
PC-GZSL: Prior Correction for Generalized Zero Shot Learning

S Divakar Bhat∗ Amit More∗ Mudit Soni Bhuvan Aggarwal
Honda R&D Co., Ltd.

Tokyo, Japan

0 200 400 600
CLASSES

0

1

2

3

4

5

PR
IO
R 
P(
 )

1e−3
Calculated prior
Prior after PC

0 10 20 30 40 50
CLASSES

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PR
IO

R 
P(

y)

1e−1
Calcula ed prior
Prior af er PC

Figure 1. The bias in the trained model [33] for seen and unseen classes is calculated using proposed approach for SUN [39] and AWA2 [51]
datasets. We can notice higher average probability score for seen classes. The proposed approach, Prior Correction, not only removes the
model bias for seen classes, it does so between individual seen classes and unseen classes as well, evident by the smoothness of the curve.

Abstract

Generalized Zero Shot Learning (GZSL) aims at achiev-
ing a good accuracy on both seen and unseen classes
by relying on the information acquired from auxiliary at-
tributes. Existing approaches have devised many frame-
works to make this knowledge transfer more efficient and in-
formative. Despite their effectiveness on boosting the over-
all performance, there has always been a strong bias in the
model towards the seen classes which makes GZSL prob-
lem more challenging. The effect of this bias on the model
performance has never been properly explored. We observe
that GZSL algorithms in literature have an evident bias to-
wards the seen classes. Further we also show that tech-
niques like calibrated stacking [7] fall short of resolving
this conflict between the seen and unseen classes effectively.
In this work we analyze and develop a logit-adjustment ap-
proach in GZSL setting and propose a simple, yet effective
method to remove the bias from trained models in a post-hoc
manner. Moreover, as a consequence of the post-hoc nature
of the proposed approach, there is no additional training
cost. We exhaustively compare the proposed method on both
embedding-based and generative-based GZSL frameworks
surpassing the SOTA results by 3.1%, 4.6% and 3.1% on
CUB, SUN and AwA2 datasets. We also present theoretical
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analysis showing effectiveness of proposed approach.

1. Introduction

In real world datasets, some classes maybe very rare
to encounter and some other categories may just emerge
in everyday life with no labelled samples available. De-
veloping DNN models which can extend the knowledge
gained during training to a completely novel set of classes
while testing has been one of the most challenging direc-
tion of research. Zero-shot learning, as it has come to be
known in recent years, primarily aims to perform well on a
test set which exclusively consists of novel unseen classes.
Whereas in Generalized Zero Shot Learning (GZSL) [38]
performance on both seen and unseen classes are evaluated.

GZSL primarily have two broad approaches, first is the
embedding-based method [1, 2, 50, 57] which rely on the
semantic attributes and image data to learn a global align-
ment between the visual representation and the correspond-
ing semantic embedding. Second is the generative ap-
proach [43, 52] where the insufficiency in the feature ex-
pression of unseen classes is compensated via a two stage
approach consisting of the generator learning and classifier
learning. For any GZSL framework, the training data con-
sist only of seen classes while the test data is made up of
both seen and unseen classes. Auxiliary attributes are used
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Data AWA2 CUB

Method AU→U AS→S AU→T AS→T AU→U AS→S AU→T AS→T

PSVMA [33] 77.57 95.55 34.90 (-42.8) 95.28 (-0.3) 77.65 88.60 36.05 (-41.6) 87.46 (-1.1)
f-CLSWGAN [52] 68.20 78.63 52.78 (-15.4) 68.98 (-9.7) 75.72 68.36 61.09 (-14.6) 59.3 (-9.1)

Table 1. Accuracy in % when the seen and unseen prior is relaxed during evaluation. AU→U is the unseen to unseen (ZSL) evaluation and
AS→S indicates seen to seen evaluation. AU→T and AS→T denotes the unseen and seen class accuracy in the GZSL setting. T denotes
{U ∪ S}. One may notice a drop in accuracy, especially for unseen classes, indicating a bias toward the seen classes.

during training along with the seen class data to help re-
duce the information gap between the seen classes and the
novel unseen classes encountered at testing. Although the
attributes serve as a good means for knowledge transfer be-
tween the seen and unseen classes, they cannot compensate
for the skewed model prior, a result of over representation
of seen classes.

The poor accuracy on the unseen classes in any GZSL
framework can be attributed to the inherent imbalance in
the distribution of training data where only seen class sam-
ples are available for training. Further, the over-fitting na-
ture of DNNs also has a strong influence in creating the
bias towards the seen classes where the classifier tends to
classify unseen classes into seen categories. To mitigate
the effect of this bias on model performance, the genera-
tive methods use a large sample size while sampling from
the generated unseen distribution to enhance the influence
of synthetic unseen samples on the trained model. How-
ever, these synthetic samples have been found to have sig-
nificant deviation from the distribution of the real unseen
samples [8]. Even though many of these methods have
contributed significantly in improving the performance of
GZSL algorithms, some residual bias still remains. In the
present work we focus on addressing this issue and propose
to remove the seen-unseen class bias from a trained model.

One of the early works which explored the seen-unseen
class bias in GZSL proposed a very simple method called
calibrated stacking [7]. It is a heuristic approach which
suppresses the scores of all the seen classes in compar-
ison to the unseen classes. However, it completely ig-
nores the varying degree of biases within the individual
seen classes while making this correction. Further [8] pro-
posed a logit adjustment based approach for generative
GZSL frameworks. Inspired from the logit-adjustment ap-
proaches [32, 35] in long tailed learning, they modify their
loss function by using a prior computed from class frequen-
cies. Prior computation using class frequencies inherently
comes with a strong assumption that the model accurately
learns the posterior distribution. However, this depends on
a lot of factors like network complexity, amount of training
data, etc [28, 42].

In this work we make two observations. First, the learned
prior (also referred to as bias) on class labels would differ

significantly from a fixed priors used in literature such as
calibrated stacking [7] or sample frequencies for different
classes [8] and hence creates a strong bias toward the seen
classes. Second, the DNN algorithms implicitly assume that
the test set and train set have similar distributions for class
labels. Outside this assumption, performance of DNN mod-
els starts to deteriorate, long tailed learning [18, 21, 26] is a
good example for this phenomenon. The GZSL problem
can be viewed as an extreme case of class imbalance with
zero samples from test classes. And thus the generalized
zero-shot learning scenario also suffers from the issue of
distribution mismatch.

In Figure 1 we show the effective prior of a trained
model, computed as an average model response over test
dataset. The figure evidently implies a strong bias towards
the seen classes. We also show the corrected prior using our
prior correction (PC) method clearly indicating the reduc-
tion in this bias between the seen and unseen classes. Note
that the corrected prior is smoother in nature indicating a
reduced inter class bias. Further, in Table 1 we report the re-
sults on embedding based and generative GZSL framework
by restricting the target class set. We can clearly observe
that for the unseen classes the performance of ZSL (AU→U )
task degrades significantly in GZSL (AU→T ) setting, while
the degradation for seen classes is relatively lower. This
dip in the performance on unseen classes is due to the bias
towards the seen classes where unseen class samples are in-
correctly classified into seen class categories.

These observations demands the need of a more statisti-
cally grounded non-heuristic mechanism for bias removal.
We propose a simple but effective prior correction method
to remove the bias in GZSL algorithms. First, we present an
approach to calculate the bias, effective prior, of a trained
model from the data. We then show how to adjust the pre-
dictions by the model to remove bias and show theoretical
optimality of proposed approach. We also present analy-
sis from the perspective of improving the harmonic mean
between seen and unseen class accuracies and provide fur-
ther modifications to model predictions leading to improved
performance. A summary of our contributions is as follows:

• We show that existing GZSL approaches have strong
bias for seen classes and present an approach to capture
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this bias in the trained model.

• We present theoretically motivated method for adjust-
ing model predictions to remove the model bias for
seen classes.

• Proposed approach is exhaustively validated on three
benchmark datasets and outperforms the SOTA for
both embedding and generative based approaches.

• We show that proposed method can be used as a plugin
approach with existing frameworks and can improve
the performance further without any training.

2. Related Work
2.1. Generalized Zero Shot Learning

Existing algorithms in the literature can be broadly clas-
sified into embedding-based and generation-based methods.
Embedding based methods [1,2,50,57] is a family of GZSL
methods which focus on projecting the semantic and vi-
sual domain features into a common space and align the
information. These early works faced difficulties in cap-
turing a sufficiently discriminative global visual informa-
tion. More recent methods started to employ part based
learning strategies to leverage the distinct information from
the local visual regions. [31, 62] obtain coordinate posi-
tions using attention mechanisms to zoom-in and crop on
distinctive local regions. Graph networks [24, 55] or atten-
tion guidance [34, 36, 54] are also employed for highlight-
ing the significant visual features. Semantic guided meth-
ods [10, 11, 23, 25, 47] introduced the sharing attribute pro-
totypes for localizing the attribute-related regions.

Generative methods rely on the synthesis of unseen sam-
ples using either generative adversarial networks [19, 20,
29, 52] or variational auto-encoders [27, 53]. Therefore the
quality of visual semantic alignment of the synthesized un-
seen domain features play a crucial role in determining the
model performance. [37] designed a recurrent structure and
enforced semantic alignment in every stage while [12] re-
lied on fine-tuning the visual features. Further [20] pro-
posed to classify using projected visual features in the la-
tent space. Although generative methods handled data im-
balance using synthetic samples and showed improved per-
formance, some residual bias still remains.

In [8] authors presented logit-adjustment approach for
GZSL problem similar to us. They derived a lower bound
on the harmonic mean and proposed a class frequency based
logit-adjustment loss and showed improvements. Different
from [8] our framework is motivated from a probabilistic
perspective where we adjust the logits in a post-hoc manner
using learned bias of the model. Further we also use the har-
monic mean bound and propose additional correction factor.
Our approach is orthogonal to [8] and many other methods

in the literature in a sense that due to its post-hoc nature,
it can be combined with other methods as a plug in, and
further improve the overall performance.

2.2. Data-Imbalanced Learning

As GZSL is a special case of a data imbalanced learn-
ing, we review the relevant literature here. Supervised con-
trastive learning has been proposed to tackle class imbal-
ance [17, 30, 61] where data scarcity is mitigated by data
augmentation where additional contrastive loss is applied
on augmented samples. Other frameworks, such as ensem-
ble of multiple experts and gradient manipulation [3,44,48],
have been shown to be effective to improve model perfor-
mance.

Related to our work, logit-adjustment is a popular tech-
nique used for mitigating effects of data imbalance. In [4]
authors posed the class-imbalance problem as a distribu-
tion misalignment problem and proposed to adjust the de-
cision boundaries using class dependent margin by logit-
adjustment. Further work in bridging the gap between the
learned posterior and the target distribution was carried out
by [22,35,41] where data imbalance is modelled using class
frequencies and the bias is corrected during training or post
training. [49, 58] proposed to learn a logit calibration layer
to reduce the effect of bias by rescaling the output logits.

In principle, the logit-adjustment framework can be com-
bined with generative approach for solving GZSL problem
as already shown in [8], however their extension to embed-
ding based approaches is non-trivial. In contrast, present
approach is flexible and can be combined with both embed-
ding based and generative methods as we have shown.

2.3. Vision Language Models

Recently multi-modal vision-language models (VLM)
trained with internet scale data, such as CLIP [40], have
shown impressive performance on many datasets in zero-
shot setting. Prompt learning has been proposed to improve
few-shot accuracies of such VLMs in [59, 60] however it
has resulted in decrease in zero-shot performance of the
model. In [45, 45] authors proposed to augment class de-
scriptor prompts with visual discriptors using Large Lan-
guage Models showing improved zero-shot performance.

3. Problem Formulation
Consider a classification problem where data samples

are taken from distribution P (x) and belong to different
unique classes from distribution P (y), where x and y rep-
resent the input data and ground truth class, respectively.
Let Ps(y) represent the distribution over a set Ys of seen
classes whose samples are available during training. Fur-
ther, let Pu(y) represent the distribution over the set of un-
seen classes Yu. In general, input data x is represented by
features of a trained DNN model and the goal is to train
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Figure 2. We summarize proposed approach in the figure. Effective prior, model bias, of a trained model is computed first using validation
data. The adjusted, debiased, model is then estimated as shown.

a classification model to map these samples to the target
classes. In GZSL problem, samples from Ys are available
during training and the goal is to model a posteriori dis-
tribution P (y|x) using available trained data in such a way
that it can be extended to the unseen classes Yu as well.

Let us denote the posterior distribution on the test data
by P t(y|x). It is evident that the trained model can only
approximate the target test distribution as no samples from
the unseen classes are available during training. If we de-
note the distribution over samples from the test set classes
Yt = {Ys ∪ Yu} as P t(y) then we have P t(y) ̸= P (y).
In particular, these distributions differ for both seen and un-
seen class. For seen classes, the distribution Ps(y) is only
approximated by given models such as DNN [42]. For the
unseen classes, the distribution Pu(y) is not available dur-
ing training and it is learned by using auxiliary information
and hence may deviate from the actual distribution.

3.1. Logit Adjustment for bias removal

Using Baye’s theorem we can write the relation between
different distributions for test dataset as below,

P t(y|x) = P t(x|y)P t(y)

P t(x)
(1)

If we denote by Pm(y|x) the posterior distribution of a
trained model, then we can write,

Pm(y|x)P t(x) = Pm(x|y)Pm(y) (2)

We note that, P t(x) is the target test distribution on both
seen and unseen classes. The right hand side of the equation
shows the class priors Pm(y) and the class conditional data
distribution Pm(x|y) of a learned model on the test dataset.
Thus we may write,

Pm(y|x) = Pm(x|y)Pm(y)

P t(x)
(3)

We assume that the class conditional data distributions
P t(x|y) and Pm(x|y) are the same. Thus taking the ratio
of above equations we have

P t(y|x) = Pm(y|x) P
t(y)

Pm(y)
(4)

The above equation defines the relationship between
posterior distributions P t(y|x) and Pm(y|x) over the test
set Yt. The Eq. 4 represents classical logit-adjustment
framework popular in long-tailed literature where model
output is adjusted by the ratios of class priors for train and
test datasets. In case of GZSL problem, modelling Pm(y)
by training data distribution P (y) is challenging as no sam-
ples from Yu are available. Thus we propose to estimate it
from the validation samples assuming validation data and
test data both follow the same distribution.

In general, the ideal posterior distribution and the prior
on the test data satisfy following property,∫

P t(y|x)P t(x)dx = P t(y) (5)

Thus we propose to estimate the prior Pm(y) such that
the adjusted distribution satisfies Eq. 5.

Theorem 1.

Let P a(y|x) represent the adjusted probabilities Pm(y|x)
of the trained model as below

P a(y|x) = Pm(y|x) P
t(y)

Pm(y)
(6)

then the marginal distribution P a(y) will satisfy Eq. 5 if

Pm(y) =

∫
Pm(y|x)P t(x)dx (7)

Proof. It is easy to see that,

P a(y) =

∫
P a(y|x)P t(x)dx (8)

=

∫
Pm(y|x) P

t(y)

Pm(y)
P t(x)dx (9)

=
P t(y)

Pm(y)

∫
Pm(y|x)P t(x)dx (10)

=
P t(y)

Pm(y)
Pm(y) (11)

= P t(y) (12)
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The above theorem show that the prior of a trained model
can be estimated using test data as shown in Eq. 7. The re-
sultant adjusted model has the same prior as the test dataset
and removes the bias between seen and unseen classes.

3.2. Optimizing harmonic mean

The GZSL problem is focused on improving accuracy
on novel unseen classes while maintaining a good accu-
racy on the seen classes. The harmonic mean between seen
and unseen class accuracies represents such a criteria. It
is maximum only when both seen and unseen class accu-
racies are high and well balanced. However, typical train-
ing framework focuses on improving the arithmatic mean
of the accuracy over training samples. This does not nec-
essarily result in optimal performance in terms of harmonic
mean accuracy. In this section we analyse the relation be-
tween model performance and the harmonic mean. We use
the lower bound on harmonic mean shown in [8] and derive
additional posterior adjustment required. Following [8, 16]
the model accuracy for class y can be written in terms of
posterior probabilities as

A(y) = Ex

[
P t(y|x)Pm(y|x)

]
(13)

where, Ex[.] represents the expectation over P t(x). Typi-
cally, individual classes may have different number of sam-
ples, thus class balanced accuracy is used to avoid most fre-
quent classes from dominating the evaluation metric. Thus
class balanced accuracies are used as shown below

A(y) = Ex

[P t(y|x)Pm(y|x)
P t(y)

]
(14)

The average accuracy on seen classes is then given by,

As =
1

|Ys|
∑
y∈Ys

Ex

[P t(y|x)Pm(y|x)
P t(y)

]
(15)

Using Jensen-Shannon inequality we have,

1

As
≤ 1

|Ys|
∑
y∈Ys

Ex

[ P t(y)

P t(y|x)Pm(y|x)
]

(16)

The accuracy Au on the unseen classes can also be writ-
ten in a similar way. The harmonic mean is defined as

2

Ah
=

1

As
+

1

Au
(17)

Thus we can define an upper bound on the harmonic
mean using the bounds on seen and unseen class accuracies.

2

Ah
≤ 1

|Ys|
∑
y∈Ys

Ex

[ P t(y)

P t(y|x)Pm(y|x)
]

+
1

|Yu|
∑
y∈Yu

Ex

[ P t(y)

P t(y|x)Pm(y|x)
]

(18)

=
1

|Yt|
∑
y∈Yt

|Yt|
1Ys(y)|Ys|+ 1Yu(y)|Yu|

Ex

[ P t(y)

P t(y|x)Pm(y|x)
]

(19)

where Yt = Ys ∪ Yu as defined before and we have,

1Ys(y) =

{
1 if y ∈ Ys

0 otherwise
(20)

and 1Yu(y) is defined accordingly. Thus we may write,

2

Ah
≤ 1

|Yt|
∑
y∈Yt

Ex

[ P t(y)

P (Y)P t(y|x)Pm(y|x)
]

(21)

where, P (Y) is defined as |Ys|
|Yt| for seen classes and |Yu|

|Yt|
for unseen classes representing the empirical seen and un-
seen class probabilities, Ps(y) and Pu(y), when y is a mem-
ber of the respective set. Thus harmonic mean can be opti-
mized by maximizing the product P (Y)P t(y|x)Pm(y|x) in
Eq. 21. One may note that the term P (Y)P t(y|x) in the de-
nominator represents the adjusted ground truth required to
maximize the harmonic mean. Thus the optimal adjustment
to the predicted probabilities to maximize the denominator
term and hence maximize the harmonic mean, can be given
by the adjusted model posterior as P (Y)Pm(y|x).

One may interpret these findings in terms of cost-
sensitive learning where seen vs unseen class prior is taken
into account during evaluation. Nonetheless, we validate
our findings with extensive experiments and show that post-
hoc adjustment using empirical seen vs unseen class priors
indeed boosts model performance.

It should be noted here that our interpretation of the
bound on the harmonic mean in Eq. 21 is different from [8].
We only consider P (Y) for the adjustment as it is enough
to lower the bound. However, in [8] authors use the
term P (Y)/P t(y) using class frequencies along with other
hyper-parameters for the adjustment. Nonetheless, our ex-
periments show that our formulation is effective and leads
to better results.

3.3. Overall Prior Correction (PC) Adjustment

In this section we combine both proposed logit-
adjustments, one for bias removal and other for improv-
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Method Arch. CUB SUN AwA2

U S H U S H U S H
TF-VAEGAN* [37] ECCV’20 R101 54.75 62.68 58.45 39.72 35.70 37.60 58.97 74.73 65.92
GCM-CF [56] CVPR’21 R101 61.00 59.70 60.30 47.90 37.80 42.20 60.40 75.10 67.00
HSVA [13] NeurIPS’21 R101 52.70 58.30 55.30 48.60 39.00 43.30 56.70 79.80 66.30
SDGZSL [15] ICCV’21 R101 59.90 66.40 63.00 - - - 64.60 73.60 68.80
FREE+ESZSL [6] ICLR22 R101 51.60 60.40 55.70 48.20 36.50 41.50 51.30 78.00 61.80
CDL+OSCO [5] TPAMI23 R101 29.00 69.00 40.60 32.00 65.00 42.90 48.00 71.00 57.10
CE-GZSL* [20] CVPR’21 R101 67.36 67.51 67.43 51.53 35.04 41.71 63.99 75.11 69.11
CE-GZSL + PC (Our) R101 67.73 67.91 67.82 50.14 38.14 43.32 67.32 72.53 69.83
Transzero* [9] AAAI’22 R101 69.18 68.31 68.74 52.29 33.35 40.66 61.13 82.23 70.13
MSDN* [10] CVPR’22 R101 68.58 67.34 67.95 51.87 33.95 41.04 61.94 74.37 67.59
DUET [14] AAAI’23 ViT-Base 62.9 72.8 67.5 45.7 45.8 45.8 63.7 84.7 72.7
VADS [23] CVPR’24 ViT-Base 74.1 74.6 74.3 64.6 49.0 55.7 75.4 83.6 79.3
ZSLViT [11] CVPR’24 ViT-Base 69.4 78.2 73.6 45.9 48.4 47.3 66.1 84.6 74.2
PSVMA [33] CVPR’23 ViT-Base 70.1 77.8 73.8 61.7 45.3 52.3 73.6 77.3 75.4
PSVMA* ViT-Base 73.1 74.9 74.0 62.4 44.9 52.2 69.9 84.3 76.4

PSVMA + PC (Our) ViT-Base 75.68 78.63 77.13 65.9 49.96 56.83 72.69 87.61 79.46

Table 2. Evaluation on other GZSL frameworks. We highlight the best results in bolt and underline the second best results. One may
note that proposed logit-adjustment achieves best harmonic mean accuracy amongst all methods for both generative and embeding based
methods. (* indicates reproduced results)

ZSLA PC AwA2 CUB

U S H U S H
X X 57.3 71.9 63.8 63.1 60.9 62.0
X ✓ 60.4 70.3 65.0 64.7 60.4 62.5
✓ X 59.9 73.1 65.8 64.6 60.4 62.4
✓ ✓ 60.1 74.3 66.5 66.3 59.7 62.9

Table 3. We compare proposed approach with ZSLA [8]. The
table show our reproduced results using vanilla softmax classifier
with ZSLA framework. Baseline results are obtained by removing
logit adjustment during training from ZSLA framework.

ing the harmonic mean. If we represent with Zy the un-
normalized probability scores for class y, then the overall
adjustment is written as

Za
y = Zy + α log

P t(y)

Pm(y)
+ β logP (Y) (22)

where, we have included hyper-parameters α and β to
control the amount of adjustment. We compute the model
bias Pm(y) by empirical estimate of the Eq. 7 as

Pm(y) =
1

N

∑
∀x

Pm(y|x) (23)

i.e. the bias is computed by averaging the model response
over validation dataset with N samples. The term P t(y)

represents the average number of samples for individual
classes and P (Y) represents seen and unseen class prob-
abilities estimated using sample numbers.

We note here that, proposed approach does not involve
any model training and uses a trained model and validation
data to estimate and tune the adjustment terms. We only
tune two scalar hyper-parameters, α and β. We summarize
the overall approach in Figure. 2 and give algorithmic flow
in Supplementary Material.

4. Experiments

4.1. Experimental setup

We use three benchmark datasets to evaluate the pro-
posed method, Caltech-UCSD Birds-200-2011 (CUB) [46],
SUN Attribute [39] and Animals with Attributes2
(AwA2) [51]. We follow the standard split proposed in [51].
We denote the average of per class top-1 accuracy of the
seen and unseen splits as S and U respectively. Fur-
ther following [51], harmonic mean denoted using H and
arithmetic mean A, is used to evaluate the overall per-
formance. There have been many approaches from both
the generative and embedding based GZSL in literature
used to improve the performance of GZSL task. We have
compared the proposed method with many recent methods
from both these families. Embedding based approaches
are represented by many strong baselines with high perfor-
mance such as VADS [23], ZSLViT [11], PSVMA [33],
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Method CUB SUN AwA2

U S H U S H U S H
TF-VAEGAN + CS 54.68 63.00 58.55(+0.10) 39.72 35.78 37.65(+0.05) 63.18 71.36 67.02(+1.10)
TF-VAEGAN + PC 58.30 64.30 61.15(+2.70) 41.74 36.74 39.08(+1.48) 64.03 71.34 67.49(+1.57)

CE-GZSL + CS 67.61 67.22 67.41(-0.02) 51.60 34.92 41.65(-0.06) 65.03 74.14 69.29(+0.18)
CE-GZSL + PC 67.73 67.91 67.82(+0.39) 50.14 38.14 43.32(+1.61) 67.32 72.53 69.83(+0.72)

TransZero + CS 69.51 68.03 68.77(+0.03) 52.71 33.18 40.72(+0.06) 61.30 81.96 70.14(+0.01)
TransZero + PC 70.06 71.90 70.97(+2.23) 52.29 35.35 42.18(+1.52) 63.14 81.93 71.32(+1.19)

PSVMA + CS 73.10 74.90 74.00(+22.94) 62.40 44.90 52.20(+16.45) 69.90 84.30 76.40(+25.31)
PSVMA + PC 75.68 78.63 77.13(+26.07) 65.9 49.96 56.83(+21.08) 72.69 87.61 79.46(+28.37)

Table 4. Results of our method compared with Calibrated stacking (CS) [7] approach. CS and PC indicate results obtained when using
calibrated stacking and proposed prior correction. We highlight the improvement over baseline in red.

DUET [14], MSDN [10], TransZero [9], etc some of
which are ViT based methods. Further, we also compare
with some of the prominent generative methods like CE-
GZSL [20], FREE [12] and HSVA [13]. We exclude large-
scale models such as CLIP [40] and its extensions from the
comparative analysis.

For both embedding-based and generation-based frame-
works we employ our approach as a simple plugin method
during testing. Note that given the post-hoc nature of the
proposed approach, there is no additional training required.
Although a simple hyper-parameter tuning of α and β is
needed to obtain the best performance.

5. Results
5.1. Comparison with SOTA

We show our results on embedding-based and
generation-based methods in Table 2. For embedding-based
methods we apply our post-hoc prior correction on the
PSVMA [33] method. We reproduce the results of the
original paper, and use the improved result as the baseline.
Further our method is applied on PSVMA by removing
any existing calibrated stacking technique employed in the
framework. As this further deteriorates the baseline, thus
demanding a higher margin of improvement to surpass the
state-of-the-art results. Despite this our method is able to
surpass the results of all other existing works as shown
in the table. Further we also employ our method over
the generation-based methods taking the already strong
CE-GZSL [20] as the baseline. Note that our approach
boosts the accuracy of the CE-GZSL framework despite
the generative methods already trying to minimize the
imbalance by oversampling the synthetic unseen class
samples. It improves the performance of [20] to a harmonic
mean of 67.82%, 43.32% and 69.83% on CUB, SUN and
AwA2 datasets respectively. Further our method becomes
the new SOTA by boosting [33] to achieve a harmonic

mean of 77.13% on the CUB, 56.83% on SUN and 79.46%
on AwA2 datasets improving already strong baseline by
3.1%, 4.6% and 3.1%, respectively. Note that our method
demonstrates a significant boost on the fine-grained SUN
dataset surpassing the SOTA by a margin of 4.6%.

5.2. Comparison with Zero-Shot Logit-Adjustment

ZSLA [8] presents a strong baseline with similar logit-
adjustment framework as ours. In particular, authors ad-
just model predictions during training using empirical class
frequencies. We compare proposed approach as a plugin
method with ZSLA in Table 3. We note that, proposed ap-
proach (2nd row) achieves comparable accuracy to that of
ZSLA (3rd row) on both datasets. Further when combined
with ZSLA (4th row), proposed approach improves the per-
formance further showing its effectiveness.

5.3. Results on pre-trained models

Given a trained model our proposed approach allows
easy calculation of the prior and thereby remove the bias.
We show the result of using our method as a plug-in
over other existing GZSL frameworks in Table 4. For
embedding-based methods we consider Transzero [9]and
PSVMA [33] and generation-based methods are repre-
sented by TF-VAEGAN [37] and CE-GZSL [20]. From
the table it can be observed that our method consistently
provides a non-trivial performance boost for all the base-
line frameworks. The margin of improvement can be as
high as 4.63% on SUN dataset for embedding-based method
PSVMA and 2.6% on CUB dataset for the generation-based
approach TF-VAEGAN. The higher margin of improvement
seen on embedding-based methods can be attributed to the
higher imbalance between the seen and unseen classes.

5.4. Comparison with Calibrated Stacking

Calibrated stacking (CS) [7] presents a simple approach
to remove seen class bias from the model by suppressing
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log P t(y)
Pm(y) logP (Y) U S H A

CUB
X X 36.1 87.5 51.1 55.2
✓ X 74.7 79.1 76.8 76.7
X ✓ 63.3 81.3 71.2 70.0
✓ ✓ 75.78 78.6 77.1 77.3

SUN
X X 26.9 53.4 35.8 43.9
✓ X 63.6 50.2 56.1 55.0
X ✓ 55.6 48.1 51.6 50.8
✓ ✓ 65.9 50.0 56.8 55.7

Table 5. We show contribution of individual adjustment terms in
removing seen unseen class bias. Overall best improvement is ob-
served when both components are used.

all seen class probabilities by a scale factor. We compare
CS with propose method in Table 4. While the improve-
ment provided by CS is minimal, proposed approach clearly
provides a significant gain in performance across all the
datasets and baselines. This validates the efficiency of pro-
posed method in removing the seen unseen bias and show
that trivially suppressing all seen class accuracies by same
scale factor is not optimal.

5.5. Ablation Experiments:

Effectiveness of different components: We validate
the effectiveness of different adjustment terms in Table 5.
We note that each component improves model performance
in terms of Harmonic mean as well as Arithmetic mean.
We further validate effectiveness of Theorem 1 in Table 6.
We show results when adjustment is performed using ei-
ther logP t(y) or logPm(y) term only. When compared
with baseline (no adjustment), adjustment due to logP t(y)
significantly boosts the performance showing that effective
prior P (y) learned by the model was quite different from
the required prior P t(y). Further, removing incorrect prior
P (y) of a trained model estimated using Pm(y) also lead
to improvements.

Validating debiasing performance In Figure 3 we show
accuracy when seen class examples are correctly classified
(+ve) vs when they are mis-classified into other seen classes
(seen -ve) and unseen classes (unseen -ve). Similar analy-
sis is shown for unseen classes. We note that, for baseline
model, most of the examples are misclassified into seen cat-
egories, showing a strong bias. After PC correction, the
overall confusion is reduced and uniformly spread.

6. Limitations
We have seen that proposed PC-GZSL approach is quite

robust and improves accuracy of many existing methods.

Adjustment U S H A

CUB
- 36.1 87.5 51.1 55.2

logP t(y) 72.0 74.9 73.38 73.5
logPm(y) 56.4 85.2 67.9 67.2
log P t(y)

Pm(y) 74.7 79.1 76.8 76.7

SUN
- 26.9 53.4 35.8 43.9

logP t(y) 62.5 44.8 52.2 51.2
logPm(y) 29.4 58.0 39.0 47.7
log P t(y)

Pm(y) 63.6 50.2 56.1 55.0

Table 6. We validate the effectiveness of bias removal using
logP t(y) and logPm(y) terms. We use both terms separately
and notice some improvements compared to baseline.

Figure 3. We show the confusion between seen and unseen classes
for incorrectly classified examples for the SUN dataset.

However, as it only corrects the already trained model
predictions, its performance is bounded by the baseline
model’s inherent accuracy. In particular, a poorly trained
model will not improve much even after PC correction as
original probabilities would be noisy leading to noisy bias
estimation and incorrect adjustment. Further, proposed ap-
proach shares similar limitation as existing methods i.e. re-
quirement of validation data for bias estimation, which can
be challenging for ZSL settings.

7. Conclusions

We presented a framework to calculate the effective prior
of a trained model in GZSL showing that significant bias to-
wards the seen classes lead to sub-optimal performance. We
show theoretically optimal way to remove model bias by ad-
justing the posterior leading to improved performance. We
further use the lower bound on the harmonic mean to calcu-
late additional correction to posterior probabilities leading
to further improvement. We show the effectiveness of our
approach as a simple plugin method which does not require
any model training and can boost performance of many ex-
isting methods, both in embedding and generative classes.
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