and Weiss [10] formulated vanishing point
calculation as a statistical estimation problem on the unit
sphere, estimating a vanishing point location and associated
confidence region as the polar axis of an equatorial distri-
bution on the sphere. Schaffalitzky et al. [39] presented
a proof-of-concept planar grouping approach that exploits

specific geometric configurations, such as equally spaced
coplanar lines, to estimate vanishing points and lines. Zhou
et al. [48] addressed the problem of understanding linear
perspective in landscape photography, detecting dominant
vanishing points by exploiting global structures in the scene
via contour detection. One of the most recent VP estima-
tion methods in the “classical” vein (Li et al. [24]) makes a
Manhattan world assumption to formulate VP estimation as
computing the rotation between the Manhattan frame and
the camera frame.

Another category of work leverages groupings of copla-
nar interest points [8,34–36,39] to identify a vanishing line
from which the planar surface can be rectified. In particular,
Pritts et.al. [34–36] leverage differing sizes of conjugately
translated planar elements to estimate the vanishing line, al-
lowing affine rectification, and with pattern-dependent con-
straints sometimes improving the rectification to a similar-
ity transformation. Unlike most other works in projective
geometry, they are able to estimate and undo the nonlinear
warping effects of radial lens distortion.

With recent advancements in deep learning, most re-
search focuses on solving problems using learnable filters
[7,25,46]. NeurVPS [46] introduced an efficient VP estima-
tion method using a conic convolution operator that extracts
and aggregates features along structural lines. Building on
NeurVPS and the early work of Barnard [2], Lin et al. [25]
propose two trainable geometric priors, the Hough trans-
form and Gaussian sphere representation, to reduce network
sensitivity to dataset variations. Their method first extracts
features with a stacked hourglass network [33], maps them
to a Hough space to identify lines, and then uses spherical
convolution on the Gaussian sphere to detect VPs. A recent
work [43] by Tong et al. does not have publicly available
code, making direct comparison infeasible.
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Most classical and deep-learning VPD methods depend
on explicit line segments in the image. Even the state-of-
the-art [46] relies on a sufficient number of edges oriented
towards the VP. To address VP estimation in images lack-
ing explicit line segments, we propose a novel method that
leverages recurring patterns and their properties, which of-
fer strong cues about the 3D world from a 2D image.

3. R-VPD: Recurrence-based Vanishing Point
Detection

Recurring Patterns (RPs) are a set of “things that recur”
[26]. RPs embody the powerful organizing principle that
things that co-occur are not accidental.

A unit RP (URP), namely the smallest RP (Figure 3) is
composed of two RP Instances (RPI), and an RPI has to
contain at least one pair of distinct visual words. We use
the SIFT feature extractor to generate the pool of candi-
date features for forming visual words in an image. The
initial phase of SIFT involves constructing a difference of
Gaussian (DoG) image pyramid. Feature points are identi-
fied by searching for local extrema across different scales
and spatial positions. Once features are localized, a 128-
dimensional custom vector is calculated as the feature de-
scriptor. The 64x64 regions surrounding the key points are
subdivided into 16 smaller blocks of size 4x4, and an eight-
bin orientation histogram is created, resulting in the final
generation of a 128-dimensional vector.

Starting with a URP, a 2x2 matrix is constructed with
each row being a visual word and each column being an RP
instance. An unsupervised, randomized optimization algo-
rithm called GRASP [26] performs a set of random “moves”
that progressively grow, shrink, or replace entries in the ma-
trix, seeking to maximize its size while being constrained by
a set of numeric consistency measures. For more informa-
tion on optimization-based RP detection, we refer readers
to [26]. The authors of [44] develop an alternative two-
stage unsupervised architecture for RP discovery instead of
GRASP, yielding enhanced speed.

3.1. Implicit Recurring Correspondences Discovery

Different from both [26, 44], we do not explicitly gen-
erate RPs from a given image but employ in novel ways
the corresponding visual words discovered during the opti-
mization process to fit and merge implicit lines with explicit
lines for subsequent VP detection. By fitting lines through
two or more such correspondences and finding their inter-
sections we can estimate a potential VP. Hence we give the
name of our approach Recurrence-based VPD.

The basic difference between our method and existing
VPD algorithms is the use of implicit lines, such that our
method does not rely only on explicit edge in an image.
Traditional VP detection methods fail in scenes where there

are not enough salient line segments in the image (Figure 1),
while our method takes advantage of implicit lines together
with any explicit lines to locate the VP.

Figure 3. A Unit Recurring Pattern (URP) is an RP with at least
two RP instances (RPIs) and each RPI has at least two distinct vi-
sual words (e.g. clustered SIFT descriptors) that correspond across
the RPIs (this figure is adapted from [44] ). Here we add the two
blue dotted lines passing through pairs of corresponding features,
(f11, f12) and (f21, f22) , whose intersections identify the VP.

3.2. Hierarchical clustering

We use hierarchical clustering, a traditional unsuper-
vised method that groups high-dimensional features into a
clustering tree, to further group visual words for line fitting.
Unlike other methods, it does not require a preset number
of classes, making it ideal for this scenario. A feature-
matching matrix is first created using Euclidean distances
between features. Hierarchical clustering is then performed
by iteratively merging the closest subgroups of features un-
til all features form a single group.

Specifically, let S be the set of feature groups and let
A,B ∈ S. Let NA and NB be the number of features within
the groups A and B, respectively. The distance between the
groups A and B is defined as:

DistAB = min{distij},∀i ∈ [1, NA],∀j ∈ [1, NB ]

distij = ∥fdi − fdj∥2
(1)

where distij represents the distance between features i and
j and fdk represents the 128-dimensional descriptor of fea-
ture k. Then, merging the closest neighboring groups is
performed simply as C = (A ∪ B), and distances are up-
dated between this new group and existing groups using the
equation:

DistCP = min{DistAP , DistBP },∀P ∈ {S \ {A,B}} .
(2)

3.3. Forward Feature Selection using Bottom-up
Search

Forward feature selection identifies features within a
visual word that are best suited for fitting implicit lines.
This is achieved using three scores—Linearity, Angle, and
Scale—that assess distinct aspects of geometric consis-
tency:
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Figure 4. Sample images from RPVP-Synthetic image dataset
showing scenes in which RPs are oriented towards the VP. A rela-
tively lesser number of explicit lines makes this dataset challeng-
ing for VPD. The ”×” represents the ground truth VP.

Linearity Score (SL): This score measures how well the
(x, y) locations of keypoints align along a dominant orien-
tation. It is calculated as the average perpendicular distance
of keypoints from a fitted line. A lower score indicates
stronger alignment, making the features more suitable for
line fitting.

Angle Score (SA): This evaluates the consistency of di-
rectional changes across an ordered sequence of keypoints.
For triplets (A,B,C), it calculates the absolute difference
in angular changes between segments A → B and B → C.
These differences are averaged across all triplets, with lower
scores reflecting greater uniformity in direction.

Scale Score (SS): This assesses the consistency of rel-
ative size changes between keypoints, influenced by pro-
jective transformations. For triplets (A,B,C), it calculates
the absolute difference in scale ratios between A → B and
B → C. These differences are averaged, with lower scores
indicating more uniform scale progression.

Composite Score (SC): The overall suitability of a fea-
ture set is determined by: SC = SL × exp(SA + SS)/N

2,
where N is the number of features in the visual word. This
score integrates collinearity, angular consistency, and scale
variability while normalizing for feature set size, ensuring
that only geometrically coherent features are selected.

By combining these metrics, forward feature selection
prioritizes features that exhibit strong geometric consis-
tency, enhancing the reliability of vanishing point estima-
tion. A more elaborate explanation of the scores can be
found in the Appendix.

3.4. Implicit Line Fitting and Weighted RANSAC

Given a set of corresponding SIFT features, we can fit
an orientation vector using the least squares method. The
orientation of this vector is determined by the scale of the
associated features, with vectors from larger to smaller scale
features regarded as pointing toward the vanishing point. A
weighted RANSAC algorithm is employed to remove out-

liers. This algorithm entails randomly sampling two lines
based on their weights (see below), calculating their in-
tersection, and tallying the votes for this particular predic-
tion among all other lines. These steps are repeated itera-
tively until the optimal prediction with the highest number
of votes is identified. The vanishing point location is ulti-
mately estimated by least squares from all the inliers.

The initial weight wi for each line li is computed by eval-
uating the angular relationships between li and every other
line lj in the dataset. Specifically, the weight wi is deter-
mined as: wi =

∑n
j=1
j ̸=i

e−θij , where θij is the acute an-

gle between lines li and lj . This acute angle is calculated
as the arccos of the dot product of the direction vectors of
the two lines, and if this is an obtuse angle it is subtracted
from π to ensure that 0 ≤ θij ≤ π/2. The exponential de-
cay function emphasizes smaller angles, thereby assigning
higher weights to lines that are closer to being parallel, re-
flecting a higher probability of contributing to the detection
of a consistent vanishing point.

During each iteration of the Weighted RANSAC algo-
rithm, an intersection is estimated and lines are classified as
inliers based on their distance to the point. The weights are
then updated to refine the selection process in subsequent
iterations. For inliers (li ∈ I), the weight wi is incremented
as w′

i = wi · α and for outliers (lj ∈ O), the weight wj is
decremented as w′

j = wj · β, where α = 1.2 and β = 0.8
in our algorithm.

We note that the intersection of near-parallel lines is ill-
conditioned and the intersection points could be incorrect.
To remedy this, we run the weighted RANSAC multiple
times by reinitializing the weights and adaptively finding
an optimal threshold to find inliers. Finally, the vanishing
point associated with the largest set of inliers is calculated
using eigenvalue decomposition.

4. Experimental Setup
4.1. Datasets

We evaluate and compare several VPD algorithms on
four different datasets. Two of the datasets, RPVP-
Synthetic and RPVP-Real, are created/collected and labeled
by us. They have the property that each image contains one
or more recurring patterns (RPs) but not necessarily explicit
straight lines. We also consider the existing TMM17 dataset
used in [46,48] containing natural scenes with one dominant
vanishing point, some featuring long, straight lines leading
to the VP but not necessarily recurring patterns. Specif-
ically, we use the test-image set used by [46], TMM17-
Test, to evaluate all the VPD methods compared in this pa-
per. Furthermore, we note there is some overlap between
images containing RPs in our RPVP-Real and TMM17.
Since NeurVPS-tmm17 [46] is trained on a large portion
of TMM17, to avoid data leakage when comparing against
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Table 1. RPVP-Synthetic dataset (3200 images) performance measured by AAθ◦ representing the AUC of angle accuracy at the threshold
angle θ◦. The p-values are computed against R-VPD (Ours) to indicate whether the difference in performance is statistically significant.
Corresponding AA curves are shown in Figure 6.

Method AA2◦(↑) AA5◦(↑) AA10◦(↑) median(↓) p-value
LSD 0.14 0.45 1.12 45.47◦ 1.80e-16
J-Linkage [42] 0.42 1.46 3.43 29.41◦ 5.78e-12
GPVPD-nyu [25] 0.04 0.26 0.71 88.38◦ 1.73e-10
GPVPD-su3 [25] 0.002 0.02 0.15 73.88◦ 1.03e-18
GPVPD-scannet [25] 0.004 0.04 0.22 71.01◦ 1.56e-18
NeurVPS-su3 [46] 0.17 0.72 1.88 91.83◦ 9.37e-17
NeurVPS-scannet [46] 0.19 0.74 1.80 96.94◦ 3.06e-16
NeurVPS-tmm17 [46] 0.32 1.26 3.28 12.77◦ 1.15e-07
R-VPD 0.97 3.49 7.44 0.60◦ -

Table 2. RPVP-Real dataset (1400 images) performance measured by AAθ◦ and p-value. Corresponding AA curves are shown in Figure 7.

Method AA2◦(↑) AA5◦(↑) AA10◦(↑) median(↓) p-value
LSD 0.36 1.29 2.96 42.95◦ 4.37e-13
J-Linkage [42] 0.68 2.58 6.10 1.47◦ 5.27e-04
GPVPD-nyu [25] 0.19 1.05 3.06 71.53◦ 3.12e-11
GPVPD-su3 [25] 0.05 0.36 1.38 22.04◦ 4.82e-14
GPVPD-scannet [25] 0.04 0.31 1.19 26.75◦ 6.42e-15
NeurVPS-su3 [46] 0.04 0.17 0.52 88.70◦ 6.14e-18
NeurVPS-scannet [46] 0.23 1.12 2.92 32.35◦ 3.71e-12
R-VPD 1.03 3.75 8.63 0.74◦ -

that algorithm on RPVP-Real we form a subset RPVP-Real-
Exclusive of images in RPVP-Real that are not found in
TMM17.

4.1.1 RPVP-Synthetic: Recurring Pattern-based Van-
ishing Point Dataset with Synthetic Images

A custom dataset is created using Blender, an open-source
3D computer graphics software tool [1]. We generate 3,200
images from 16 different synthetic 3D scenes (shown in Fig-
ure 4), each contributing 200 images. In this dataset, ob-
jects are placed along a straight line and oriented toward a
vanishing point, with each scene featuring varying objects,
backgrounds, scales, and camera orientations. Ground truth
annotations including the (x, y) coordinates of the vanish-
ing point and the camera parameters are provided for each
image. More information on scene creation and frame ex-
traction is provided in the Appendix. It is worth noting that
a majority of images from this dataset do not contain ex-
plicit straight lines oriented towards the vanishing point.

4.1.2 RPVP-Real: Recurring Pattern-based Vanishing
Point Dataset with Real-world Images

RPVP-Real contains 1400 “real world” images with VPs
that are produced from recurring patterns under perspective

projection. Explicit straight lines may or may not be avail-
able. The VPs on these images are manually labeled using
the LabelMe tool [38] and ground truth annotations are pro-
vided as text files for each image with the (x, y) coordinates
of the vanishing point. The ground truth vanishing point is
then calculated as the intersection of these annotated lines.

4.1.3 TMM17-Test: Natural Scenes Dataset

The TMM17 dataset [46, 48] consists of 2275 images of
natural scenes with one dominant vanishing point. As il-
lustrated in Figure 5 TMM17 overlaps with over 70% of
RPVP-Real images (images with recurring patterns). The
one split [46] used 2000 images for training and 275 im-
ages as the test image set. To avoid any data leaking, we
choose TMM17-Test, as a validation image set for all VPD
methods. It is worth noting that TMM17-Test contains both
images with and without RPs (Figure 5). Even though R-
VPD is designed primarily to deal with images with RPs,
we use TMM17-Test to test the robustness of R-VPD on
real world scenes beyond those with recurring patterns.

4.1.4 RPVP-Real-Exclusive

The RPVP-Real dataset has an overlap of about 70.3% with
the TMM17 dataset (Sec 4.1.3) used to train NeurVPS-
tmm17 [46]. To avoid potential data leaking when compar-
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ing with NeurVPS, we form an additional dataset which is
the subset (29.7%) of RPVP-Real that has no overlap with
TMM17, which we call RPVP-Real Exclusive dataset that
consists of 416 images (Figure 5).

Figure 5. The relationship between RPVP-Real, TMM17, RPVP-
Real Exclusive and TMM17-Test. TMM17/TMM17-Test contains
natural images with/without RPs while RPVP-Real/RPVP-Real
Exclusive contains images with RPs only.

4.2. Evaluation Metrics

We compare our VP detection method with two clas-
sical methods: a baseline Line Segment Detection (LSD)
method and a more sophisticated J-Linkage [42] approach.
We also compare two state-of-the-art deep learning meth-
ods, NeurVPS [46] and GPVPD [25]. For NeurVPS, we
consider three networks: 1) NeurVPS-tmm17, 2) NeurVPS-
su3 and 3) NeurVPS-scannet, where NeurVPS is trained
on TMM17 [48], SU3 [47], or ScanNet [12] dataset, re-
spectively. Similarly, for GPVPD, we compare with three
variants of their model since they claim in [25] that ge-
ometric priors make the dataset variations vanish. The
three variants are 1) GPVPD-nyu, 2) GPVPD-su3, and 3)
GPVPD-scannet, where GPVPD is trained on NYU [40],
SU3 [47], or ScanNet [12] dataset, respectively. With our
RPVP datasets we emphasize different algorithms failing to
find a VP in the absence of explicit line segments.

Figure 6. RPVP-Synthetic dataset (3200 images): Success rate
curves for AA @ 10◦. Corresponding AUC is given in Table 1.

We use a vector orientation-based method for compar-
ing a detected VP and the ground truth. In this method,

Figure 7. RPVP-Real dataset (1400 images): Success rate curves
for AA @ 10◦. Corresponding AUC and are given in Table 2.

the VP is represented as a unit vector in the direction
(vpx − x0, vpy − y0, f), where (x0, y0) is the image cen-
ter, and f is a nominal value that would be the camera focal
length if known, but otherwise is chosen to be (image width
+ image height)/4. Distance in this case is the angle between
the detected and ground truth VP unit vectors. We call this
metric angle accuracy (AA) (also used in [46]). With this
metric, we can plot the success rate curves for AA for each
method by varying the angle thresholds. The success rate
of VP detection is computed as the ratio of the number of
acceptable VPs against ground truth over all detected VPs.

Along with success rate curves we also provide the AUC
(area under the curve) to evaluate the performance of dif-
ferent algorithms. For AUC we evaluate all algorithms at
thresholds AA = [2, 5, 10]◦. In our AUC tables, AAθ◦

rep-
resents the AUC of angle accuracy at threshold angle θ◦.

5. Results and Discussions
5.1. P-values

Table 1 provides AUC (Figure 6) for all the methods on
the RPVP-Synthetic dataset at thresholds AA = [2, 5, 10]◦

respectively. The last column of the table reports p-values,
a measure that indicates whether a difference in numeri-
cal performance between our method and each of the other
methods is statistically significant, and is based on compar-
ing the entire AUC curve (all the possible thresholds) be-
tween our method and the other methods. Although not
commonly used in computer vision (but widely used in sci-
entific domains such as biomedical research), p-values indi-
cate whether the numerical results of one method are statis-
tically significantly different from another, that is, whether
the difference in performance is likely due to a real effect
or just random chance. Typically one chooses a threshold
of 0.05 or 0.001 to classify p-values into significant (lower
than threshold) or not significant (higher than threshold).

Table 2 and Figure 7 provide results on the RPVP-Real
dataset. NeurVPS-tmm17 is excluded from this comparison
due to the overlap between RPVP-Real and TMM17, how-
ever a direct and fair comparison between our method and
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and NeurVPS-tmm17 will be presented below.
Both quantitative results on RPVP-Synthetic and RPVP-

Real show that our method R-VPD outperforms the other
compared methods significantly (p-value << 0.001). This
suggests that classical and current learning-based VPD
methods struggle when explicit straight-line segments are
absent.

5.2. RPVP-Real-Exclusive: RP Image Exclusive

To avoid any potential data leaking issues, we restrict our
evaluation of NeurVPS-tmm17 to the RPVP-Real Exclu-
sive dataset that is non-overlapping with TMM17 (Figure
5). Here, our R-VPD method performs slightly better than
NeurVPS-tmm17 (Table 3, Figure 8) with p-value = 0.58.
Thus, we can state that our method is on par with the state
of the art deep learning method such as NeurVPS-tmm17
on VPD.

Figure 8. Success Rate curves for the different methods on RPVP-
Real Exclusive dataset (416 images). Corresponding AUC is given
in Table 3.

Figure 9. Success rate curves for AA @ 10◦ for TMM17-Test set
(275 images). Corresponding AUC is given in Table 4.

Table 3. Performance of NeurVPS and R-VPD on RPVP-Real Ex-
clusive dataset (416 images). Corresponding AA curves are shown
in Figure 8.

Method AA5◦(↑) AA10◦(↑) median (↓) p-value
NeurVPS [46] 3.64 8.21 0.72◦ 0.58
R-VPD(Ours) 3.71 8.54 0.71◦ -

Table 4. Performance of all VPD methods on TMM17-Test set
(275 images, Fig. 5). Corresponding AA curves are shown in Fig 9.

Method AA5◦(↑) AA10◦(↑) median (↓) p-value
LSD 1.07 2.56 71.30◦ 8.41e-10
J-Linkage [42] 2.23 5.59 2.42◦ 0.52
GPVPD-su3 [25] 0.53 1.76 31.83◦ 8.16e-10
GPVPD-nyu 0.55 1.96 52.80◦ 7.43e-09
GPVPD-scannet 0.45 1.60 35.05◦ 6.81e-11
NeurVPS [46] 3.49 8.14 0.86◦ 0.003
R-VPD(Ours) 2.42 5.95 1.85◦ -

5.3. TMM17-Test: Going beyond RP images

To evaluate on images that do not necessarily have re-
curring patterns in them, we perform an evaluation on the
same test set used in [46], TMM17-Test.Figure 9 and Ta-
ble 4 provide AUC for all the methods on TMM17-Test. R-
VPD performs second to the best on TMM17-Test without
any training, and with a p-value of p = 0.003 (> 0.001)
the best performer NeurVPS-tmm17 does not significantly
outperform our approach. It is worth noting that of the 275
images in the TMM17-Test set, a considerable portion has
no RP on the images (Figure 5).

5.4. Qualitative Evaluation and Speed

Figures 10 and 11 present results on some representative
images, showing the effectiveness of our R-VPD method
compared with ground truth and all the SOTA methods.
Classical LSD-based algorithms depend on explicit line
segments in images [44] while learning-based approaches
are learning edge filters oriented locally towards the VP.
For this reason, real-world images that do not have explicit
straight lines or edges oriented towards the VP can lead
these VPD methods to make erroneous predictions of the
VP (Figure 10).

Processing time comparisons are shown in Table 5.
NeurVPS and GPVPD achieve their speed by using a GPU
and require up to 400 MB of memory, which can be limiting
in memory-constrained settings. J-Link appears to be faster
here due to fewer lines to process.

The complexity of our algorithm depends on the number
n of SIFT features detected and is dominated by the calcu-
lation of the distance matrix between these features. There-
fore our algorithm’s time and space complexity is O(n2).

Table 5. Processing time per image comparison (median times).

Method Hardware RPVP-Real RPVP-Synth
NeurVPS

GPU
0.86s 0.52s

GPVPD 0.52s 0.52s
J-Link

CPU
18.67s 0.75s

R-VPD 10.73s 1.31s
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Figure 10. Sample results for VP detection on real-world images using our method and a comparison with other approaches. The absence
of a specific symbol in any image indicates the failure of the corresponding method to detect the vanishing point in that image.

Figure 11. One application using a single discovered VP in one-
point perspective images is to perform rectification of the original
image into an affine (parallelism preserving) frontal view.

6. Conclusion

We have proposed an alternative unsupervised vanishing
point detection algorithm, R-VPD, that uses feature cor-
respondences in recurring patterns (RP) to form implicit
lines for VPD. We contribute two RP-based vanishing point
datasets: RPVP-Synthetic has 3200 synthetic images with
VPs and camera parameters, and RPVP-Real has 1400 real-
world images with vanishing point annotations. Through
a benchmark evaluation of four VPD algorithms - a base-
line LSD, J-Linkage [42], NeurVPS [46], and GPVPD [25]
against R-VPD, our quantitative results show that R-VPD

outperforms statistically significantly all four approaches
on RPVP-Synthetic (Table 1), and on RPVP-Real (Table
2; excluding NeurVPS-tmm17). For fair comparison with
NeurVPS-tmm17 we use the RPVP-Real Exclusive dataset,
where R-VPD performs better than this SOTA deep learn-
ing method (Table 3) but not statistically significantly so,
thus “on par” on this real-world RP image set. Finally,
when extending to images with and without RPs (for which
R-VPD is not designed for), R-VPD performs second to
the best with a statistically insignificant difference (with p-
value =0.001 used as the threshold, Table 4).

R-VPD has limitations on RP images with strong per-
spective and on non-RP images. In this work we focused
on natural scenes with a single vanishing point (Figure 11),
not Manhattan-world scenes with multiple vanishing points
such as those found in indoor or urban environments. We
aim to extend current R-VPD to go beyond images with
single VPs and to be more robust on general indoor/outdoor
scenes.
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