
Feature-level and Spatial-level Activation Expansion
for Weakly-Supervised Semantic Segmentation

Junsu Choi1,2* Jin-Seop Lee1* Noo-ri Kim1 SuHyun Yoon1,3 Jee-Hyong Lee1,†
1Sungkyunkwan University, Suwon, South Korea

2Samsung Electronics, Suwon, South Korea
3Robotics Lab, Hyundai Motor Company, Uiwang, South Korea

junsu2.choi@samsung.com {wlstjq0602, pd99j, john}@skku.edu suhyunyoon@hyundai.com

Abstract

Weakly-supervised Semantic Segmentation (WSSS) aims
to provide a precise semantic segmentation results without
expensive pixel-wise segmentation labels. With the supervi-
sion gap between classification and segmentation, Image-
level WSSS mainly relies on Class Activation Maps (CAMs)
from the classification model to emulate the pixel-wise an-
notations. However, CAMs often fail to cover the entire ob-
ject region because classification models tend to focus on
narrow discriminative regions in an object. Towards accu-
rate CAM coverage, Existing WSSS methods have tried to
boost feature representation learning or impose consistency
regularization to the classification models, but still there are
limitation in activating non-discriminative area, where the
focus of the models is weak. To tackle this issue, we propose
FSAE framework, which provides explicit supervision of
non-discriminative area, encouraging the CAMs to activate
on various object features. We leverage weak-strong consis-
tency with pseudo-label expansion strategy for reliable su-
pervision and enhance learning of non-discriminative ob-
ject boundaries. Specifically, we use strong perturbation
to make challenging inference target, and focus on gener-
ating reliable pixel-wise supervision signal for broad ob-
ject regions. Extensive experiments on the WSSS bench-
mark datasets show that our method boosts initial seed
quality and segmentation performance by large margin,
achieving new state-of-the-art performance on benchmark
WSSS datasets. Our public code is available at https:
//github.com/obeychoi0120/FSAE.

1. Introduction

Semantic segmentation is widely used across various
fields in the computer vision. It aims to classify pixel-wise

*Equal contribution
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Figure 1. Visualization examples of CAM results. (a) Base model
(PPC w/EPS [10]), (b) Ours, and (c) Ground truth. Our method
activates more accurate object areas and produces clearer CAM
results in the boundary regions.

labels of input images accurately. However, it requires ex-
pensive and laborious pixel-wise annotations for training
semantic segmentation models. Weakly-Supervised Seman-
tic Segmentation (WSSS) has been proposed to reduce these
labeling costs. In WSSS, models are trained with relatively
low-cost labels such as scribble [18,45], bounding box [22],
and image-level class labels [4, 10, 21, 23]. The image-level
WSSS methods are the most widely studied because of the
high efficiency from the lowest labeling cost.

Most image-level WSSS methods consist of two stages.
In the first stage, they train the classification model and gen-
erate a pseudo-mask. Then, in the second stage, the seman-
tic segmentation model is trained using the pseudo-mask as
the ground-truth segmentation label. The most widely used
technique for generating pseudo-masks in the first stage is
refining class activation maps (CAMs) from the classifica-
tion model. Therefore, CAMs are served as an initial seed
for the overall process, so the high-quality CAMs which
cover the entire object region are essential for achieving
high segmentation performances.

However, CAM results extracted from classification
models tend to highlight only a limited object region. Since
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the model primarily focuses on regions that are most use-
ful for distinguishing class labels, it can generate good
pseudo-masks for only some object regions that are use-
ful for classification. It struggles to generate pseudo-masks
for others that are not useful for classification. This leads
to inaccurate CAM results, and causes critical performance
degradation in WSSS. To generate good CAM results, ex-
isting approaches learn pixel-wise feature representations,
not only to learn sample-wise feature. They apply consis-
tency regularization [8, 29, 31, 40, 48] and self-supervised
learning [4, 10, 36] to the WSSS model. However, these ap-
proaches focus on learning pixel-wise representations, not
on learning which class each pixel-wise representation be-
longs to.

In the segmentation task, the model needs to learn to
assign each pixel-wise representation to its corresponding
class. However, since existing methods are based on repre-
sentation learning, they can only provide indirect guidance
in learning whether a pixel is foreground or background. As
a result, the CAM outputs still fail to generate clearly in
boundary regions as shown in Fig. 1a. To learn pixel-wise
representations with direct supervision, the model should
effectively leverage reliable pixel-wise labels and extend
them to boundary regions with different properties (e.g.,
texture, color, etc.) compared to interior regions.

In this paper, we propose a Feature-level and Spatial-
level Activation Expansion (FSAE) framework to expand
activation across the entire object for WSSS models. To
train pixel-wise representations with direct supervision,
FSAE extract reliable pixel-wise labels and use them to ef-
fectively expand the activation regions to the boundary ar-
eas. FSAE consists of two components, feature-level activa-
tion expansion (FAE) and spatial-level activation expansion
(SAE). In FAE, we extract reliable pixel-wise labels through
threshold-based pseudo-labeling, and then, train the model
with these labels and pixel-wise feature representations.
This allows the learning of weakly activated regions using
reliable pixel-wise labels, which are propagated from highly
activated regions. In SAE, we utilize dilation operations
to effectively enhance the learning of non-discriminative
boundary regions, where relying solely on augmentation is
insufficient. This strengthens the learning of boundary re-
gions, leading to generate clearer CAM results, as shown
in Fig. 1b. To demonstrate our proposed method, we con-
ducted experiments on various benchmark datasets, result-
ing in more precise CAMs and improved segmentation per-
formance.

2. Related Works

2.1. Image-level WSSS

In contrast to fully-supervised semantic segmentation,
which requires pixel-level annotations, WSSS uses ‘weak’

labels such as bounding box [22, 30], scribbles [18, 45], or
lmage-level class labels [16, 24, 25, 27].

In image-level WSSS, the 2-stage methods using Class
Activation Maps (CAMs) have been the most widely stud-
ied. In the first stage, an image classification model is
trained with class labels to generate CAMs for each image.
The CAMs are used as an initial seed and refined to pseudo-
masks using post-processing techniques such as IRN [1] or
standard dense-CRF. In the second stage, the off-the-shelf
segmentation model is trained using these pseudo-masks as
pixel-level labels. As the segmentation performance of 2-
stage WSSS is highly dependent by the quality of initial
seed, most studies focus on generating high-quality CAMs.
However, inherently, CAMs tend to focus on the most dis-
criminative area of the object, thus exhibiting poor object
coverage.

To address these issues, most existing WSSS methods
encourage the network to focus on non-discriminative re-
gions of the object in order to increase CAM coverage.
Adversarial erasing methods [15, 20, 37] erases highly-
activated CAM regions, forcing the model to focus on other
non-discriminative area and expand CAM activations. How-
ever, as there is no strict guideline for when to stop erasing,
these methods typically suffer from over-erasing problem.
These methods also entail multiple feed-forward passes of
the image, resulting in high computational costs. Other
approaches have attempted to reduce the supervision gap
by generating additional supervision. One way is utilizing
saliency maps generated from off-the-shelf saliency model
[47] as an explicit supervision [6,24,25]. The saliency map
highlights the salient regions of an object, providing rela-
tively accurate boundary information. So, the saliency maps
can be used for providing cues to discriminate object from
background. Another way generates self-supervision signal
via contrastive learning [5, 14, 19], which performs met-
ric learning by constructing multiple views so that positive
samples from same images get closer in feature space while
negative samples from different images get farther. some
studies [4, 10, 49] performed contrastive learning of repre-
sentative feature embedding, known as prototypes, boost-
ing activations of object regions similar to the prototype
and suppress those are not. In addition, there are seman-
tic mining techniques to share informations of object loca-
tion [26, 35].

Aforementioned methods are indirect ways for expand-
ing CAM activations. Different from these approaches, our
work propagates explicit and reliable pixel-wise labels, for
direct supervision for the model.

2.2. Consistency Regularization in WSSS

Consistency regularization is a widely used technique in
the field of semi-supervised learning for model generaliza-
tion. The technique is to apply perturbations to input or
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network and impose consistency on the semantics or dis-
tribution of the output so that the prediction remains sta-
ble against various perturbations. The type of perturbations
can be image augmentation [34, 42, 43] or network pertur-
bations [7]. ST++ [43] applies strong data augmentation
to unlabeled image, and CPS [7] applies consistency reg-
ularization to the prediction of the same input image by
two differently initialized networks with different perturba-
tions applied. These methods aim to provide additional self-
supervision to the network through consistency regulariza-
tion. As the technique improves significantly performance
of semi-supervised semantic segmentation, recent WSSS
studies brings the concept of the consistency regularization.
CLIP-ES [29] utilized high-quality segmentation masks ex-
tracted from CLIP to enhance WSSS performance, and US-
AGE [31] introduced consistency regularization between
seed areas generated from different views. Also, LPCAM
and SFC [8, 48] proposed prototype-based learning meth-
ods, and MCTformer [40] introduced a method to extract
class-specific CAM information for training. MARS [17]
leverages semantically consistent features learned through
USS to eliminate biased objects.

3. Proposed Method
To expand the narrow CAM activation, our FSAE frame-

work generates an pixel-wise self-supervision signal for ex-
plicit learning of broad object regions. Overview is provided
in Fig. 2. Our method consists of two main components:
Feature-level Activation Expansion (FAE) and Spatial-level
Activation Expansion (SAE). Classification models can ex-
plicitly learn various object features by FAE, and SAE en-
riches FAE by promoting learning of non-discriminative
boundary area. We first review the conventional way of gen-
erating CAMs, and delve into details of the each compo-
nent.

3.1. Preliminary: Obtaining CAMs

CAMs identify the most contributed regions for classifi-
cation of an image. An image x ∈ R3×H×W is passed to a
feature extractor f to obtain a feature map F ∈ RD×H×W .
The feature map is passed to global average pooling (GAP)
layer and fully-connected layer with weight w ∈ RC×D. C
is the number of classes and D is the channel dimension. By
Multiplying the classifier weight wc,d to the feature map F ,
we can derive the class score sc for class c:

sc =
1

HW

D∑
d

wc,d

∑
i

Fd,i (1)

and class activation map Mc for class c is as follows:

Mc = ReLU(

D∑
d

wc,dFd,:) (2)

Recent methods [29, 32, 46] compute the CAMs directly
from the feature map f without using a fully-connected
layer. This method is proven theoretically equivalent to the
traditional CAM calculation, but more simpler. Following
this way, we use the class score map S ∈ RC×H×W in our
proposed method.

In Eq. (2), the weight w is optimized for discrimina-
tive classification. Consequently, CAMs also activate nar-
row part of the object. Thus, for segmentation task, addi-
tional modifications are necessary to expand the activation
towards the entire region of the object.

3.2. Feature-level Activation Expansion (FAE)

Image classification models often concentrate on the
most discriminative regions of an object. To broaden their
focus, it is essential to learn various visual features, includ-
ing the color/texture/shape of the object’s region, only with
precise supervision.

Thus, we propose a novel method based on consistency
regularization with simple prior: if the network are learned
to generate consistent predictions across wide variety of vi-
sual features in the object, the CAMs would be able to ac-
tivate more integral object area. This motivates us to utilize
weak-strong consistency, thus the pixel-wise prediction of
the weak perturbed view is used as a online pseudo-label
for the corresponding region of the strong perturbed view.

3.2.1 Generating Confident Online Pseudo-label

We aim to generate an explicit and accurate online
pseudo-label using the pixel-wise CAM prediction for self-
supervision. We first construct two views with a single im-
age with different strength of perturbation. A weak trans-
form Aw(·) is applied to the original image x to create the
source view xs, and a strong transform As(·) is applied to
the source view to create the challenging target view xt.

The types of weak transforms applied to the source view
xs are random resize, random crop, and color jittering.
While in the target view xt, gaussian blur and RandAug-
ment [9] are additionally applied. Considering the property
of the segmentation task, we exclude geometric transforms
such as rotate, shear, and translate in RandAugment, using
only color-space transforms. Our framework use the class
prediction map Ps ∈ RH×W from the source score map
Ss as online pseudo-labels to supervise target score map
St ∈ RC×H×W .

xs = Aw(x), xt = As(xs) (3)

Ss = CAM(xs), St = CAM(xt) (4)

Ps = argmax(Ss) (5)
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Figure 2. Our FSAE framework. Our method propagates the reliable pixel-wise pseudo-labels to strongly perturbed target view and
enforces consistent prediction across wide variety of visual features.

Figure 3. Online pseudo-label regions (red) and actual object
boundary area (white).

However, we do not use all pixels of Ps as online pseudo-
labels, because it may contain inaccurate predictions and
harm the training. Therefore, we create a high-confidence
mask M ∈ RH×W for each pixel in Ps with confi-
dence threshold τFAE to filter out unreliable pixel predic-
tions. Consequently, high-confidence online pseudo-labels
are generated by the element-wise multiplication of source
prediction map Ps and high-confidence mask M . M can be
formulated as follows:

Mi =

{
1 if softmax(Ss)i ≥ τFAE

0 otherwise
(6)

where i denotes i-th pixel in source view Ss high-
confidence mask M . The FAE facilitates the network to
make consistent predictions on various object visual fea-
tures, and the high-confidence pseudo-label area is gradu-
ally expanded by weak-strong consistency.

3.3. Spatial-level Activation Expansion (SAE)

The FAE helps the network to generate accurate and con-
sistent predictions for a wide variety of visual features of
the object. Nevertheless, the pseudo-label area is relatively
discriminative and the complete coverage of the ambiguous
low-confidence regions is not guaranteed. Notably, in Fig. 3,
the low-confidence regions (blue) around the pseudo-label
area are often located at the actual object boundaries, and
this because of the absent of explicit information about ob-
ject boundary region in WSSS.

Therefore, it would be beneficial if the network could
properly learn these low-confidence regions with proper la-
bels. To do so, we spatially expand the pseudo-label area to-
wards the object boundary, by applying a standard dilation
operation with kernel size k to the high-confidence mask
M . This is based on two priors: 1) The pixel-wise predic-
tions of the high-confidence pseudo-label area is accurate,
and 2) adjacent pixels would have similar semantics, con-
sidering the characteristic of image data.

3.3.1 Boundary Expansion of Online Pseudo-label Re-
gion

During expansion of the pseudo-label area, noisy prediction
be involved. Therefore, We set another confidence thresh-
old τSAE to the confidence mask of added area Mbdry , fil-
ter out the unreliable predictions. The procedure is differ-
ent with setting the first confidence threshold τFAE with
lower value. As seen in Fig. 4, SAE can prevent confus-
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Figure 4. (a) Pseudo-label area (red) with high threshold, (b)
Pseudo-label area with low threshold, (c) Dilation of (a), and (d)
GT.

ing areas involve in training by expanding the pseudo-label
region near the boundary, whereas naively lowering τFAE

includes noisy predictions.

Mbdry,i =


1 if (Dilation(M)−M)i = 1

and softmax(Ss)i ≥ τSAE

0 otherwise

(7)

As a result, the expanded confidence mask M̂ for gen-
erating online pseudo-labels is a union of initial confidence
mask M and Mbdry:

M̂ = M ∪Mbdry (8)

Finally, we derive the proposed Feature-level and Spatial-
level Activation Expansion (FSAE) loss as the cross-
entropy loss between target score map St and online pseudo
label Ps for area corresponding to expanded confidence
mask M̂i. i ∈ I denotes the each pixel of the CAM, and
λ denotes the proportion of our loss.

LFSAE = λ · 1

N

N∑
n=1

∑
i∈I

M̂iLCE(St, Ps) (9)

To extract LFSAE , we only use representations from fea-
ture maps, allowing our proposed method to be easily incor-
porated into other base models. Our approach is to combine
the proposed LFSAE with the objectives of existing meth-
ods and optimize them as total objectives.

4. Experiments
4.1. Experimental Setup

4.1.1 Datasets and Evaluation Metrics

We conduct our experiment on the most popular bench-
marks, PASCAL VOC 2012 [11] and MS COCO 2014 [28].

PASCAL VOC 2012 consists of 20 foreground classes and
1 background class for 1,464/1,449/1,456 images in train-
ing/validation/test set. Following the previous WSSS works
[10, 21, 24, 40], we use the augmented train set [13] with
10,582 images for training. COCO 2014 consists of 80
foreground classes and 1 background class, for 82,081 and
40,137 in training/validation set. For all experiments, the
mean Intersection-over-Union (mIoU) is used as the evalu-
ation metric.

4.1.2 Base model

To validate the effectiveness of our proposed FSAE, we at-
tach our method to the powerful WSSS model PPCw/EPS,
SIPE [4], and MCTformer [40]. PPC performs con-
trastive learning between prototypes, enriching representa-
tion learning via intra-view contrast and impose semantic
consistency via inter-view contrast. EPS uses saliency maps
explicitly as additional supervision, improving initial seed
quality by ignoring co-occuring pixels that are not rele-
vant to corresponding category. SIPE uses image-specific
prototypes for refining CAM activations. MCTformer is a
transformer-based WSSS method, which leverages multi-
ple class tokens to generate more class-specific attention
maps. Our FSAE can be incorporated seamlessly to these
base models. Note that we report the reproduced results on
our computing environment, with respect to the base mod-
els.

4.1.3 Implementation Details in Classification

We set the ratio λ = 1.0 of our proposed loss LFSAE . The
type of augmentation for source view is random rescale,
random crop and color jitter. Additionally, gaussian blur
and 3 random non-geometric transforms out of 9 Randaug-
ment [9] transforms are added to source view to construct
target view. The confidence threshold τFAE for initial con-
fidence mask Mi is set to 0.95, and τSAE for expanded area
Mbdry is set to 0.8. The kernel size k for dilation operation
is set to 3. We use standard dense-CRF postprocessing to
generate pseudo mask from initial seed.

The model-specific setting adjustments on VOC 2012 are
as follows. In PPCw/EPS, model is trained with batch size
8, learning rate 0.01 for 40k iterations. In SIPE, model is
trained with batch size 16, learning rate 0.05 for 10 epochs.
In case of MCTformer, we do not apply FSAE in the first
10 epochs.

On COCO 2014, we applied exponential moving aver-
age (EMA) of factor 0.999 in pseudo-label generation pro-
cedure in case of PPCw/EPS for inference stability. For the
others, we follow the default hyperparameter setting of each
base models. All experiments are conducted using a single
NVIDIA RTX 3090.
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Table 1. Quality of initial seeds and pseudo-masks (mIoU), which
are refined by dense-CRF or by IRN [1]. Evaluated on PASCAL
VOC 2012 train set. NetCAM denotes the backbone of CAM gen-
eration network. ’R’ denotes ResNet. * indicates reproduced re-
sults.

Method NetCAM Seed Mask

IRN [1] CVPR’19 R50 49.5 66.3
S-BCE [38] ECCV’22 R38 65.3 66.3
AMN [23] CVPR’22 R50 62.1 72.2
LPCAMw/AMN [8] CVPR’23 R50 65.3 72.7
CLIP-ES [29] CVPR’23 ViT-B 70.8 75.0
ToCo [41] CVPR’23 ViT-B - 72.2
USAGE [31] ICCV’23 DeiT-S 67.7 72.8
SFC [48] AAAI’24 R38 64.7 73.7
SIPE [4] CVPR’22 R38 58.6 64.7
+ FSAE 61.1+2.5 70.5+5.8

PPCw/EPS [10] CVPR’22 R38 70.5 73.3
+ FSAE 74.5+4.0 77.0+3.7

MCTformer * [40] CVPR’22 DeiT-S 61.5 67.9
+ FSAE 62.4+0.9 68.8+0.9

4.1.4 Implementation Details in Segmentation

For semantic segmentation, DeepLabV1 [2] and DeeplabV2
[3] with ResNet-101 backbone are used for fair comparison.
During inference, we use multi-scale and flip operations fol-
lowing previous studies [4,10,32], and standard dense-CRF
to postprocess final segmentation mask.

4.2. Comparison with State-of-the-art Methods

4.2.1 Quality of Initial Seed and Pseudo-mask

First, we verify the effectiveness of our method by eval-
uating quality of both the initial seed and pseudo mask
on PASCAL VOC 2012 train set. During CAM inference,
we use multi-scale and flip inference following previous
works. Table 1 compares initial seed quality between ours
and previous works. The experimental results show that
our proposed method outperforms other existing methods
by a large margin. Incorporated with PPCw/EPS, our method
achieves 74.5% and 77.0% mIoU in initial seed and pseudo-
mask, with +4.0%p and +3.7%p performance gain each.
With SIPE, 61.1% and 70.5% mIoU were recorded with
+2.5%p and +5.8%p gain. With MCTformer, 62.4% and
68.8% mIoU were recorded with +0.9%p and +0.9%p gain.

4.2.2 Segmentation Performance

For a fair comparison, We follow the training setting of each
base model, and report the reproduced segmentation results.
The comparison results are summarized in Tab. 2 and Tab. 3
for PASCAL VOC 2012 val/test set and Tab. 4 for COCO

Table 2. Segmentation results (mIoU) on PASCAL VOC 2012 us-
ing DeepLabV2. Sup. means the type of supervision. I: image-
level labels, S: saliency maps, L: language supervision. NetSeg

denotes the backbone of segmentation network. * indicates repro-
duced results.

Method Sup. NetSeg Val Test

IRN [1]CVPR’19 I R50 63.5 64.8
S-BCE [38] ECCV’22 I R38 68.5 69.7
AMN [23]CVPR’22 I R101 69.5 69.6
LPCAMw/AMN [8]CVPR’23 I R101 70.1 70.4
ToCo [41] CVPR’23 I ViT-B 69.8 70.5
MCTformer * [40]CVPR’22 I R38 69.0 69.8
+ FSAE I 69.8+0.8 70.5+0.7

SIPE [4]CVPR’22 I R101 68.8 69.7
+ FSAE I 69.9+1.1 71.2+1.5

CLIMS [39]CVPR’22 I+L R101 69.3 68.7
CLIP-ES [29]CVPR’23 I+L R101 71.1 71.4
EPS [24]CVPR’21 I+S R101 70.9 70.8
L2G [16]CVPR’22 I+S R101 72.1 71.7
RCA [49]CVPR’22 I+S R38 72.2 72.8
PPCw/EPS [10] CVPR’22 I+S R101 72.6 73.6
+ FSAE 74.4+1.8 75.0+1.4

Table 3. Segmentation results (mIoU) on PASCAL VOC 2012 us-
ing DeepLabV1. † indicates the reproduced performance due to
the lack of reported experimental results.

Method Sup. NetSeg Val Test

ICD [12]CVPR’20 I R101 67.8 68.0
AEFT [44]ECCV’22 I R38 70.9 71.7
SIPE † [4]CVPR’22 I R101 68.0 69.9
+ FSAE I R101 70.3+2.3 72.6+2.7

EPS [24]CVPR’21 I+S R101 71.0 71.8
L2G [16]CVPR’22 I+S R101 72.0 73.0
PPCw/EPS [10]CVPR’22 I+S R101 72.3 73.5
+ FSAE I+S R101 73.7+1.4 75.3+1.8

2014 val set. The qualitative segmentation results in Fig. 5
shows our superiority. When incorporated into various base-
line models, our method consistently improves segmenta-
tion performance across both DeepLabv1 and DeepLabv2
on multiple datasets, including PASCAL VOC 2012 and
COCO 2014.

These results demonstrate that our proposed method can
be effectively integrated into diverse base models, such as
PPC, SIPE, and MCTformer. Furthermore, our method is
effective regardless of the underlying backbones, includ-
ing ResNet and Transformers, or the varying training objec-
tives, such as consistency regularization and self-supervised
learning.
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Figure 5. Visualization examples of segmentation results. (a) Images, (b) PPCw/EPS, (c) Our FSAE, and (d) GT.

Table 4. Segmentation results (mIoU) on COCO 2014 using
DeepLabV2. † indicates reproduced performance due to the lack
of reported experimental results. * indicates reproduced results.

Method Sup. NetSeg COCO Val

OC-CSE [20] CVPR’21 I R38 36.4
AFA [33] CVPR’22 I MiT-B1 38.9
SIPE * [4]CVPR’22 I R101 39.3
+ FSAE 39.5+0.2

EPS [24] CVPR’21 I+S R101 35.7
PPCw/EPS † [10] CVPR’22 I+S R101 33.7
+ FSAE 35.4+1.7

Table 5. Comparison of False Positive Rate (FPR) and False Nega-
tive Rate (FNR) of pseudo-mask on PASCAL VOC 2012 train set.

Method FPR ↓ FNR ↓

SIPE CVPR’22 19.4 12.7
+ Ours 17.9 -1.5 11.4 -1.3

PPCw/EPS CVPR’22 14.4 17.7
+ Ours 12.0 -2.4 15.1 -2.6

MCTformer CVPR’22 16.0 16.7
+ Ours 15.4 -0.6 16.6 -0.1

4.3. Ablation Studies

4.3.1 Effectiveness of Our Proposed Method

Table 5 demonstrates the effectiveness of our method.
FPR(False Positive Rate) and FNR(False Negative Rate)
represent the proportion of background regions predicted as
objects and object regions predicted as background, respec-
tively. Lower values indicate that the CAM results are well-

Table 6. Initial seed quality with different component settings on
PASCAL VOC 2012 train set. Evaluated in mIoU(%).

Method PPC w/EPS SIPE MCTformer

Base 70.5 58.6 61.5
+ FAE 73.7 60.9 62.2
+ SAE 74.5 61.1 62.4

aligned with the actual objects. As shown in Tab. 5, adding
our method to the baseline results in lower FPR and FNR
values. This demonstrates that our approach effectively ex-
pands CAMs for object and boundary regions by leveraging
reliable pixel-wise labels.

4.3.2 Effects of Each Components

We analyze the performance of PPCw/EPS with FSAE, and
demonstrate the effectiveness of each component of our
method. In Tab. 6, FAE significantly improves initial seed
quality, and SAE further boosts FAE performance. Espe-
cially in Fig. 6, Our integral methods (FAE+SAE) provides
more broad and accurate online pseudo-label in the training
phase, compared to FAE only.

4.3.3 Ablation on Hyperparameters in FAE

We analyze the effect of hyperparameters in FAE. First,
in Tab. 7, the initial seed quality gradually decreases as
the confident threshold τFAE deviates from 0.95. It means
pseudo-labeling with low τFAE values allow the network
to learn broader regions during the initial training phase,
but is more likely to learn the noise from the unstable pre-
diction, resulting in performance degradation. In contrast,
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Figure 6. Accuracy and ratio of online pseudo-label in early train-
ing stage with actual initial seed quality. (a) Online pseudo-label
accuracy, (b) Ratio of the online pseudo-label region, and (c) mIoU
of initial seed.

Table 7. Effect of confident threshold τFAE in FAE, evalutated by
initial seed quality in PASCAL VOC 2012 train set. Ablations are
conducted with no SAE.

τFAE 0.80 0.85 0.90 0.95 0.99

mIoU(%) 70.0 72.8 73.5 73.7 73.3

setting too strict τFAE did not perform well because of the
overly restricted pseudo-label region. Second, The number
of Randaugment transforms controls the magnitude of per-
turbation applied to the target view xt. Tab. 8 shows the
initial seed quality with adjusting number of transforms. A
higher value did not ensure superior performance, and the
model showed fair performance even when applying just
single transform. We set the number of RandAugment to 3,
with all other hyperparameters fixed to in-paper settings.

4.3.4 Ablation on Hyperparameters in SAE

We evaluate the boundary expansion of pseudo-label region.
The magnitude is determined by dilation kernel size k and
restrained by second confident threshold τSAE . We provide

Table 8. Initial seed and pseudo-mask quality (mIoU) of PASCAL
VOC 2012 train set according to the number of RandAugment.

# RandAug 1 3 5 7

Seed (%) 73.8 74.5 74.3 73.4
Mask (%) 75.6 77.0 76.9 76.0

Table 9. Effect of dilation kernel size k, with τFAE fixed to 0.95
and τSAE fixed to 0.8. Initial seed quality by mIoU (%) in PAS-
CAL VOC 2012 train set.

k None 3 5 7

mIoU(%) 73.7 74.3 74.2 73.9

Table 10. Effect of confident threshold τSAE in SAE, with τFAE

fixed to 0.95. Initial seed quality in PASCAL VOC 2012 train set.

τSAE 0.0 0.6 0.7 0.8 0.9

mIoU(%) 74.2 74.2 74.3 74.5 74.4

ablation of k and τSAE with other hyperparameters fixed
with in-paper settings. As evaluated in Tab. 9, the optimal
value of dilation is 3. The large kernel size exceeding 3 de-
grades the performance, which mainly caused by excessive
expansion. Also, as shown in Tab. 10, the performance was
not sensitive to τSAE . It shows that the SAE can be imple-
mented without significant adjustments.

5. Conclusion
We proposed the FSAE framework for weakly-

supervised semantic segmentation, which were designed to
generate and propagate explicit and accurate online pseudo-
labels for pixel-wise representations. Leveraging weak-
strong consistency and pseudo-label expansion strategies,
the framework prompted the network to extract information
from more extensive regions. Our method demonstrated its
effectiveness on the PASCAL VOC 2012 and COCO 2014
datasets, consistently showing performance improvements
across various baselines.

Acknowledgments. This work was partly supported by ICT
Creative Consilience Program through the Institute of Infor-
mation & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (RS-2020-
II201821, 33.3%), cluster development project funded by the Min-
istry of Science and ICT (MSIT, Korea) & Gwangju Metropoli-
tan City (33.3%), and Institute of Information & Communica-
tions Technology Planning & Evaluation (IITP) grant funded by
the Korea government(MSIT) (No.RS-2024-00360227, Develop-
ing Multimodal Generative AI Talent for Industrial Convergence,
33.3%).

8708



References
[1] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly su-

pervised learning of instance segmentation with inter-pixel
relations. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019. 2, 6

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Semantic image segmen-
tation with deep convolutional nets and fully connected crfs.
arXiv preprint arXiv:1412.7062, 2014. 6

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017. 6

[4] Qi Chen, Lingxiao Yang, Jian-Huang Lai, and Xiaohua Xie.
Self-supervised image-specific prototype exploration for
weakly supervised semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4288–4298, June 2022. 1, 2, 5,
6, 7

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In International conference on
machine learning, pages 1597–1607. PMLR, 2020. 2

[6] Tao Chen, Yazhou Yao, Lei Zhang, Qiong Wang, Guosen
Xie, and Fumin Shen. Saliency guided inter-and intra-class
relation constraints for weakly supervised semantic segmen-
tation. IEEE Transactions on Multimedia, 2022. 2

[7] Xiaokang Chen, Yuhui Yuan, Gang Zeng, and Jingdong
Wang. Semi-supervised semantic segmentation with cross
pseudo supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2613–2622, 2021. 3

[8] Zhaozheng Chen and Qianru Sun. Extracting class acti-
vation maps from non-discriminative features as well. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3135–3144, 2023. 2,
3, 6

[9] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 702–703, 2020. 3, 5

[10] Ye Du, Zehua Fu, Qingjie Liu, and Yunhong Wang. Weakly
supervised semantic segmentation by pixel-to-prototype
contrast. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2022. 1, 2, 5, 6, 7

[11] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010. 5

[12] Junsong Fan, Zhaoxiang Zhang, Chunfeng Song, and Tie-
niu Tan. Learning integral objects with intra-class discrim-
inator for weakly-supervised semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4283–4292, 2020. 6

[13] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,
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