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Abstract

Visual Mamba is an approach that extends the selective
space state model, Mamba, to vision tasks. It processes im-
age tokens sequentially in a fixed order, accumulating in-
formation to generate outputs. Despite its growing popu-
larity for delivering high-quality outputs at a low compu-
tational cost across various tasks, Visual Mamba is highly
susceptible to quantization, which makes further perfor-
mance improvements challenging. Our analysis reveals that
the fixed token access order in Visual Mamba introduces
unique quantization challenges, which we categorize into
three main issues: 1) token-wise variance, 2) channel-wise
outliers, and 3) a long tail of activations. To address these
challenges, we propose Post-Training Quantization for Vi-
sual Mamba (PTQ4VM), which introduces two key strate-
gies: Per-Token Static (PTS) quantization and Joint Learn-
ing of Smoothing Scale and Step Size (JLSS). To the our
best knowledge, this is the first quantization study on Vi-
sual Mamba. PTQ4VM can be applied to various Visual
Mamba backbones, converting the pretrained model to a
quantized format in under 15 minutes without notable qual-
ity degradation. Extensive experiments on large-scale clas-
sification and regression tasks demonstrate its effectiveness,
achieving up to 1.83× speedup on GPUs with negligible
accuracy loss compared to FP16. Our code is available at
https://github.com/YoungHyun197/ptq4vm.

1. Introduction

The State Space Model (SSM) [8, 9] was introduced
to address the quadratic computational cost of transform-
ers and to process sequential data more efficiently. An en-
hanced version of SSM, called Mamba [7], further improves
this by updating the internal states selectively. Mamba has
outperformed transformers and other sub-quadratic models
across various language tasks [6, 27, 28], offering higher
accuracy with relatively low computational cost. Recently,
there has been growing interest in extending Mamba’s ca-
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Figure 1. Distribution of the input activations of a 22nd out proj
layer in Vim-Ti. (a) Images from 3 categories, (b) their correspond-
ing activation distributions, and (c) the average values across (i)
the channel dimension and (ii) the token dimension.

pabilities to vision tasks [12,22,36,39], often referred to as
Visual Mamba. These efforts have introduced new module
designs and features, such as class tokens for image data,
demonstrating the superiority of Mamba in visual tasks.

In this study, we aim to enhance the cost-efficiency of
Visual Mamba models through quantization. The perfor-
mance advantage of the Visual Mamba can be further im-
proved by reducing computational overhead and memory
footprint via quantization. Our profiling results of existing
Visual Mamba backbones revealed that a significant portion
of execution time is dominated by linear operators (blue in
Fig. 3), which are well-suited for low-precision computa-
tions. This analysis suggests that Visual Mamba can suffi-
ciently benefit from quantization in practice.

However, our observations identified a significant quality
degradation when applying traditional post-training quan-
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Figure 2. The Visual Mamba backbones consist of (a) Vision Mamba, (b) LocalVim, (c) VMamba, and (d) LocalVMamba. ”x2” and ”x4”
indicate the repetition of operations based on scan directions. The square matrices beneath illustrate the scan method for each backbone.

tization (PTQ) [1, 24, 26] techniques to Visual Mamba.
Specifically, the structure of Visual Mamba (see Fig. 2),
which sequentially processes image data tokens in a fixed
order, results in an activation distribution that is particularly
susceptible to quantization. The vulnerabilities of Visual
Mamba can be categorized into three key items: 1) token-
wise variance (Fig. 1c (i)), 2) channel-wise outliers (Fig. 1c
(ii)), and 3) the long tail of activations (Fig. 5). As these
challenges are not adequately addressed by conventional
quantization methods, resolving them is crucial for main-
taining output quality after quantization in Visual Mamba.

The weaknesses identified are prevalent across all Visual
Mamba backbones proposed thus far, indicating that ad-
dressing them could yield broad benefits across a variety of
models. Building on these insights, we introduce PTQ4VM,
an effective and efficient post-training quantization (PTQ)
scheme for Visual Mamba. To the our best knowledge,
PTQ4VM is the first comprehensive study on quantiza-
tion techniques for Visual Mamba. It is founded on two
key techniques: Per-Token Static Quantization (PTS) and
Joint Learning of Smoothing Scale and Step Size (JLSS).
PTS is specifically designed to handle per-token variance,
and we have carefully crafted it to be compatible with ex-
isting SmoothQuant method [35], which are effective in
managing outliers within channels. Moreover, JLSS jointly
optimizes the quantization parameters for PTS and scales
for SmoothQuant, ensuring minimal discrepancies in out-
put feature maps and preserving the network’s functional-
ity after quantization. Both PTS and JLSS are meticulously
designed to maximize throughput to realize acceleration in
practice, and we demonstrate the versatility and superiority
of PTQ4VM through extensive experiments.

2. Related Works
2.1. Selective State Space model

State Space Models (SSMs) [9, 10] are linear time-
invariant (LTI) systems that process sequential data through
internal state variables. Originally designed for natural lan-
guage processing (NLP) tasks, they often use an input-
independent discretized formulation, expressed as follows:

Ā = exp(∆A), (1)

B̄ = (∆A)−1(exp(∆A)− I)∆B, (2)

where A ∈ RN×N , B ∈ RN×1, and C ∈ R1×N are the
parameters of the SSM, and ∆ is the timescale parameter.

ht = Āht−1 + B̄xt, (3)
yt = Cht. (4)

Recent research introduced Mamba [7], a general language
backbone that eliminates the linear time-invariant (LTI)
property of SSMs, making them input-dependent. The dis-
cretized parameters for each input sequence of length t are
computed as follows, based on the input x:

Bt,∆t, Ct = Linearx(xt), (5)
∆̄t = softplus (Linear∆(∆t)) , (6)
Āt = exp(∆̄tA), (7)
B̄t = ∆̄tBt. (8)

Mamba has gained significant attention for its ability to ef-
ficiently handle long sequence data with linear complexity.
By introducing a selective scan that updates key informa-
tion based on the input, it offers a distinct advantage over
previous models that lacked this capability.
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2.2. Visual Mamba Backbones

Vision Mamba (Vim) [39] represents the first attempt
to apply Mamba directly to vision tasks. Vim employs a
CLS token, which is essential for its classification tasks.
VMamba [22], on the other hand, features a backbone archi-
tecture that closely resembles the Swin Transformer [23].
LocalMamba [12] introduces two variants—LocalVim and
LocalVMamba—based on the Vim and VMamba architec-
tures, respectively, with enhancements in scan directions.
Notably, among these LocalMamba variants, the LocalVim-
T† model makes use of the CLS token. Fig. 2 illustrates the
detailed modular design of each backbone.

2.3. Post-training Quantization

Quantization is currently the most commercially suc-
cessful optimization method for leveraging the benefits of
low-precision representations. Early research primarily fo-
cused on quantization-aware training (QAT) [5, 18, 31, 38],
but its popularity has waned due to the high cost of the
training process. Consequently, post-training quantization
(PTQ) [15, 19, 24, 25, 32, 34] has emerged as a key interest.

In this work, we aim to develop a PTQ scheme for linear
quantization, focusing on accelerating computation through
integer arithmetic while minimizing transformation costs.
We adopt the conventional PTQ approach [13], utilizing
per-channel symmetric quantization for weights and per-
tensor asymmetric for activations. Given an input activation
X , the quantized value X̂ is calculated as follows:

∆X =
max(X)−min(X)

2b − 1
, (9)

ϵX =
−min(X)

∆X
, (10)

X̂ = ∆X ·
(
clip(⌈ X

∆X
⌋+ ϵX , 0, 2b − 1)− ϵX

)
. (11)

where b represents the number of bits, ∆X denotes the
quantization step for the activation, and ϵX represents the
quantization offset.

In the case of the given weight W , the quantized value
Ŵ using symmetric quantization is calculated as follows:

∆W =
max(abs(W ))

2b−1 − 1
, (12)

Ŵ = ∆W · clip(⌈ W

∆W
⌋,−2b−1 + 1, 2b−1 − 1). (13)

where ∆W represents the quantization step for the weight,
and ϵW is omitted in symmetric quantization.

For the baseline, the quantization range is determined us-
ing min-max values [26]. While this method has been em-
pirically proven to perform well in CNN-based networks, it
is less effective for Visual Mamba, which exhibits signifi-
cantly different characteristics.

Figure 3. Profiling results of Visual Mamba backbones on an RTX
3090. The numbers above the bars indicate the speedup.

2.4. SmoothQuant

Quantization has also been actively studied in the con-
text of Large Language Models (LLMs) [3, 29, 33, 37].
LLMs present unique challenges that complicate the quan-
tization process, such as the presence of channel-wise out-
lier activations [4, 16, 17]. These outliers cause a signifi-
cant increase in quantization error by enlarging the quan-
tization step size. To address this, SmoothQuant [35] was
proposed, aiming to mitigate the impact of outliers by shift-
ing the quantization complexity from activations to weights,
all without introducing additional computational overhead.
In SmoothQuant, given the input activation X and weight
W , the normalization scale is calculated as:

s =

√
max|X|
max|W |

∈ RDin , (14)

where Din is the input channel. The computed scale is then
applied to both X and W respectively, adjusting each tensor
to ensure that the overall output remains consistent:

Y = (Wdiag(s)) · (diag(s)−1X). (15)

This method mitigates activation outliers, thereby reducing
quantization errors. According to our observation, in Visual
Mamba, although the underlying causes may differ, we ob-
served a similar phenomenon where outliers occur only in
specific activation channels. The details of observation and
the solution will be provided at Section 4.

3. Analysis for Quantization Target
Before applying quantization, we analyzed whether ex-

isting Visual Mamba backbones benefit from quantization.
We profiled the two models among models presented in
Fig. 2 on the GPU and analyzed which components would
be most suitable for quantization.

As shown in Fig. 3, the operations that consistently con-
sume the most time across all models are the linear layer
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Quant Target Top-1 Acc. Method Top-1 Acc.
FP16 76.1 FP16 76.1

h(t) only 6.8 INT8 Baseline 57.8
Linear only 57.8 + CLS Tok. FP16 73.6

Table 1. INT8 accuracy results (%) on Vim-Ti (Left) across differ-
ent quantization targets, (Right) with FP16 CLS token.

(blue section in Fig. 3), selective scan [7] (red section),
and reshape operation (yellow section). Our analysis of the
quantization benefits for these three operations leads to the
following conclusions: 1) For the linear operation, signif-
icant performance improvements can be achieved by ap-
plying quantization using INT8/INT4 operators [13]. In the
case of the selective scan, it has been optimized to mini-
mize memory bottlenecks through the use of registers and
shared memory, so it is difficult to expect performance gains
through quantization. More concerning, our experimental
results, reported in Table 1 left, show that despite apply-
ing quantization only to the hidden state h(t) in Eq. (3), it
is far more vulnerable than anticipated, outweighing the ex-
pected performance gains. The reshape operation is used to
change the data layout between adjacent operators for op-
timal speed or to rearrange data order for scan operations.
However, the overhead caused by reshape operations is dif-
ficult to be mitigated by quantization.

Based on this analysis, we concluded that focusing on
quantizing the linear layers is a reasonable approach. As
illustrated in Fig. 3, applying PTQ4VM to the linear layers
can reduce latency by up to 1.83× on the real GPUs, making
it a highly appealing option.

4. Challenges of Linear Layer Quantization

Based on the previous analysis, we identified the linear
operators in Visual Mamba as key targets for optimization.
However, despite this focused optimization effort, Visual
Mamba still shows a significant drop in quality, regardless
of the backbone used. Further investigation revealed that
its sequential access to visual tokens for information accu-
mulation causes abnormal activation distributions, making
quantization especially difficult. We categorized these diffi-
culties into three main items: token-wise variance, channel-
wise outliers, and the long tail of activations. In the follow-
ing section, we will provide a more detailed explanation of
the problems we identified.

4.1. Observation 1: Token-wise Variance

We began by analyzing the activation distribution by
feeding various images into Visual Mamba. Fig. 1 illus-
trates three representative cases. The results show that spe-
cific token positions, such as position 97, consistently dis-
played similar activation patterns, regardless of the image
class or features. This behavior appears to stem from Visual

LocalVim

Vim-B

(b) Activation distributions across linear layers
VMamba-B

(a) Activation distributions across model size

LocalVim-S

Vim-B VMamba-B LocalVim-S

Vim VMamba
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Figure 4. Observation on activation distributions across (a) model
size, (b) types of linear layers , and (c) block indices. (c) shows the
activation distribution of the out proj layer.

Mamba’s unique architecture, where image patches are pro-
cessed sequentially in a predetermined order, as suggested
by the scan directions in Fig. 2. Additionally, we observed
that token-wise activation variance increases significantly
in the middle to later blocks of the network compared to the
early blocks, with the differences between tokens also be-
coming more pronounced (Fig. 4c). This suggests that the
cumulative effect over the blocks amplifies the imbalance,
making larger networks more challenging to quantize.

On the other hand, the Visual Mamba backbone can be
categorized into two types of implementations: those incor-
porating the CLS token and those relying solely on visual
tokens. In the case of the Vim model, which uses the CLS
token, it is noticeable that the magnitude of the CLS token is
significantly smaller than that of the visual tokens, regard-
less of the input. This presents a challenge, as the CLS token
is crucial for downstream tasks like classification, making it
particularly vulnerable to quantization errors. As shown in
Table 1 right, preserving the CLS token in FP16 format sub-
stantially recovers most of the accuracy loss compared to
fully quantizing the model’s linear layers to INT8. For net-
works that use the CLS token, we should reduce the quanti-
zation error for this special token.

Due to the variation in token-wise activation, conven-
tional tensor-wise quantization (as shown in Fig. 6b) is in-
evitably suboptimal for individual tokens. This becomes a
key factor in increasing quantization error and highlights
the need for an appropriate solution. One potential approach
is per-token dynamic quantization, which adjusts the quan-
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Figure 5. Comparison of activation distribution on LocalMamba
backbone depending on whether CLS Token is utilized or not.

tization range for each token based on its distribution dur-
ing input processing. However, this method has a significant
drawback: activation statistics must be computed online for
each input, slowing down inference as shown in Table 4.

To fully preserve the benefits of low-precision arithmetic
in the Visual Mamba backbone as well as maintain the qual-
ity of output, it is essential to explore methods that address
token-wise variance to minimize the accuracy gap with per-
token dynamic quantization while maintaining a speed com-
parable to per-tensor static quantization.

4.2. Observation 2: Channel-wise Outliers

The second observation is that activation outliers tend
to occur in a few specific input channels, regardless of the
input (Fig. 1c (ii)). This phenomenon is common across
all backbones, where a small number of activation outliers
lead to larger quantization steps, causing information loss
in other tokens. It’s important to note that this issue stems
from a different dimension than the one discussed in the
first observation. Even when per-token dynamic quantiza-
tion, a potential solution for the previous issue, is applied,
the same step size must be used for all channels within a to-
ken. As a result, it fails to mitigate the performance degra-
dation caused by these activation outliers.

As discussed in Section 2.4, although the underlying
causes may differ, activation outliers have also been ob-
served in Large Language Models (LLMs) with trans-
former architectures. When we applied smoothing to Vi-
sual Mamba backbones, we noted quality improvements at
8-bit and 6-bit quantization (see Table 2). This suggests
that smoothing should also be integrated into the quantiza-
tion process for Visual Mamba. Accordingly, our proposed
PTQ4VM is specifically designed to incorporate it.

4.3. Observation 3: Long tail of Activation

The activation distribution of Visual Mamba exhibits a
distinctive characteristic. As illustrated in Fig. 5, approxi-
mately 98% of the activation values are concentrated within
a very narrow range (represented by the red and yellow ar-
eas in the plot). The data spread across a wider range cor-

responds to the top and bottom 1% of values, indicating a
long-tailed distribution. Similar to the outliers seen in Ob-
servation 2, this long tail extends the quantization range too
far, leading to a loss of information from tokens near zero.
Notably, as the backbones in the Vision Mamba series fea-
ture tails extending beyond 10,000, smoothing outliers with
SmoothQuant alone is insufficient to fully resolve the issue.

Previous studies [2,20] have emphasized the importance
of introducing truncation to balance the trade-off between
clipping and rounding errors. Given the long tail of activa-
tion, truncation is also crucial for Visual Mamba. However,
similar to dynamic quantization, input-dependent truncation
leads to significant performance degradation due to the as-
sociated online costs. To minimize quantization errors while
preserving the acceleration benefits, it is essential to deter-
mine the optimal static truncation range that is generally
applicable across elements within the same token position.

5. PTQ4VM
In this section, we propose PTQ4VM (Fig. 6d), a post-

training quantization method designed to effectively ad-
dress the three challenges identified in Section 4. It mainly
consists of two parts: First, a Per-Token Static (PTS) quan-
tization to handle Observation 1 and 2 (Section 5.1). Next,
the JLSS method to find the optimal smooth scale and step
size to address Observation 3 (Section 5.2).

5.1. Per-Token Static (PTS) Quantization

We propose Per-Token Static (PTS) quantization, a sim-
ple yet powerful method to address Observations 1 and
2 with minimal computational overhead. Since the token
length in Visual Mamba is predetermined by the fixed in-
put size, we can allocate the quantization step size and
zero offset for each token of length L using a calibration
dataset. The weight step size ∆W ∈ RDout×1 and activa-
tion step size ∆X ∈ R1×L are determined by the tensor
dimensions. After quantization, the integer-mapped weight
W̄ ∈ RDout×Din and activation X̄ ∈ RDin×L can be effi-
ciently multiplied via integer operations. The final output is
then generated by multiplying the result with the element-
wise scales, produced by the outer product of ∆W and ∆X :

WX = (∆W W̄ )(∆XX̄) = (∆W∆X)(W̄ X̄). (16)

Note that we omitted the zero offset (ϵX ) for simplicity of
explanation. If ∆W and ∆X can be fused across adjacent
linear layers, the output can be computed using only low-
precision operations without element-wise scaling.

PTS predetermines the step size statically, resulting in
significantly lower overhead compared to per-token dy-
namic methods, thereby gaining an advantage in acceler-
ation. As reported in Table 4, our method demonstrates
a 1.3× speed improvement over per-token dynamic ap-
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Figure 6. Comparisons of quantization methods. (b) and (c) uses per-tensor static quantization for activation.

proaches. Furthermore, PTS is a modification applied or-
thogonally to SmoothQuant, offering the advantage of com-
patibility with smoothing techniques. Through this com-
bined approach, we can address the aforementioned prob-
lems from observation 1 and 2.

5.2. Joint Learning of Smoothing Scale and Step
Size (JLSS)

To address the third challenge, the long tail of activa-
tions, we introduce Joint Learning of Smoothing Scale and
Step Size (JLSS). The core objective of JLSS is to identify
the optimal values for the smoothing scale s and step sizes
∆X and ∆W , ensuring minimal deviations in the output
tensor. To achieve this, JLSS employs a three-stage method
for concurrent optimization of these values.

In the first stage, we apply smoothing across all linear
layers using a small calibration set to reduce outliers. The
smoothing scale is initialized as described in Eq. (15). In the
second stage, through a grid search, we initialize the ∆X

and ∆W values to minimize the L2 loss for the calibration
set. The loss for searching ∆X is defined as the L2 distance
between the FP16 values of X and the quantized X̂ for each
layer, with the loss for ∆W defined similarly. Finally, in the
third stage, we sequentially tune s, ∆X , and ∆W to mini-
mize the quantization error, starting from the earlier blocks
and updating the subsequent ones, using gradient descent.
Specifically, the quantization error is defined as the cosine
similarity between the FP16 and quantized block outputs.
Throughout this process, the quantized integer weights W̄
remain fixed, while only the s, ∆X , and ∆W are learned.
This approach initializes each value close to optimal in a
layer-wise manner and then updates only those parameters
with gradient descent in a block-wise manner for a few
steps. PTQ4VM generates any quantized model within 15
minutes on a single RTX 3090 GPU.

The optimally learned quantization parameters play a
key role in minimizing quantization errors and preserving
network performance, even in the presence of outliers and
long-tailed distributions. After training, these parameters
facilitate acceleration using low-precision arithmetic, max-
imizing performance gains on actual GPU hardware.

6. Experiments

In order to demonstrate the superiority of the PTQ4VM,
we conducted comprehensive experiments across various
computer vision tasks, including image classification, ob-
ject detection, and instance segmentation. We employed
MinMax quantization, as described in Section 2.3, and
SmoothQuant, detailed in Section 2.4, as our baselines.
Both weights and activations of linear layers were quan-
tized, with the notation W8A8 representing 8-bit weights
and 8-bit activations, respectively.

6.1. Quantization Setting

For all tasks, we used the same calibration sets to mini-
mize bias. For the Image Classification task, we randomly
sampled 256 images from the ImageNet-1K [30] training
set. For the Object Detection and Instance Segmentation
tasks, we randomly sampled 16 images from the MSCOCO-
2017 [21] training set as the calibration set. Detailed exper-
imental configurations are provided in the supplementary.

6.2. Image Classification

To validate the universal applicability of our proposed
method across various Visual Mamba backbones, we com-
pared PTQ accuracy for the four architectures presented
in Fig. 2. Table 2 shows the top-1 accuracy results on
the ImageNet-1K validation set. PTQ4VM consistently
achieved significantly higher accuracy compared to other
methods across all backbones and quantization options.

The experimental results for the Vim family with CLS
tokens reveal significant accuracy degradation when using
MinMax, even at W8A8, as it fails to account for token-
wise variance. Similarly, SmoothQuant struggles to retain
essential CLS token information due to the same issue, lead-
ing to a 29.6% accuracy loss at 6-bit for Vim-B. In con-
trast, PTQ4VM addresses all the challenges posed by Visual
Mamba, demonstrating strong performance with less than
0.5% accuracy loss at 8-bit for Vim-T/S and LocalVim†,
while maintaining acceptable quality at 4-bit, where other
models fall short. Despite Vim-B having higher FP16 ac-
curacy than Vim-S, its quantized performance lags across
all methods, primarily due to outliers exceeding magnitudes
of 20K. These findings suggest that Visual Mamba models
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Model Method Top-1 Accuracy (%)
FP16 W8A8 W6A6 W4A4

Vim-Ti
MinMax

76.1
57.8 1.7 0.1

SmoothQuant 74.7 54.5 0.1
PTQ4VM (ours) 75.8 73.9 56.4

Vim-S
MinMax

80.5
79.4 27.3 0.1

SmoothQuant 80.1 73.7 0.2
PTQ4VM (ours) 80.5 79.7 69.6

Vim-B
MinMax

81.9
75.8 0.5 0.1

SmoothQuant 79.9 52.3 0.1
PTQ4VM (ours) 80.3 79.7 55.6

VMamba-T
MinMax

82.6
82.6 81.6 1.2

SmoothQuant 82.6 81.8 1.7
PTQ4VM (ours) 82.6 82.4 81.3

VMamba-S
MinMax

83.6
83.6 82.8 1.1

SmoothQuant 83.6 83.6 4.5
PTQ4VM (ours) 83.6 83.6 83.5

VMamba-B
MinMax

83.9
83.6 73.9 0.3

SmoothQuant 83.8 83.3 1.2
PTQ4VM (ours) 83.9 83.9 83.5

LocalVim-T†
MinMax

78.1
76.2 42.4 0.1

SmoothQuant 76.7 52.6 0.2
PTQ4VM (ours) 77.6 76.1 55.0

LocalVim-T
MinMax

76.2
75.6 62.2 0.4

SmoothQuant 75.9 65.5 0.7
PTQ4VM (ours) 76.2 75.7 67.2

LocalVim-S
MinMax

81.1
80.9 63.5 0.2

SmoothQuant 81.0 69.7 0.6
PTQ4VM (ours) 81.1 80.5 64.5

LocalVMamba-S
MinMax

83.7
83.5 80.8 2.5

SmoothQuant 83.6 81.9 12.0
PTQ4VM (ours) 83.7 83.4 82.2

Table 2. ImgaeNet Top-1 validation accuracy comparison of quan-
tization methods on various models. LocalVim† indicates a model
that uses the CLS token.

with excessively large activation magnitudes may be inher-
ently vulnerable to compression techniques.

In the VMamba family, all methods show lossless quality
at W8A8 compared to FP16, largely due to its significantly
smaller activation ranges compared to other model families.
This unique characteristic can be linked to the absence of
gating functions, as seen in Fig. 2b, which differentiates
it from other architectures. However, while other methods
struggle with W4A4, only PTQ4VM manages to maintain
quality on VMamba-S/B with less than 0.4% degradation,
achieving lossless quality compared to FP16 models.

6.3. Object Detection and Instance Segmentation

To demonstrate that PTQ4VM performs in downstream
tasks, we evaluated its performance in Object Detection and
Instance Segmentation tasks. We used the official check-
point trained with Mask R-CNN [11] 3X MS schedule using
VMamba-T backbone for our experiments, evaluating on

Backbone Method Bit AP
APb APm

VMamba-T

- FP16 47.0 42.3
MinMax W8A8 46.9 42.2

SmoothQuant W8A8 46.9 42.2
PTQ4VM (ours) W8A8 47.0 42.3

MinMax W6A6 46.2 41.5
SmoothQuant W6A6 45.5 40.9

PTQ4VM (ours) W6A6 46.7 42.1
MinMax W4A4 0.3 0.3

SmoothQuant W4A4 0.5 0.4
PTQ4VM (ours) W4A4 45.1 40.7

Table 3. Results of object detection and instance segmentation.

(a) PTQ4VM (c) SmoothQuant(b) MinMax

Figure 7. Qualitative results for the object detection and instance
segmentation task. Applied W6A6 quantization to VMamba-T.

images cropped to 1280×800. As reported in Table 3, while
MinMax and SmoothQuant both fail at W4A4, PTQ4VM
demonstrates superior performance with less than 1.9%
score degradation. At W6A6, SmoothQuant shows lower
scores than MinMax, which can be attributed to the degra-
dation caused by the difficulty imposed on weights by
smoothing. In contrast, PTQ4VM achieves near-lossless
performance with less than 0.3% APb and 0.1% APm degra-
dation, due to optimal tuning by JLSS. Notably, the quali-
tative results in Fig. 7 validate that PTQ4VM maintains the
network’s quality well, preserving even small details.

6.4. Computation Acceleration

To demonstrate the efficiency of PTQ4VM from a hard-
ware acceleration perspective, we implemented CUDA ker-
nels and measured the execution latency. The kernels were
built using CUTLASS [14], and all experiments were con-
ducted on a single RTX 3090 with a batch size of 32.

Table 4 presents the end-to-end W4A4 latency when ap-
plying per-tensor static, per-token dynamic, and PTS quan-
tization to the token dimension, with SmoothQuant applied
by default. The results show that the proposed PTS achieves
similar acceleration to per-tensor static across all models,
while significantly outperforming per-tensor static in terms
of accuracy, as seen in Table 2. In particular, for VMamba-
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Model Method Latency (ms) Speedup
FP16 W4A4

VMamba-T
Per-tensor static

60.33
33.87 1.78×

Per-token dynamic 44.13 1.37×
PTS (ours) 34.00 1.77×

VMamba-S
Per-tensor static

118.96
68.88 1.73×

Per-token dynamic 88.55 1.34×
PTS (ours) 69.30 1.72×

VMamba-B
Per-tensor static

165.18
89.93 1.84×

Per-token dynamic 114.87 1.44×
PTS (ours) 90.30 1.83×

Vim-T
Per-tensor static

37.86
32.58 1.16×

Per-token dynamic 39.15 0.97×
PTS (ours) 32.74 1.16×

Vim-S
Per-tensor static

85.43
67.75 1.26×

Per-token-dynamic 75.67 1.13×
PTS (ours) 67.86 1.26×

Vim-B
Per-tensor static

219.48
150.02 1.46×

Per-token dynamic 169.4 1.30×
PTS (ours) 157.03 1.40×

Table 4. Latency comparison for Visual Mamba backbone. The
batch size is 32.

B, per-token dynamic quantization shows a 1.44× latency
improvement compared to FP, while PTS achieves even
greater acceleration at 1.83×. These improvements are de-
tailed in Fig. 3, where PTS with W4A4 shows a significant
improvement in the latency of the linear layer on VMamba-
B, ultimately achieving a speedup of 1.83×. These results
indicate that PTS can deliver optimal quantization quality
with minimal overhead, comparable to the per-tensor static
method. A comparison of accuracy between PTS and per-
token dynamic is provided in Table 5.

6.5. Ablation Study

To evaluate the impact of each component in our pro-
posed PTQ4VM, we conducted an ablation study (Table 6).

First, incorporating PTS into Vim-Ti allows us to ac-
count for token-wise variance, leading to notable accuracy
improvements. Specifically, this method enables appropri-
ate step size allocation to the crucial CLS token, proving
particularly effective in models that use CLS tokens. As a
result, we observe accuracy gains of 17.1% at 6-bit and 1%
at 8-bit in Vim-Ti.

For VMamba, although there is no CLS token, account-
ing for token-wise variance still enhances accuracy at 6-bit
and 4-bit levels. Additionally, by using a grid search to op-
timize the truncation level and minimize L2 loss at the layer
level (labeled with +Truncation), both Vim and VMamba
show significant accuracy improvements—approximately
40% and 50%, respectively, at 4-bit. This highlights the im-

Granularity Vim-S (%) VMamba-S (%)

Per-tensor static 0.2 4.5
Per-token dynamic 72.6 82.4

PTS 69.6 83.5

Table 5. Top-1 accuracy results of INT8 quantization across dif-
ferent activation granularity schemes.

Model Method Top-1 Accuracy (%)
FP16 W8A8 W6A6 W4A4

Vim-Ti

SmoothQuant

76.1

74.7 54.5 0.1
+ PTS 75.7 71.6 5.4

+ Truncation 75.8 72.2 46.4
+ JLSS (ours) 75.8 73.9 56.4

VMamba-T

SmoothQuant

82.6

82.6 81.8 1.7
+ PTS 82.6 82.2 19.8

+ Truncation 82.6 82.3 73.3
+ JLSS (ours) 82.6 82.4 81.3

Table 6. The effect of each component of PTQ4VM on the Ima-
geNet top-1 validation accuracy.

portance of proper truncation in static quantization. JLSS,
designed to further optimize truncation, yields additional
gains of 1.7% and 10% at 6-bit and 4-bit, respectively, while
boosting accuracy by 10% in VMamba-T.

7. Conclusion
In this paper, we identified three key challenges that

complicate quantization for Visual Mamba: (i) token-wise
variance, (ii) channel-wise outliers, and (iii) the long tail
of activation. To address these challenges, we propose
PTQ4VM, a post-training quantization technique designed
to tackle all three issues. Through Per-Token Static (PTS)
Quantization, we effectively address token-wise variance,
while the integration of SmoothQuant with PTS miti-
gates channel-wise outliers. Additionally, by utilizing JLSS,
which jointly optimizes smoothing scale and step size,
we achieve higher post-quantization quality. To the our
best knowledge, this is the first quantization study on Vi-
sual Mamba. PTQ4VM can generates any quantized model
within 15 minutes and is widely applicable to various Visual
Mamba architectures across different downstream tasks, all
while enabling faster inference. Our techniques offer up to a
1.83× speedup on real GPUs, broadening the practical ap-
plication of Visual Mamba backbones.
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