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Abstract

Test-time adaptation (TTA) allows a model to be adapted
to an unseen domain without accessing the source data.
Due to the nature of practical environments, TTA has a
limited amount of data for adaptation. Recent TTA meth-
ods further restrict this by filtering input data for reliabil-
ity, making the effective data size even smaller and limit-
ing adaptation potential. To address this issue, We propose
Feature Augmentation based Test-time Adaptation (FATA),
a simple method that fully utilizes the limited amount of in-
put data through feature augmentation. FATA employs Nor-
malization Perturbation to augment features and adapts the
model using the FATA loss, which makes the outputs of the
augmented and original features similar. FATA is model-
agnostic and can be seamlessly integrated into existing
models without altering the model architecture. We demon-
strate the effectiveness of FATA on various models and sce-
narios on ImageNet-C and Office-Home, validating its su-
periority in diverse real-world conditions. Code is avail-
able at https://github.com/RangeWING/FATA.

1. Introduction

Deep learning models have significantly enhanced the
performance of computer vision applications [3, 8]. How-
ever, real-world scenarios often present challenges such as
performance degradation caused by domain shifts between
training and target domain. To mitigate this gap, unsuper-
vised domain adaptation (UDA) [7, 17, 18, 21, 23, 26, 28]
and test-time training (TTT) techniques [16, 27] have been
proposed. These methods typically rely on adapting mod-
els to unseen domains using extensive source data during
testing, which is often impractical due to limited computa-
tional resources and privacy issues. Recently, fully test-time
adaptation (TTA) methods [1, 13, 19, 20, 33] have emerged,
enabling online adaptation of trained models to target en-
vironments without the need for source data or labels. The

*These authors contributed equally.

dominant paradigm among TTA methods involves minimiz-
ing entropy loss while updating the affine parameters of
Batch Normalization [11] layers, as initially proposed by
TENT [33], which demonstrates the correlation between en-
tropy and accuracy. Extending TENT, several methods pro-
pose sample selection based entropy minimization, which
filters out unreliable or redundant samples. For example,
Niu et al. [19] demonstrates that not all data samples are re-
liable and performs sample selection based on entropy and
sample weighting based on the reliability for each sample.
Similarly, SAR [20] filters out samples with high entropy.
DeYO [13] also uses entropy for sample selection and filters
out harmful samples that degrades the adaptation process,
using structure or shape in the data for further sampling.

However, the limited amount of sampled data limits the
performance improvement. For instance, only 11.85% of
data from ImageNet-C [9] is selected and utilized by DeYO
to perform naive entropy minimization [13], highlighting
the inefficiency in leveraging the available samples. Fur-
thermore, as depicted in Fig. 1a, 64.0% of the total classes
are sampled less than five times, which leads to poor per-
formance on those classes, as shown in Fig. 1b. Wang
et al. [34] addresses this issue by using consistency loss,
which involves comparing predictions with pseudo-labels
predicted on augmented images for all samples. While this
approach can mitigate the problem, it requires tens of in-
ferences for each sample, rendering it impractical for real-
world applications due to its high computational cost.

To fully utilize limited samples obtained by entropy-
based sample selection, we propose a simple yet effective
TTA method, named Feature Augmentation based Test-
time Adaptation (FATA). FATA trains a model by compar-
ing the pseudo-labels of reliable samples, obtained through
entropy-based sample selection, with predictions made on
the augmented features of these samples using normaliza-
tion perturbation techniques [5, 14]. Augmented features
allow the model to obtain the effect of having more reliable
samples with only a small amount of data, thereby acquir-
ing a more generalized representation. To augment the fea-
tures, we adopt Normalization Perturbation (NP) [5], which
randomly perturbs the features in a channel-adaptive man-
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Figure 1. Problem analysis. We use ImageNet pretrained ResNet-50 [8] and Gaussian noise of level 5 from ImageNet-C [9]. We follow
EATA [19] and SAR [20] to set the entropy threshold. (a) 64.0% of the classes are selected 5 times or fewer, where each class contains 50
images. (b) The less frequently a class is selected, the lower the performance. (c) Only 11.85% of samples in ImageNet-C are used when
entropy based filtering is used.

ner using channel statistics. This enables greater variation
in features, not limited to the small variance of the source
domain, and facilitates learning from a more diverse set of
samples. Following Stochastic Feature Augmentation [14],
this mechanism is embedded between the last two blocks of
the backbone model, mitigating the inefficiency of multiple
inferences since only two layers of the model are involved
in the process of prediction. FATA can be seamlessly inte-
grated into any method using entropy-based sample selec-
tion techniques and is applicable to any architecture.

To validate the effectiveness of FATA, we evaluate our
method not only in normal scenarios but also in several
challenging scenarios that are likely to occur in the real
world, such as label shifts and batch size 1 scenarios, fol-
lowing the settings in SAR [20]. In our evaluation, the
methods incorporating FATA demonstrate superiority in
performance, showcasing applicability to various methods
and network architectures. Additionally, our meticulously
designed ablation studies and analysis illustrate the effec-
tiveness of our components.

Our contributions are summarized as follows:

• We analyze and address the problem of data scarcity in
sample selection based TTA methods. We observe that
the majority of data is filtered out and that the num-
ber of samples used has a positive correlation with the
performance.

• We propose Feature Augmentation based Test-time
Adaptation (FATA), a TTA method that fully exploits
limited amount of data. FATA leverages feature aug-
mentation and augmentation loss, and can be seam-
lessly plugged into any model or TTA method.

• We validate FATA on several models and scenarios and
demonstrate its effectiveness. FATA outperforms ex-
isting methods when plugged into the methods.

2. Related Work

2.1. Test-Time Adaptation

In order to enable model adaptation in source-free, unla-
beled, and online settings, various test-time domain adapta-
tion methodologies [1,12,15,20,20,22,33,35,36] have been
introduced, designing unsupervised losses. TTA method-
ologies can be broadly categorized into two approaches:
one that utilizes entropy minimization and another that gen-
erates reliable pseudo-labels through multiple data augmen-
tation to improve the prediction accuracy.

TENT [33] is the first approach to highlight the test-
time adaptation of pre-trained models to given target sam-
ples by employing entropy minimization loss. Followed by
TENT, several methods [13,19,20] employ the entropy min-
imization. EATA [19] suggests sample filtering for reliable
adaptation. The authors found that test samples with high
entropy lead to noisy gradients, resulting in a severe per-
formance drop. Consequently, the authors filters out sam-
ples with high entropy. SAR [20] proposes sharpness-aware
and reliable entropy minimization to address the problem of
real-world scenarios, such as small batch sizes and online
imbalanced label shifts. SAR identifies that samples with
large gradient norm also hinder the adaptation process, even
if their entropy is low. Based on these observations, SAR
minimizes both the sharpness of the entropy loss and the en-
tropy itself, using SAM optimizer [6]. DeYO [13] observed
that using entropy alone as a sample selection criterion is
insufficient, as it does not account for the discriminability
of the sampled data, such as structure or shape. The authors
demonstrate that samples without the discriminability can
be harmful for the adaptation process, even if thy have low
entropy. To address this problem, DeYO further filters out
non-discriminative data from the low entropy samples, us-
ing their proposed metric. Although those sample selection
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based entropy minimization methods have shown promis-
ing results, they are limited in performance improvement
because they do not utilize the majority of target samples.

On the other hand, CoTTA [34] augments an input data
and performs tens of inferences to generate reliable pseudo-
labels, which are then used to train the model. While this
method utilizes all the data and addresses the inefficiency
problem of entropy minimization-based methods, it is im-
practical in the real-world applications due to its heavy
computational burden.

2.2. Feature Augmentation

In the field of domain generalization, data augmentation
has been demonstrated to be an effective method for fully
leveraging source data. Existing data augmentation meth-
ods [24, 32, 37] rely on image-space operations, which re-
quire careful augmentation design and substantial computa-
tional resources. Recently, feature augmentation has been
proposed as a solution to address the limited diversity and
inefficiency of data augmentation [14, 31, 38]. By applying
transformations in the feature space [14] to simulate various
feature distributions during training [29], feature augmen-
tation enhances model generalization to new domains more
effectively than traditional data augmentation methods.

MixStyle [38] proposes an explicit augmentation ap-
proach that perturbs latent features using domain labels
through interpolation. Similarly, Li et al. (2021) [14]
presents Stochastic Feature Augmentation (SFA), which
augments the latent features using a linear function with
randomly sampled weights and biases from normal distribu-
tions. SFA can be implemented as a plug-in module, mak-
ing it adaptable for integration into various models.

Meanwhile, Fan et al. (2023) [5] propose Normalization
Perturbation (NP) inpired by Adaptive Instance Normal-
ization (AdaIN) [10], a style transfer method that utilizes
normalization and transformation of feature channel statis-
tics. Instead of directly perturbing features, NP perturbs
the channel statistics to effectively maintain feature content.
While feature augmentation techniques have proven effec-
tive for domain generalization, their impact on TTA has not
been thoroughly explored. Our method integrates feature
augmentation into TTA to addresses the data scarcity issues
by sampling data based on entropy values.

3. Problem Analysis
3.1. Preliminaries

Test-Time Adaptation. Unsupervised domain adaptation
(UDA) adapts a model to a target domain without target la-
bels. Source-free domain adaptation removes the necessity
of source data from UDA. Test-time training (TTT) adds
the constraint of online availability of target data. TTT ad-
dresses this problem by also training the model online, i.e.,

in the test time, considering that the target data could be ac-
quired from the real world, in real time. Finally, fully test-
time adaptation addresses the most realistic scenario where
no source data is available. TTA only adapts a model with
unlabeled target data in the test-time.
Entropy Minimization. In TTA scenario, we have a
model fθ with parameter θ pretrained on the source dataset
Dtrain = {(xtrain

i ,ytrain
i )}N train

i=1 . Due to the absence of Dtrain

and labels ytest of the target dataset Dtest = {(xtest
i )}N test

i=1 in
test time, existing TTA methods have employed unsuper-
vised learning signal. The most dominantly adopted learn-
ing signal is Shannon entropy [25], where the model pre-
dicts to minimize the entropy of prediction. Given a model
fθ and a prediction ŷi = fθ(c|x) according to a class c,
entropy minimization is formulated as follows:

minEntθ(x), where Entθ(x) = −
C∑
i=1

ŷi log ŷi, (1)

where C is the number of classes.
Sample Selection Strategy. Based on entropy minimiza-
tion, Niu et al. [19] proposes filtering out unreliable sam-
ples by using only samples with low entropy values. There-
fore, the model minimizes entropy using the samples se-
lected based on sample selection criteria S(x):

min
θ

S(x)Entθ(x), where S(x)
∆
= I{x∈S}, (2)

where I{·}(·) is an indicator function and S is a set of se-
lected samples. For instance, the set for entropy-based sam-
ple selection is Sent = {x|Entθ(x) < τent}, where τent is a
pre-defined entropy threshold.

3.2. Analysis on Sample Selection Strategy

We measure how many samples are selected by this sam-
pling strategy. We use ResNet50-BN (Batch Normaliza-
tion) pretrained on ImageNet [2], and count the selected
numbers from target dataset Dtest, ImageNet-C [9], with
the entropy threshold τent that the authors of EATA and
SAR [20] recommended.
Use of a Limited Number of Samples. Limited samples
could degrade the performance of adaptation in the real
world when the online target data is small or there is a label
imbalance. As shown in Fig. 1c, only 11.85% of Dtest can
be used when the entropy-based filtering strategy is used.
This is very small number regarding the number of classes
in the dataset, a thousand. This indicates that only five or
six samples can be used for adaptation for each class on av-
erage (see Fig. 1a), where the accuracies of the less sampled
classes are low (see Fig. 1b), leading to poor performance.
Additionally, DeYO [13] selects samples that have helpful

6840



𝑓1

Input 𝐱

ℒ𝐹𝐴𝑇𝐴 = 𝝎𝜽(𝐱) ⋅ 𝕀 Ent𝜃 𝐱 <𝐸0 CE 𝒑𝜽(𝐳
′), 𝟏 ො𝑦

ℒ𝑇𝑇𝐴

𝑧′

𝑓𝑖

𝑓𝑖+1

…
𝑓𝑁

𝐳′

𝐳
𝑔

𝑓𝑖+1 𝑓𝑁 𝑔

𝒑𝜽(𝐳)

𝒑𝜽(𝐳′)

…

…

argmax

stop-grad
ො𝑦

𝝎𝜽 𝐱 =
1

exp(Ent𝜃 𝐱 − 𝐸𝜔)
𝛼, 𝛽 ~ 𝑁 𝑰, 𝜎𝑛𝑰

𝛿𝜎 = 𝐸𝑀𝐴(𝜎(𝜇𝑐)/max(𝜎(𝜇𝑐)))

× +

Feature Augmentation

𝐳
𝛼 𝛿𝜎 𝛽 − 𝛼 𝜇𝑐

Figure 2. Overview of FATA. There are two prediction branches where one is for obtaining pseudo-label on the reliable data and another is
for prediction and updating the model on the augmented feature. We insert the feature augmentation after the i-th layer.

structure and shape among the selected sample by entropy-
based filtering, resulting in usage of much less samples.

Despite the limited amount of sampled data, these meth-
ods naively rely solely on entropy loss without considering
generalized representation. We conjecture that this would
restrict the exposure to the target domain, leading to limited
performance improvement. To enhance the model’s expo-
sure to the target domain by further exploiting reliable sam-
pled data, a more sophisticated method is necessary.

4. Method
4.1. Feature Augmentation

We augment the target samples to fully exploit the lim-
ited amount of data, as shown in Fig. 2. Instead of con-
ventional data augmentation, we adopt feature augmenta-
tion [14], which allows diverse augmented features. Given
an encoder f composed of N layers f1, f2, · · · , fN and
a sample x ∈ RB×C×H×W , feature augmentation aug-
ments an intermediate feature from the i-th layer, z =
f i ◦ f i−1 ◦ · · · ◦ f1(x). For example, Normalization Pertur-
bation Plus (NP+) [5] perturbs the channel statistics of an
intermediate feature z ∈ RB×Ci×Hi×Wi using normaliza-
tion for domain generalization as follows:

z′ = αz+ δ(β − α)µc, (3)

where α, β ∈ RB×C are the random noises sampled from
N(I, σnI), δ = Var(µc)/max(Var(µc)) is the normalized
variance, µc = {µj

c}Bj=1 ∈ R1×Ci is the channel-wise fea-
ture mean.

FATA augments an intermediate feature z as follows:

z′ = αz+ δσ(β − α)µc, (4)

where δσ is the exponential moving average of the normal-
ized standard deviation δσ = σ(µc)/max(σ(µc)) and σ is
the standard deviation operator. We replace δ with δσ to
address the following issues. Firstly, unlike domain gen-
eralization, TTA adapts to a specific domain from a lim-
ited amount of data. To adaptively adjust the noise to fit

the target domain, we add an exponential moving average
that estimates the statistics of the target domain. Secondly,
Eq. (3) introduces the variance with the magnitude of square
of variance, as the normalized statistic variance δ adjusts the
channel mean µc to control the random noise for each chan-
nel. To address this issue, we replace the variance to the
standard deviation.

4.2. FATA Loss

In order to fully utilize the augmented features, we pro-
pose the FATA loss, an augmentation loss that is applied to
augmented features.
Augmentation Loss. Given a classifier g, the output prob-
ability pθ(z) = g ◦ fN ◦ fN−1 ◦ · · · ◦ f i+1(z). We
propose an augmentation loss based on cross-entropy be-
tween an output of the augmented feature and a pseudo-
label from the original feature. Given the pseudo-label
ŷ = stopgrad(argmax(pθ(z))), our augmentation loss is
formulated as follows:

Laug(x; θ) = CE(pθ(z
′),1ŷ). (5)

Unlike CoTTA [34], FATA updates a model on the aug-
mented features and uses a prediction on the original data
as a pseudo-label. Therefore, the model can make predic-
tions on more diverse features and be updated on those fea-
tures. Also, the pseudo-label is reliable because the data has
already been sampled by the entropy threshold E0.
Sample Selection and Weighting. Following EATA [19],
we apply entropy-based sample selection and sample
weighting. Given an entropy threshold E0 and a nor-
malization factor Ew, the sample selection criteria is
{x|Entθ(x) < E0} and the sample weighting function ωθ

is formulated as ωθ(x) = 1/exp (Entθ(x)− Ew).
FATA Augmentation Loss. Finally, we incorporate sam-
ple selection and weighting to our augmentation loss as fol-
lows:

LFATA(x; θ) = ωθ(x) · I{Entθ(x)<E0}CE(pθ(z
′),1ŷ), (6)

where CE(p, q) is the cross-entropy function.
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Method
Noise Blur Weather Digital

Avg. ∆Perf.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
No Adapt 16.06 16.76 16.72 14.94 15.36 26.23 38.87 34.29 33.21 47.75 65.35 16.91 43.97 49.04 40.01 31.70 -

TENT [33] 29.36 31.30 30.13 28.22 27.88 41.40 49.30 47.36 41.73 57.53 67.50 30.08 54.90 58.58 52.57 43.19 -
EATA [19] 34.58 37.34 35.87 33.55 33.24 47.40 52.90 51.72 45.71 59.86 68.12 44.65 57.90 60.39 55.03 47.88 -

EATA+FATA 35.31 38.00 36.31 34.63 34.32 48.15 52.44 52.17 46.26 59.93 67.43 46.48 57.77 60.19 55.05 48.29 +0.41
SAR [20] 29.99 31.98 30.95 28.33 26.11 42.01 49.51 47.63 42.61 57.70 67.37 39.46 54.58 58.62 52.64 43.97 -

SAR+FATA 35.00 37.05 35.70 33.55 32.61 47.35 51.55 51.23 45.29 59.33 67.08 42.23 57.30 60.06 54.72 47.34 +3.40
DeYO [13] 35.68 38.19 37.39 33.99 33.65 48.27 52.94 52.34 46.32 60.50 68.01 44.34 58.25 61.16 55.58 48.44 -

DeYO+FATA 37.06 38.76 38.05 34.80 34.59 49.16 52.91 52.82 46.78 60.67 67.73 47.67 58.47 61.19 55.69 49.09 +0.65

(a) ResNet50 (BN)

Method
Noise Blur Weather Digital

Avg. ∆Perf.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
No Adapt 17.98 19.83 17.87 19.75 11.35 21.41 24.91 40.43 47.31 33.60 69.28 36.27 18.61 28.40 52.28 30.62 -

TENT [33] 6.45 9.12 8.11 16.62 12.66 25.54 28.93 31.87 39.63 4.50 71.11 43.81 15.81 49.57 55.59 27.95 -
EATA [19] 37.16 40.33 38.64 28.98 27.58 36.69 38.72 51.25 49.47 55.12 71.98 49.77 41.39 55.90 57.90 45.39 -

EATA+FATA 42.67 45.64 43.92 32.53 31.07 42.96 46.72 57.03 54.81 61.80 73.81 54.56 51.12 60.94 60.89 50.70 +5.31
SAR [20] 28.56 30.96 29.85 18.39 18.15 30.67 30.70 41.97 43.76 6.20 70.75 44.08 15.50 48.94 55.28 34.25 -

SAR+FATA 40.15 42.46 40.85 24.99 25.21 38.33 40.46 52.90 50.85 0.23 73.47 49.92 40.17 55.94 57.31 42.22 +7.97
DeYO [13] 39.46 41.90 41.03 22.27 24.11 38.48 37.87 50.51 49.59 1.43 73.17 49.95 41.54 55.96 57.82 41.67 -

DeYO+FATA 39.71 42.49 41.37 22.29 24.46 38.90 38.31 51.23 50.02 56.31 73.19 50.03 42.10 55.99 57.79 45.61 +3.97

(b) ResNet50 (GN)

Method
Noise Blur Weather Digital

Avg. ∆Perf.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
No Adapt 9.48 6.75 8.23 28.99 23.45 33.87 27.13 15.91 26.49 47.18 54.66 44.09 30.55 44.50 47.80 29.94 -

TENT [33] 42.59 1.92 43.80 52.49 48.43 55.72 51.01 30.03 24.92 66.67 74.90 64.66 53.72 67.00 64.27 49.48 -
EATA [19] 50.23 49.70 51.33 55.32 55.44 59.64 57.00 63.29 62.38 70.85 75.95 66.95 64.16 69.39 67.51 61.28 -

EATA+FATA 53.15 53.21 54.05 57.23 57.84 62.08 60.78 66.76 65.41 72.10 76.89 67.65 67.13 71.68 69.01 63.67 +2.39
SAR [20] 44.03 42.96 45.54 53.07 49.81 55.78 51.44 58.00 55.43 66.34 74.58 64.14 55.02 66.84 64.06 56.47 -

SAR+FATA 51.67 3.69 52.48 57.00 56.93 61.42 59.76 65.70 64.70 71.33 76.21 64.42 66.43 71.70 68.30 59.45 +2.98
DeYO [13] 48.56 47.66 53.66 58.32 58.53 63.05 59.96 67.12 65.85 73.23 77.97 67.98 67.87 73.17 69.90 63.52 -

DeYO+FATA 46.83 53.78 54.2 58.56 58.57 63.37 60.16 67.46 66.24 73.46 78.19 68.55 67.78 73.33 69.93 64.03 +0.51

(c) ViT-B (LN)

Table 1. Image classification results on ImageNet-C [9]. ResNet50 with BN/GN and ViT-B with LN are used for this experiment. We use
the accuracy (%) as the metric. ∆Perf. is the performance gap between methods without and with FATA.

Total Loss. Given a TTA loss LTTA such as entropy mini-
mization loss, we incorporate the FATA augmentation loss
to the TTA loss. Consequently, the total loss L is as follows:

L = LTTA + LFATA, (7)

which combines TTA loss and FATA augmentation loss.
The proposed loss can be plugged into any method, with-
out modifying the TTA loss such as sample selection based
entropy minimization loss.

5. Experiment

5.1. Experimental Settings

Benchmark and Test Scenarios. We use the ImageNet-
C [9] and the Office-Home [30] datasets for our evaluation.
ImageNet-C includes corrupted images from the ImageNet
dataset across 15 different corruption types. The dataset
contains 50,000 images for each corruption type, resulting
in a total of 750,000 images. Office-Home includes 15,588
images of 65 classes from 4 domains. Following the scenar-
ios outlined by Niu et al. [20], we validate the effectiveness

and robustness of our method in three scenarios: 1) In the
normal scenario, a model adapts to streaming corrupted in-
put where the label distribution is balanced, allowing the
use of a large batch size; 2) In the batch size of one sce-
nario, a model is exposed to a single image per iteration;
3) In the online imbalanced label distribution shift scenario,
the labels within a batch are highly imbalanced.
Models. To demonstrate the applicability of our method to
various models, we use models incorporating three different
normalization layers in our experiments: Batch Normaliza-
tion (BN), Group Normalization (GN), and Layer Normal-
ization (LN). For BN and GN, we use ResNet-50, and for
LN, we use the ViT-Base model. For ImageNet-C, all the
models are pretrained on ImageNet dataset and adapted at
test-time. For Office-Home, the models are pretrained on a
source domain and adapted to a target domain at test-time.
Baselines. We compare our method to state-of-the-art
fully test-time adaptation methods, TENT [33], EATA [19],
SAR [20], and DeYO [13]. Since our method is proposed to
address data scarcity when sample filtering is used, we in-
tegrate our method with EATA, SAR, and DeYO, which all
employ filtering strategies. We further compare our method
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Method
Noise Blur Weather Digital

Avg. ∆Perf.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
No Adapt 17.98 19.84 17.88 19.75 11.35 21.42 24.92 40.43 47.30 33.59 69.28 36.27 18.61 28.40 52.28 30.62 -

TENT [33] 3.36 4.31 4.18 16.75 3.49 28.00 29.36 18.65 24.72 2.21 72.03 46.17 8.12 52.43 56.25 24.67 -
EATA [19] 24.68 28.01 25.53 17.75 17.43 28.68 29.20 44.52 44.34 41.92 70.93 44.86 27.53 45.90 55.62 36.46 -

EATA+FATA 26.17 31.42 27.12 20.34 17.09 32.20 23.94 49.54 50.02 11.05 72.86 49.64 7.40 51.85 58.38 35.27 -1.19
SAR [20] 23.35 26.27 23.82 18.71 15.54 28.78 30.62 45.55 44.93 25.58 72.18 44.56 15.04 47.22 56.05 34.55 -

SAR+FATA 34.91 39.20 36.45 24.14 22.33 36.89 39.47 54.26 51.55 8.06 73.88 50.98 41.29 55.74 58.54 41.85 +7.30
DeYO [13] 41.34 44.11 42.69 22.39 24.22 41.43 28.93 54.06 51.79 2.14 73.17 53.42 47.84 59.86 59.67 43.14 -

DeYO+FATA 42.06 44.52 42.52 26.75 27.33 42.48 43.31 56.42 54.07 2.58 73.97 54.10 48.28 60.21 60.39 45.27 +2.13

(a) ResNet50 (GN)

Method
Noise Blur Weather Digital

Avg. ∆Perf.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
No Adapt 9.48 6.75 8.23 28.99 23.45 33.87 27.13 15.91 26.49 47.18 54.66 44.09 30.55 44.50 47.80 29.94 -

TENT [33] 42.72 1.40 44.53 52.49 48.67 56.10 51.09 22.96 20.87 66.78 75.01 64.98 53.96 67.03 64.38 48.86 -
EATA [19] 33.54 25.16 31.98 44.70 38.86 47.11 42.37 39.67 40.81 61.14 67.81 61.79 47.51 59.00 59.18 46.71 -

EATA+FATA 39.33 1.29 37.47 48.06 43.99 51.20 47.29 48.75 47.02 66.32 71.84 64.09 56.50 63.51 62.94 49.97 +3.12
SAR [20] 41.29 36.39 42.08 53.54 50.68 57.62 52.78 58.68 44.52 68.61 75.90 65.46 57.86 68.79 65.91 56.01 -

SAR+FATA 50.28 48.57 51.20 57.08 56.69 61.94 59.65 65.79 64.58 71.64 76.67 66.78 66.40 72.06 68.13 62.50 +5.46
DeYO [13] 53.29 53.92 54.22 58.85 59.34 64.45 49.76 68.06 66.63 73.71 78.23 68.15 68.75 73.76 70.74 64.12 -

DeYO+FATA 52.87 52.89 53.87 58.34 58.60 63.84 61.03 67.56 65.91 72.66 77.49 67.64 68.15 72.96 69.81 64.24 +0.12

(b) ViT-B (LN)

Table 2. Image classification results on ImageNet-C [9] under batch size 1. ResNet50 with GN and ViT-B with LN are used for this
experiment. We use the accuracy (%) as the metric. ∆Perf. is the performance gap between the original method and another version where
our method is incorporated.

to MEMO [36] and CoTTA [34] on Office-Home.
Implementation Details. We implement FATA on the Py-
Torch framework. We set E0 to 0.5 lnC and Eω to 0.4 lnC,
following the setting of DeYO [13], where C is the number
of classes in the target dataset. In addition, we use the same
optimizer as the existing methods with which we integrate
FATA. We set the layer to inject the feature augmentation
i to 3 for ResNet50 and 11 for ViT-B. We set the standard
deviation for the noise σn to 1.0 and the smoothing factor
for exponential moving average λEMA to 0.95. We use the
default batch size of 64. We set the learning rate as 0.0005
and 0.001 for ResNet50 and ViT-B, respectively. When the
batch size is one, we set the learning rate as 0.00025 and
0.000016 for ResNet50 and ViT-B, respectively.

5.2. Results

Comparison on Normal Scenario. Tab. 1 shows the com-
parison of performance in the normal scenario. The re-
sults clearly indicate that integrating our proposed method,
FATA, yields superior results across various architectures
and methods, compared to the original versions. Notably,
the enhancement is most significant when ResNet-50 with
GN is utilized, showcasing an impressive average improve-
ment of up to 7.97 points. This substantial gain high-
lights the effectiveness of FATA, demonstrating its capabil-
ity regardless of the underlying model architecture or TTA
method. Furthermore, the consistent improvements across
different settings demonstrate the robustness of FATA.
Comparison under Batch Size of One. Tab. 2 depicts

the comparison of the performance in the batch size one
scenario. Overall, our proposed method aids the model in
adapting more effectively than when the original methods
are employed independently. While there is a case where
our method exhibits a slight performance drop, the perfor-
mance improvements generally surpass the amount of drop,
indicating that our method remains effective, despite the
challenging constraints of the batch size one scenario.
Comparison under Imbalanced Label Shifts. As shown
in Tab. 3, our proposed method demonstrates its effective-
ness in the online imbalanced label distribution shift sce-
nario. Remarkably, when our method is combined with
EATA, the accuracy improvement reaches an impressive
peak of 17.12 points. This substantial enhancement is
not limited to EATA alone; our approach also significantly
boosts the performance of other methods.
Comparison on Office-Home. Tab. 4 shows the compari-
son of the performance on the Office-Home dataset. FATA
consistently enhances the performance with small compu-
tational overhead compared to CoTTA, demonstrating the
efficiency and robustness of our method.

5.3. Ablation study

Location Choice for Feature Augmentation. We present
the ablation study on the position of feature augmentation
in Tab. 5. Inserting the feature augmentation after the third
layer achieves the best performance in average accuracy,
therefore, we set i = 3 as the default. Embedding it after
layer 2 shows comparable performance to that after layer 3.
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Method
Noise Blur Weather Digital

Avg. ∆Perf.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
No Adapt 17.87 19.91 17.90 19.70 11.21 21.28 24.86 40.38 47.40 33.57 69.24 36.27 18.65 28.34 52.17 30.58 -

TENT [33] 3.54 4.17 3.78 16.73 7.53 25.73 31.50 20.14 29.51 2.39 72.17 46.09 8.38 52.11 56.22 25.33 -
EATA [19] 25.26 29.49 27.72 14.90 16.61 24.41 28.60 34.89 29.71 41.41 62.65 35.22 26.14 41.70 48.69 32.49 -

EATA+FATA 41.75 43.98 41.78 27.95 27.63 42.47 45.80 56.82 53.83 62.12 73.32 54.33 50.38 61.42 60.52 49.61 +17.12
SAR [20] 33.81 36.90 33.90 18.35 20.48 33.13 33.97 29.87 45.08 2.77 71.95 46.78 7.43 51.91 56.06 34.83 -

SAR+FATA 42.97 45.32 43.91 28.29 27.76 41.51 44.26 55.21 53.72 1.56 73.78 53.27 2.43 60.14 59.47 42.24 +7.41
DeYO [13] 40.84 18.13 3.46 22.63 23.64 41.10 7.11 52.57 51.39 58.72 73.12 52.21 46.38 59.09 59.43 40.66 -

DeYO+FATA 44.30 46.29 1.06 25.89 29.58 45.00 5.06 58.27 54.69 62.98 73.85 55.52 53.23 62.52 61.19 45.30 +4.64

Table 3. Image classification results on ImageNet-C [9] under imbalanced label distribution shifts scenario. ResNet50 with GN is used for
this experiment. We use the accuracy (%) as the metric. ∆Perf. is the performance gap between the original method and another version
where our method is incorporated.

Methods No Adapt MEMO [36] TENT [33] CoTTA [34] EATA [19] EATA+FATA SAR [20] SAR+FATA DeYO [13] DeYO+FATA
Accuracy (%) 58.35 58.15 58.36 57.57 58.58 59.71 58.37 59.18 58.56 58.64

GMACs 4.11 262.93 4.11 143.83 4.11 4.92 8.22 14.76 8.22 9.03

Table 4. Image classification results with computational complexity on Office-Home [30]. Accuracy is averaged across all domain shift
scenarios. ResNet50 with GN is used.

Method FATA Position Avg.
No Adapt - 30.62

DeYO [13] - 41.67
DeYO+FATA 0 41.52
DeYO+FATA 1 42.32
DeYO+FATA 2 43.01
DeYO+FATA 3 45.61

Table 5. Ablation study on the position of feature augmentation.
ResNet50 with GN is used for this experiment.

Method EMA Std. dev. Avg.
NP+ ✗ ✗ 44.84

✓ ✗ 44.96
FATA (Ours) ✓ ✓ 45.61

Table 6. Ablation study on the component of feature augmenta-
tion. ResNet50 with GN and the default batch size of 64 are used.

However, for certain corruption types (e.g., Fog), it exhibits
a tremendous performance drop, indicating instability. Al-
though several works [4, 5] have argued that augmenting
the features in the shallow layers is the most effective for
modifying the style of the input, our results indicate that in-
serting augmentation after the first layer shows the lowest
performance, similar to Li et al. (2021) [14].
Component of Feature Augmentation. Tab. 6 shows the
ablation study on the component of feature augmentation.
Compared to NP+ [5], adding EMA and modifying the vari-
ance term to the standard deviation improve the accuracy,
showing their effectiveness.

We ablate the augmentation loss in Tab. 7. As shown in
Fig. 3a, Simple Augmentation (Simple Aug.) denotes us-
ing entropy instead of LFATA, i.e., it utilizes entropy loss on
the output of augmented feature. MSE Loss denotes using

DeYO Augmentation loss Avg.
- - 30.62
- FATA loss (Ours) 39.35
✓ - 41.67
✓ Simple Aug. 40.30
✓ MSE Loss 6.54
✓ Simple CE 44.73
✓ FATA Loss (Ours) 45.61

Table 7. Ablation study on the augmentation loss. ResNet50 with
GN is used for this experiment.

mean square error loss between the outputs, as depicted in
Fig. 3b. Simple CE denotes employing cross-entropy in-
stead of LFATA, as shown in Fig. 3c. In detail, Simple CE
excludes the process of obtaining pseudo-labels from our
proposed method and uses cross-entropy loss between the
output distribution of the augmented features and that of the
original feature.

Training a model solely with our method boosts perfor-
mance by 8.74% in average accuracy, which is comparable
to the performance of the state-of-the-art method, DeYO.
Comparing our method with Simple Augmentation, it is ev-
ident that augmenting the features rather than the input data
is much more effective, as it guides the model to have more
generalized representations. In the case of Simple CE, the
accuracy on all corruption types are almost zero. This is
because naively comparing the output distribution of the
original sample and augmented sample leads to the phe-
nomenon of model collapse, as the model learns different
features to map to the same output. To avoid this, we do not
compare the distribution of the output and adopt pseudo-
labeling techniques. In the end, incorporating DeYO and
our method achieves the best performance.
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Figure 3. Augmentation losses for the ablation study. p and p′ denotes pθ(z) and pθ(z
′), respectively.
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Figure 4. Hyperparameter Sensitivity.
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Figure 5. Count of classes for each number group of selected sam-
ples.

Hyperparameter Sensitivity. We demonstrate the sensi-
tivity of the hyperparameters in Fig. 4. We conduct ex-
periments to assess the sensitivity of two hyperparameters:
the entropy threshold E0 and the standard deviation for the
noise σn. As shown in Fig. 4a, the highest accuracy is
achieved with σn = 1, although other values, ranging from
σn = 0.1 to 10, consistently outperform DeYO. Similarly,
Fig. 4b shows that an entropy threshold of E0 = 0.5 yields
the best results, with other values also surpassing the per-
formance of DeYO. These findings show the robustness of
our methods across a variety of hyperparameter settings.

5.4. Discussion

The Number of Samples Used. Fig. 5 compares the count
of classes for each group of selected samples for the No
Adapt, SAR, and SAR+FATA. With SAR, a significantly
larger number of classes are selected more than 5 times,
whereas without any TTA method, many classes are sam-
pled 5 times or fewer. When our method is incorporated
with SAR, considerably more classes are sampled more fre-
quently compared to SAR alone. This increased sampling

frequency contributes to the performance boost provided by
FATA, as shown by Fig. 1b, which depicts the positive cor-
relation between the sampling frequency and the accuracy.
Analysis on FATA Loss. The FATA loss demonstrates its
effectiveness with the experimental results in Sec. 5.3, in
contrast to MSE Loss and Simple CE. With MSE Loss, the
model tends to collapse in order to align two distribution,
as it is the trivial solution to achieve alignment under the
random feature augmentation by producing the same output
for any input. Simple CE improves the model performance,
but less than the FATA loss, although the main difference is
the hard label generated by the argmax operator. In contrast,
the FATA loss mitigates the trivial solution by replacing the
output from the original feature with a pseudo-label. Fur-
ther research should further develop a theoretical analysis
for the FATA loss.
Limitation. Although our method effectively enhances the
model performance, our method does not have the capa-
bility to prevent the collapse phenomenon. For example, as
shown in Tab. 3, the accuracy of SAR on fog corruption type
is 2.77%, while it decreases to 1.56% with SAR+FATA. Fu-
ture research should explore a method to prevent the col-
lapse phenomenon.

6. Conclusion
In this paper, we propose a test-time adaptation method

named Feature Augmented Test-Time Adaptation (FATA).
This method fully utilizes the target samples through the
feature augmentation technique, addressing the issue of lim-
ited samples from sample selection based entropy mini-
mization methods. FATA can be seamlessly integrated into
any method that employing entropy-based sampling, allow-
ing a model to leverage target samples more effectively with
reliably selected samples. FATA boosts the performance of
existing methods across various network architectures. Ex-
tensive experiments, including challenging scenarios, vali-
date the effectiveness and robustness of FATA.
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