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Abstract

Thermal cameras offer unique detection capabilities in
building inspections, search and rescue operations, and
autonomous vehicle perception. Of the different types of
thermal cameras, uncooled microbolometers are often cho-
sen due to their relative affordability, small size, and low
power consumption. However, microbolometers suffer from
motion blur, rolling shutter distortions, and fixed pattern
noise, which limit the conditions of their use. Nearly all
prior methods for microbolometer image restoration ac-
count for only one of these degradations, and current tech-
niques addressing microbolometer blur and rolling shut-
ter are limited. This paper presents TRNeRF, a thermal
image restoration method that jointly addresses all three
degradations by incorporating the microbolometer image
formation model with Neural Radiance Fields (NeRFs). To
evaluate TRNeRF, this paper introduces a new real-world
dataset that is uniquely designed to support two novel quan-
titative evaluation strategies for thermal image restoration.
Experiments demonstrate that TRNeRF is able to recover
sharp, global shutter, and clear thermal images, even un-
der extremely aggressive camera motion that causes exist-
ing methods to fail. The code and dataset are available at:
https://umautobots.github.io/trnerf.

1. Introduction
Thermal cameras can detect heat loss and moisture in

building inspections [6,46], highlight hidden fires, humans,
and animals in search and rescue operations [17,41], and see
pedestrians through fog in autonomous vehicle applications
[12]. Cooled thermal cameras offer high image quality,
but uncooled microbolometers are more affordable, smaller,
and consume less power, making them appealing in many of
these applications [6,52]. However, microbolometers suffer
from motion blur [37], rolling shutter distortions [33], and
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(a) Input degraded thermal images

(b) Output TRNeRF restored images

Figure 1. Given a sequence of degraded thermal images (a) and
a known camera trajectory, TRNeRF trains an accurate thermal
scene representation and restores the input images (b).

noise [2], which greatly impact image quality under fast,
or even moderate, camera motion and in environments with
low thermal contrast.

In the existing literature on thermal image restoration,
noise removal [2, 7, 8, 10, 16, 38, 50], motion deblurring [1,
15, 22, 32, 37, 45, 56], and rolling shutter correction [32, 33]
are considered separately, with only one exception that ac-
counts for both motion blur and rolling shutter [32]. More-
over, the current methods for deblurring and rolling shutter
correction either ignore the unique blur formation model of
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the microbolometer [1, 45, 56], or are limited to particular
camera specifications and scenarios [22, 32, 33, 37]. Quan-
titative analysis with real microbolometer images is also
lacking, with nearly all prior work on deblurring restricting
quantitative results to synthetic images that are artificially
degraded [1, 22, 45, 56].

Meanwhile, the recent popularity of Neural Radiance
Fields (NeRFs) [28] and 3D Gaussian Splatting (3DGS)
[13] has led to interest in methods that use these frameworks
to restore visible spectrum images [4, 18–21, 23, 26, 27, 30,
34, 35, 42, 43, 48, 49, 55]. These methods train sharp NeRF
and 3DGS scene representations directly from degraded im-
ages, allowing the degraded images to be restored by ren-
dering them at the inference stage. While recent papers
have begun to explore training NeRF models with thermal
images [9, 24, 25, 51, 53, 57, 58], none have considered the
unique image formation characteristics of microbolometers
or been demonstrated with degraded images.

In this paper, we introduce Thermal Restoration NeRF
(TRNeRF), a method that incorporates the microbolometer
image formation model within a NeRF framework. Given a
sequence of degraded thermal images and a known camera
trajectory, our method trains a NeRF network that is able
to render sharp, global shutter, and clear thermal images,
as shown in Fig. 1. Specifically, inspired by existing work
on NeRF-based restoration [20, 23, 48], we model the mi-
crobolometer’s blur, rolling shutter, and fixed pattern noise
in the rendering pipeline during training, and remove these
modifications at the inference stage. To test our method’s
restoration performance on real degraded microbolometer
images, we introduce a new dataset and two novel quantita-
tive evaluation strategies that do not require ground truth re-
stored images. We demonstrate that TRNeRF can success-
fully restore real degraded microbolometer images, even
under extremely aggressive camera motion that causes ex-
isting methods to fail.

2. Related Work

2.1. Visible-Spectrum Image Restoration with
NeRF and 3DGS

In recent years, Neural Radiance Fields (NeRF) [28] and
3D Gaussian Splatting (3DGS) [13] have emerged as highly
effective methods for scene reconstruction and novel view
synthesis and inspired a wave of research into improving
these methods and applying them in various domains.

Most relevant to our paper, one line of research seeks to
train NeRF and 3DGS from degraded images [4, 18–21, 23,
26, 27, 30, 34, 35, 42, 43, 48, 49, 55]. In general, NeRF and
3DGS train by rendering individual pixels or full images
from the same perspectives as the input images to compute
a loss. A common strategy to handle degraded images is
to model the degradation in the rendering pipeline during

training, such that the loss can be computed against the de-
graded inputs, and to remove it during inference, such that
high quality images can be generated.

An early paper on this topic was Deblur-NeRF [27].
Deblur-NeRF handles defocus blur and motion blur by
training a multi-layer perceptron (MLP) to output sparse,
view-dependent, and pixelwise blur kernels [27]. During
training, a single blurry pixel value is estimated by query-
ing the MLP to obtain multiple weighted rays, which are
individually rendered and then blended together [27]. This
strategy has been further explored in several subsequent pa-
pers [18, 19, 21, 26, 34, 35]. Concurrent papers BAD-NeRF
[48] and ExBluRF [20] demonstrated that when addressing
motion blur alone, directly modeling the blur as a discrete
integral of rendered pixel values over the exposure inter-
val outperforms the blur kernel strategy. This technique has
been improved [49], extended to dynamic scenes [43], and
adapted for 3DGS [4, 30, 55]. In our method, we assume
all-in-focus images and similarly approximate motion blur
as a discrete integral over multiple rendered pixel values,
but we adapt this to the microbolometer’s unique blur for-
mation model.

USB-NeRF accounts for rolling shutter readout by
jointly optimizing a single continuous camera trajectory
across all images [23]. This enables a pixel to be rendered
using the pose at the precise time it was read out [23]. Gaus-
sian Splatting on the Move [42] addresses both motion blur
and rolling shutter together by jointly optimizing per-image
camera poses and velocities and introducing a screen-space
approximation of pixel-wise motion blur. We use a strat-
egy similar to USB-NeRF to account for rolling shutter, but
combine it with the motion blur compensation described
above.

We select NeRF [28] over 3DGS [13] as the founda-
tion of our method as NeRF’s pixel-wise rendering lends it-
self directly to rolling shutter correction and, unlike 3DGS,
NeRF does not require an input point cloud to obtain good
performance. In addition to accounting for motion blur and
rolling shutter, we also jointly optimize the thermal cam-
era’s fixed pattern noise.

2.2. Thermal NeRF & Thermal Image Restoration

Several methods have been recently proposed for train-
ing a NeRF with thermal images either exclusively [53], or
with one or more additional modalities [9,24,25,51,57,58].
However, prior work on thermal NeRFs has not considered
the unique image formation characteristics of microbolome-
ters or been demonstrated with degraded images.

The problem of noise removal in uncooled thermal im-
ages has received significant attention [2,7,8,10,16,38,50],
but it has not been considered together with motion blur and
rolling shutter distortions. Most similar to our method with
respect to noise removal, DeepIR jointly optimizes fixed
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pattern noise and a neural representation of noise-free ther-
mal images using multiple thermal images with small mo-
tions [38]. The method assumes all images are related to
the first frame using a simple geometric transform, which is
not suitable for large motions. While our method also uses
a neural representation, we model motion-induced degrada-
tions in addition to noise.

Prior work has also addressed thermal deblurring [1, 15,
22, 32, 37, 45, 56]. The methods most similar to ours are
those that also consider the unique blur formation model of
the microbolometer, however, they are currently limited to
particular camera specifications and scenarios [22, 32, 37].
For example, the method in [37] requires a high frame rate
(200 Hz in their experiments) not typically supported by
low-cost microbolometers, and [22] assumes purely rota-
tional camera motion. Notably, nearly all existing papers
on thermal deblurring also restrict their quantitative evalua-
tion to artificially degraded images originally captured with
a cooled thermal camera or slow moving uncooled thermal
camera [1, 15, 22, 45, 56]. Additionally, to our knowledge,
only two papers have investigated rolling shutter correction
with microbolometers [32,33]. The algorithm in [33] is de-
signed only for a stationary camera observing a static object
as it cools. A technique in [32] considers rolling shutter and
motion blur, but it is limited to objects against a constant
background moving in a straight line with known pixel ve-
locity.

We propose a thermal restoration method that jointly ac-
counts for motion blur, rolling shutter, and noise. Moreover,
we introduce a new dataset to test our method exclusively
on real degraded microbolometer images and introduce two
novel evaluation schemes that do not require ground truth
restored images.

3. Preliminary
3.1. Microbolometer Image Formation Model

Let the vector xw = [xw, yw, zw, 1]
T be the homoge-

neous (denoted by the underline) world frame coordinates
of an object in a scene. Given an ideal pinhole camera
model, the infrared (IR) radiation emerging from this ob-
ject would be projected into the camera according to:

xp = Kxn = Kxc
1

zc
, xc = Tc

w(t)xw (1)

where Tc
w(t) is the transformation matrix from the world

frame to the camera frame at time t, xc are the camera frame
coordinates, xn are the normalized coordinates, K is the
camera intrinsic matrix, and xp = [u, v, 1]T are the pixel
coordinates.

Any real lens will suffer from distortion, and this can
typically be modeled as:

x′
p = Kx′n = Kg(xn) (2)

where x′
p = [u′, v′, 1]T are the distorted pixel coordinates

and g(xn) represents a distortion model, e.g., the radial-
tangential distortion model. The inverse projection is then
given by:

xn = g−1(x′
n) = g−1(K−1x′p) (3)

which typically does not have a closed form solution, but
can be solved iteratively.

In microbolometer thermal cameras, the pixels are made
of a material that has a strongly temperature-dependent
electrical resistance. Incoming IR radiation heats the pixels
and their electrical resistances are periodically measured to
obtain an image [37]. The temperatures of the pixels do not
reach a steady state instantaneously and this gives rise to
motion blur in the image. Specifically, the noise-free value
of a pixel (u′, v′) at time t can be given by [37]:

mu′,v′,t =
1

τ

∫ t

−∞
exp

(
s− t

τ

)
pu′,v′,sds (4)

where τ is the thermal time constant, a property of the cam-
era, and pu′,v′,t is a value directly proportional to the power
incident on pixel (u′, v′) at time t. Note that the pixels of a
microbolometer are always exposed and that the power in-
cident on a pixel at any previous time has an exponentially
decaying impact on the current pixel value. This is in con-
trast to the motion blur model of visible spectrum cameras,
which involves a finite exposure period over which all inci-
dent power has equal contribution [37].

Further complicating the image formation model, mi-
crobolometer cameras employ a rolling shutter readout
[33, 47]. That is, in a given image i, if t0,0,i is the time
the top left pixel (0, 0) is measured, the pixel (u′, v′) will
be measured at time:

tu′,v′,i = t0,0,i + u′∆tpix + v′w∆tpix (5)

where ∆tpix is the readout delay between each pixel and w
is the width of the image.

Finally, the value measured at pixel (u′, v′) is impacted
by various sources of noise, which can be modeled as an
offset [2]:

nu′,v′,t = mu′,v′,t + ou′,v′,t (6)

where the noise ou′,v′,t can be broken down into slowly
varying stripe noise (i.e., offsets that are correlated across
rows and columns), quickly varying stripe noise, high-
frequency random noise, and a slowly varying and spatially
smooth component [2]. The slowly varying portions of this
noise are often referred to as Fixed Pattern Noise (FPN).
Note that in practical use, and in our experiments, much of
the FPN is factory calibrated or estimated via shutter-based
non-uniformity corrections (NUCs). Still, remaining uncor-
rected FPN or errors in the corrections appears as residual
FPN that must be accounted for.
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Figure 2. The rendering pipeline of TRNeRF. The left side of the figure depicts the learned scene and the views traversed by two pixels
read out at different times. The remaining sections show how a single degraded pixel value is estimated and contributes to the loss.

3.2. Neural Radiance Fields

Our method is built upon Neural Radiance Fields
(NeRFs) [28], which we introduce here briefly. Given mul-
tiple global shutter images {Ii}

Nimg
i=1 of a scene with corre-

sponding camera poses {Tw
ci}

Nimg
i=1 , NeRF offers a way to

represent the scene implicitly using an MLP. The NeRF net-
work fθ, parameterized by weights θ, is trained to predict
the volume density σ and view-dependent color q of a point
xw viewed from the direction dw:

(q, σ) = fθ(xw,dw) (7)

The NeRF network is trained by using these predictions
to render pixel values and compare them against the mea-
sured pixel values in the images {Ii}

Nimg
i=1 . A pixel value

is rendered by projecting a ray through the pixel into the
scene, applying Eq. (7) at multiple points sampled along
the ray, and accumulating the results. Specifically, the ray
corresponding to the pixel (u′, v′) in image i is given by:

r(s) = tww→ci + sd, d =
Rw

cixn∥∥Rw
cixn

∥∥
2

(8)

where Rw
ci and tww→ci are the rotation and translation em-

bedded in the pose Tw
ci and xn is obtained by Eq. (3). After

applying Eq. (7) at samples {r(sj)}Ns
j=1 to compute colors

{qj}Ns
j=1 and volume densities {σj}Ns

j=1 the pixel value is
finally estimated as:

ĉu′,v′,i =

Ns∑
j=1

exp

(
−

j−1∑
k=1

σkδk

)
(1− exp(−σjδj))qj

(9)
where δj = sj+1 − sj is the distance between samples.

Many papers have improved upon the original NeRF
technique. Our method is conceptually agnostic to the un-
derlying NeRF architecture, but we select Instant-NGP [29]
to benefit from its relatively fast training and rendering.

4. Method
In this section, we present the details of TRNeRF, our

method to restore thermal images via NeRF. The essential
goal of our method is to train a NeRF network fθ from de-
graded microbolometer images such that we can use it to
render new images that remove distortions and approximate
what would have been captured from an ideal thermal cam-
era. To achieve this, we treat the rendered pixel value given
by Eq. (9) as an estimate of pu′,v′,t from Eq. (4) and we ex-
tend the rendering pipeline to output noisy, blurry, rolling
shutter pixel values that can be supervised by the real cap-
tured images subject to degradation. An overview of the
technique is depicted in Fig. 2. At the inference stage, the
extensions are removed and the network can be used to di-
rectly render sharp, global shutter, and clear thermal im-
ages.

4.1. Motion Blur and Rolling Shutter Correction

To incorporate the microbolometer motion blur and
rolling shutter readout into the NeRF rendering pipeline, we
begin by assuming that our training images {Ii}

Nimg
i=1 , with

timestamps {t0,0,i}
Nimg
i=1 , and known poses {Tw

ci}
Nimg
i=1 , were

captured at a high enough rate to support accurate interpola-
tion. With this assumption, we apply cubic interpolation to
the translations {tww→ci}

Nimg
i and spherical linear interpola-

tion (slerp) to the rotations {Rw
ci}

Nimg
i to obtain the camera

pose Tw
c (t) at any time t during the recording period.

The ability to compute Tw
c (t) enables Equations 8 and

9 to be evaluated at any time to obtain p̂u′,v′,t. With this,
we can then estimate the blurry, but noise-free, value of the
pixel (u′, v′) at time t with a discrete approximation of the
integral in Eq. (4):

m̂u′,v′,t =
1

τ

Nb−1∑
l=0

wl exp

(
−l∆tb

τ

)
p̂u′,v′,t−l∆tb∆tb

(10)
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where ∆tb is the step between blur samples, {wl}Nb−1
l=0 =

{ 1
3 ,

4
3

2
3 ,

4
3

2
3 , ...,

4
3 ,

1
3} are weights according to Simpson’s

rule, and Nb is the number of blur samples, which must be
odd to support Simpson’s rule. We use Simpson’s rule as it
is generally a more accurate numerical integration method
than a Riemann sum (wl = 1, ∀l). The number of blur
samples Nb and the interval of integration Tb = ∆tb(Nb −
1) are hyperparameters. Note that Tb must be large enough
to well approximate the unbounded integral in Eq. (4). Tb =
5τ captures > 99% of the value in the case of constant p̂.

Ultimately, we need to compute a loss between rendered
and captured pixels in specific images. To render the blurry
value of the pixel (u′, v′) in the image i while accounting
for the rolling shutter readout of the microbolometer, we
substitute tu′,v′,i from Eq. (5) into Eq. (10). We denote the
result of this substitution as m̂u′,v′,i.

4.2. Fixed Pattern Noise Correction

To account for the slowly varying FPN offset represented
in Eq. (6), we introduce a learnable per-pixel offset ôu′,v′

that we apply to get the final rendered value:

n̂u′,v′,i = m̂u′,v′,i + ôu′,v′ (11)

Finally, the loss is computed as:

L = Lrender + λLFPN (12)

Lrender =
1

|P |
∑

(u′,v′,i)∈P

(n̂u′,v′,i − nu′,v′,i)
2 (13)

LFPN =
1

wh

∣∣∣∣∣
w−1∑
u′=0

h−1∑
v′=0

ôu′,v′

∣∣∣∣∣ (14)

where Lrender is the rendering loss, LFPN is a loss computed
from the learned FPN offsets, P is a set of pixels randomly
sampled across images and pixel coordinates, w and h are
the height and width of the images, and λ is a loss coeffi-
cient. Lrender supervises the rendered degraded pixel values
n̂u′,v′,i with the measured values nu′,v′,i across the set P ,
while LFPN enforces that the mean of the learned offsets is
zero to maintain the average intensity of the scene. If freely
optimized, offsets with a positive or negative mean would
drive the learned scene intensity in the opposite direction.

5. Experiments
5.1. Dataset

To collect our dataset, we designed a rig with a backpack
mounted computer and hand-held sensor platform pictured
in Fig. 3. The sensor platform includes two 640 × 512 mi-
crobolometer thermal cameras (FLIR ADK), two 1440 ×
1080 monochrome cameras (FLIR Blackfly S GigE), and
an IMU (VectorNav VN-100). We provide the IMU data
to support future work, but it is not utilized in this paper.

Figure 3. Image of the data collection rig (top) and reference
RGB images of the outdoor (bottom left) and indoor (bottom right)
scenes.

The thermal cameras are placed side-by-side to support the
comparison of different camera settings with minimal par-
allax. In particular, we disable the default noise filters in the
right thermal camera and keep them enabled in the left. The
monochrome cameras are global shutter, and we limit their
exposure times to 1 ms to ensure sharp images. We trigger
image capture simultaneously across all cameras at 60 Hz
and follow the approach described in [3] to synchronize the
recorded data and calibrate all sensors. This calibration in-
volves an Aprilgrid board [5, 11, 31] that is constructed of
aluminum and vinyl in order to appear in both the visible
and thermal spectra [3].

We record data in a sunny outdoor scene with high ther-
mal contrast, and an air-conditioned indoor scene with low
thermal contrast. Reference RGB images of these scenes
are shown in Fig. 3. We place the multi-spectral calibra-
tion board in each scene to support quantitative evaluation
as described in Sec. 5.3. We also place uniform hot and
cold sources near each scene. We record these sources
before and after each sequence to support pseudo ground
truth generation, as described in Sec. 5.3. In each scene
we record three sequences, denoted slow, medium, and fast,
with increasingly aggressive six degree-of-freedom camera
motion. For our experiments, we select a 3.7 minute (13.4k
image) subset of each slow sequence and a 1 minute (3.6k
image) subset of each medium and fast sequence. Addi-
tional details on the dataset collection are provided in our
supplementary material.

To obtain the pose estimates required by NeRF, it is com-
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mon to apply the structure-from-motion method COLMAP
[40] to the training images. However, COLMAP fails with
thermal images collected under fast motion due to mo-
tion blur and rolling shutter distortions. Instead, we obtain
scaled poses for the left monochrome images, and transform
these poses to each thermal camera using the calibrated ex-
trinsics. Specifically, for each scene, we run COLMAP
with 1k images from the left monochrome camera sam-
pled across all sequences. Then, we localize all remaining
monochrome images, left and right, against the COLMAP
reconstruction using hloc [39]. Finally, we scale the poses
by comparing the median stereo baseline between the esti-
mated left and right poses against the calibrated baseline.
After scaling, we assess the accuracy of the poses by com-
paring the estimated relative poses between the left and
right cameras against the calibrated extrinsics. We found the
accuracy in position to be 2 mm and the accuracy in rota-
tion to be 0.06◦ on average. Note that by running COLMAP
with images from each sequence together, all of the esti-
mated poses for a given scene are in a common world frame.
This fact is exploited in Sec. 5.3 to generate pseudo ground
truth images.

For the FLIR ADK cameras, τ = 8 ms and ∆tpix =
∆trow/w, where w = 640 is the image width and ∆trow =
27.8 µs is the time required to read out a single row. The
first pixel is read out 0.5 ms after the trigger signal while
the monochrome images begin exposure immediately. We
account for this delay when interpolating the poses.

5.2. Implementation Details

We build TRNeRF off of the nerfstudio [44] implementa-
tion of Instant-NGP [29]. Typically, Instant-NGP is trained
with 8-bit, 3-channel RGB images, which are converted to
32-bit floating point and mapped from the range [0, 255]
to the range [0, 1]. Most thermal cameras capture 16-bit,
single-channel images. For compatibility with Instant-NGP,
we duplicate the thermal images across the 3 channels and
perform the operations described in Equations 10, 11, and
13 separately in each channel. Additionally, the captured
values in thermal images typically span a small subset of
the full 16-bit range. Therefore, after conversion to 32-bit
floating point, we map the captured values to the range [0, 1]
as follows:

n =
norig − nlow

nhigh − nlow
(15)

where norig is the captured value, n is the value used in
training, and nlow and nhigh are set to the minimum and
maximum values captured in the scene across all three se-
quences. Notably, we avoid converting the training images
to 8-bit.

When rendering a restored image, we take the pixel-wise
mean across the 3 channels, invert Eq. (15), and convert to
16-bit. For evaluation and visualization, we apply Eq. (15),

Figure 4. An example of computing the detection metric with a
monochrome image (left) and inverted thermal image (right).

multiply by 255, and convert to 8-bit. To improve contrast
in the evaluation and visualization images, we set nlow and
nhigh to the 0.1 and 99.9 percentiles.

For training, we set the number of blur samples to Nb =
19, the interval of integration to Tb = 5τ = 40 ms, and the
FPN loss coefficient to λ = 1×10−3. We render 500 pixels
per iteration for a total of 60k iterations. Note that each ren-
dered pixel requires Nb = 19 rays when blur compensation
is enabled, and only 1 otherwise. We use the Adam opti-
mizer [14] to update our FPN offset parameters and set the
learning rate to start at 1 × 10−4 and decay exponentially
to 5× 10−5. We use the default values in nerfstudio for all
remaining hyperparameters.

5.3. Evaluation Methods

To evaluate TRNeRF, and the baselines described in
Sec. 5.4, we render a restored image for each training im-
age. Specifically, each restored image is distortion-free,
global shutter, and rendered from the pose of the camera
when the trigger signal was received. We introduce two
quantitative evaluation methods summarized below with
further details given in our supplementary material.

The first method utilizes the multi-spectral Aprilgrid
board that we placed in each scene. The board can be de-
tected in both the sharp visible spectrum images and the
restored thermal images. For every left monochrome im-
age in which we can detect the board and estimate its pose,
we project all of the board’s corners into the restored ther-
mal image corresponding to the same trigger. We retain the
projected corners that correspond to AprilTags with all four
corners lying in the thermal camera’s field-of-view. We then
attempt to detect the board in the thermal image, and we de-
termine the number of the projected corners that were suc-
cessfully detected. We aggregate the number of projected
and detected corners over all images in a sequence to com-
pute the detection percentage. This percentage reflects how
well areas of the board were restored. The process for a
single pair of images is visualized in Fig. 4. Note that the
thermal image is inverted for AprilTag detection.

The second method involves generating pseudo ground
truth images. This method relies on the assumption that
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Figure 5. Qualitative results on the medium and fast sequences from the indoor and outdoor scenes.

an accurate thermal NeRF model can be trained on each
slow sequence. Under this assumption, we can use these
NeRF models to render pseudo ground truth images for the
medium and fast sequences. To avoid self-comparison, we
use Instant-NGP [29], without any of our modifications, to
generate the pseudo ground truth images. To account for
FPN, we use the recordings of the hot and cold sources to
perform a two-point NUC [36] and apply the corrections to
the slow sequence training images at the input to Instant-
NGP. Note that we use the two-point NUC only in the gen-
eration of pseudo ground truth, and not in our proposed
method, as we assume hot and cold sources will not al-
ways be available. We report the average LPIPS value [54]
between the pseudo ground truth and restored images. To
avoid using inaccurate pseudo ground truth images, we re-
strict this evaluation to viewpoints sufficiently similar to the
slow sequence training images.

5.4. Comparisons

Existing methods for thermal deblurring and rolling
shutter correction either lack available code or are limited
to camera specifications and scenarios that are unmet by
our dataset. Furthermore, the only available thermal NeRF
implementations were designed to fuse with RGB images

Method Detection % ↑ LPIPS ↓
Slow Med. Fast Med. Fast

Outdoor
Raw 74.3 16.0 0.2 0.155 0.336
Instant-NGP 69.6 0.0 0.0 0.129 0.281
USB-NeRF 65.5 5.9 0.0 0.155 0.355
GS on the Move 74.7 3.5 0.0 0.093 0.283
TRNeRF (Ours) 74.8 58.6 0.0 0.042 0.078

Indoor
Raw 49.2 3.5 0.0 0.672 0.736
Instant-NGP 51.8 0.0 0.0 0.253 0.393
USB-NeRF 39.8 0.0 0.0 0.501 0.536
GS on the Move 59.2 0.0 0.0 0.206 0.328
TRNeRF (Ours) 64.9 41.7 0.0 0.068 0.117

Table 1. Detection percentage (higher is better) and LPIPS (lower
is better) for each method on each sequence.

[9, 25]. Therefore, we turn to state-of-the-art NeRF and
3DGS based restoration methods for our baselines. Specif-
ically, we compare TRNeRF against USB-NeRF [23], and
Gaussian Splatting on the Move [42], which we abbreviate
here as GSotM. We also compare against Instant-NGP [29]
without our modifications. The training images were input
to all methods in the same way, as described in Sec. 5.2. All
methods were run with the right thermal camera, as this re-
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Figure 6. A restored image from the medium indoor sequence
without FPN correction (left) and with FPN correction (right).

sulted in better performance (see Sec. 5.5). Further details
on the implementations and additional qualitative compar-
isons are provided in our supplementary material.

The quantitative results of our experiments are given
in Tab. 1, alongside the results of applying our evaluation
methods to the raw images (after undistortion). The detec-
tion percentage results with the raw images confirm that the
slow sequence images are not substantially degraded, espe-
cially in the high thermal contrast outdoor scene where the
FPN is less significant. Correspondingly, the baselines all
perform well on the slow sequences by the detection per-
centage metric.

In the medium sequences, TRNeRF attains substantial
detection percentages while the baseline results are low or
zero. We note that the detections in the raw images are
limited to brief periods of slower camera motion. USB-
NeRF performs poorly, suggesting that rolling shutter cor-
rection alone is insufficient to restore microbolometer im-
ages. GSotM accounts for rolling shutter and motion blur,
but also achieves limited success. We believe this is be-
cause GSotM does not account for FPN, uses a screen-space
approximation that is invalid under aggressive motion, and
models blur with the photoelectric image formation model,
which is inapplicable to microbolometers [42].

None of the methods, including ours, can produce detec-
tions in the fast sequences. The board may be an especially
challenging object to restore, as the aluminum is reflec-
tive in the thermal spectrum. However, it is clear from the
LPIPS and qualitative results, shown in Fig. 5, that TRN-
eRF still achieves significant improvement in image restora-
tion in these sequences, whereas portions of the raw images
and baseline results are so degraded as to be nearly indis-
cernible.

5.5. Ablation Study

To assess the components of our method, we tested with
rolling shutter correction only, motion blur correction only
(with Simpson’s rule), and the two corrections combined
using a Riemann sum and using Simpson’s rule. Addition-
ally, we tested our full method with the training images con-
verted to 8-bit (as done for evaluation and visualization) and
with the images from the left thermal camera, which had the

Ablation
Method

Detection % ↑ LPIPS ↓
Slow Med. Fast Med. Fast

Outdoor
Rolling shutter (RS) 56.4 11.3 0.0 0.119 0.274
Blur, Simpsons (BS) 71.1 0.0 0.0 0.104 0.350
RS + Blur, Riemann 75.8 59.4 4.0 0.166 0.147
RS + BS 74.2 62.3 0.0 0.054 0.091
TRNeRF, 8-bit 76.2 60.2 0.0 0.044 0.073
TRNeRF, w/ filters 75.0 50.1 0.0 0.047 0.083
TRNeRF 74.8 58.6 0.0 0.042 0.078

Indoor
Rolling shutter (RS) 54.1 0.7 0.0 0.232 0.341
Blur, Simpsons (BS) 47.7 0.0 0.0 0.338 0.468
RS + Blur, Riemann 64.2 40.2 1.5 0.217 0.261
RS + BS 60.0 38.3 0.0 0.182 0.250
TRNeRF, 8-bit 64.6 37.2 0.0 0.141 0.308
TRNeRF, w/ filters 45.2 14.0 0.0 0.207 0.223
TRNeRF 64.9 41.7 0.0 0.068 0.117

Table 2. Detection percentage (higher is better) and LPIPS (lower
is better) for each method of the ablation study on each sequence.

FLIR ADK’s default noise filters enabled. The quantitative
results of this ablation study are given in Tab. 2.

The results show that correcting rolling shutter or motion
blur alone is insufficient to restore microbolometer images.
When accounting for both, using a Riemann sum achieves
a nonzero detection percentage on the fast sequences. The
Riemann sum may better approximate the step function wit-
nessed by a pixel traversing the Aprilgrid pattern. Nonethe-
less, the LPIPS results obtained with Simpson’s rule sug-
gest that it is the better option in general. The remaining
methods are only significantly differentiated in the indoor
scene, where the importance of correcting FPN is evident
in the LPIPS results. The difference is also clearly apparent
in the qualitative results, as shown in Fig. 6. Additionally,
the indoor results suggest that converting the training im-
ages to 8-bit and keeping noise filters enabled in the camera
significantly harms performance. While the filters appear
to improve the captured images, they may also introduce
biases that NeRF is less robust to than random noise.

6. Conclusions
We present TRNeRF, a method to restore microbolome-

ter thermal images degraded by motion blur, rolling shutter
distortions, and fixed pattern noise. We propose extensions
to the NeRF rendering pipeline that account for these degra-
dations, allowing an implicit representation of the original
scene to be trained directly from the degraded images. To
validate the restoration performance of our method, we in-
troduce a new dataset and two novel quantitative evaluation
schemes. Our experiments demonstrate that TRNeRF can
restore sharp, global shutter, and clear thermal images, even
under extremely aggressive camera motion.

Acknowledgment: We thank Katy Frank for her help in collecting
the dataset.
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