This WACYV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

ANTHROPOS-V: benchmarking the novel task of Crowd Volume Estimation

Luca Collorone*,

Stefano D’ Arrigo®,
Guido M. D’ Amely di Melendugno,

Massimiliano Pappa*,
Giovanni Ficarra,  Fabio Galasso

Sapienza University of Rome

{name.surname}@uniromal.it

Abstract

We introduce the novel task of Crowd Volume Estimation
(CVE), defined as the process of estimating the collective
body volume of crowds using only RGB images. Besides
event management and public safety, CVE can be instru-
mental in approximating body weight, unlocking weight-
sensitive applications such as infrastructure stress assess-
ment, and assuring even weight balance. We propose
the first benchmark for CVE, comprising ANTHROPOS-
V, a synthetic photorealistic video dataset featuring crowds
in diverse urban environments. Its annotations include
each person’s volume, SMPL shape parameters, and key-
points. Also, we explore metrics pertinent to CVE, de-
fine baseline models adapted from Human Mesh Recov-
ery and Crowd Counting domains, and propose a CVE-
specific methodology that surpasses baselines. Although
synthetic, the weights and heights of individuals are aligned
with the real-world population distribution across gen-
ders, and they transfer to the downstream task of CVE
from real images. Benchmark and code are available at
github.com/colloroneluca/Crowd-Volume-Estimation.

1. Introduction

Dealing with large gatherings in public spaces presents sig-
nificant challenges in crowd management: overcrowding
can jeopardize the safety, health, and comfort of individ-
uals, while the assembly of crowds on structures not de-
signed for high capacity poses risks of structural damage or
collapse due to overloading [52].

Currently, the monitoring of crowds’ risks based on head
count [11,50] tends to disregard potentially critical factors
such as weight, occupancy, heat dissipation, and oxygen
consumption, which are strongly correlated with individu-
als’ body build [20, 52]. Additionally, these factors exhibit
significant variability based on age, gender, ethnicity, and
health conditions [6, 12, 19].

*Authors contributed equally.

Figure 1. ANTHROPOS-V is the first dataset for the novel task
of Crowd Volume Estimation. It features human crowds engaged
in activities within real-world environments (left). Each individual
in the dataset is labeled with ground-truth SMPL shape parameters
(center) along with their volume labels. We employ novel Per-Part
Volume Density Maps as a superior supervision signal for training
models to address this task (right).

A precise estimate of the crowd’s total volume offers a
more reliable method for detecting space underuse or over-
crowding by leveraging a priori knowledge of the available
in-place volume. Additionally, this approach can signifi-
cantly mitigate the risks associated with overloading, as vol-
ume serves as a robust proxy for estimating weight [7,38].

Motivated by these insights, this paper introduces the
novel Crowd Volume Estimation (CVE) task, which aims
to estimate the collective volume occupied by groups of in-
dividuals directly from single RGB images.

Recently, volume estimation (VE) has garnered signifi-
cant research attention. However, previous works [15, 22,

,38,39] have focused primarily on estimating the volume
of single individuals in controlled environments, often rely-
ing on expensive annotations. These works rely on require-
ments and assumptions that render them impractical for es-
timating the volume of large crowds. In addition, there are
no datasets tailored for CVE, as existing datasets [ 1,37] fea-
turing scenes with multiple people only encompass a lim-
ited number of individuals (< 15) or lack necessary volume
annotations [9, 10]. We thus propose the first CVE bench-
mark, including baselines, a novel dataset, and metrics.

As for the baselines, we outline two research directions for
crafting models for CVE: (1) grounding on methods from
the Crowd Counting [13,27,33,49] domain, or (2) repurpos-
ing the pipeline of Human Mesh Recovery (HMR) [1,25,59]
combined with a human detector. In the case of (1), we ex-
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tend the density-map strategy to a more specific form of
supervision, the Volume Density Maps, tailored to regress
the human volumes in an image. For these models, we fur-
ther define a more fine-grained form of supervision which
we dub Per-Part Volume Density Maps (rightmost picture in
Fig. 1). This supervision allows the model to learn how to
regress the volume of different human subparts (e.g., arms,
chest, legs), resulting in a more accurate estimate of each
individual’s volume. In the case of (2), we show that HMR
models with a human detection preprocessing can serve as
volume estimators without any modification, as the volume
estimate comes as a by-product after postprocessing the pre-
dicted meshes (middle picture in Fig. 1).

Moreover, to enable the training of CVE-specific mod-
els, we introduce “ANTHROpometrics POse Shape and
Volume estimation dataset” (ANTHROPOS-V), a synthetic,
large-scale, and video-realistic dataset representing large
crowds in urban scenarios and reporting for the first time
the annotated volume of each individual appearing in the
scenes. ANTHROPOS-V is generated using the videogame
engine of Grand Theft Auto V (GTA-V), which includes a
large variety of realistic urban environments and a broad di-
versity of characters’ ethnicities.

It is worth noting that acquiring real-world data with an-
notated anthropometric features for crowds requires gather-
ing sensitive information from thousands of individuals in
a wide range of environments, hence posing severe issues
of feasibility, bias, and personal details disclosure. Thus,
we collect a synthetic dataset to train models on CVE, eval-
uating their learned knowledge of both synthetic and real-
world data.

Aiming at reducing the domain gap from synthetic to
real images, we enhance the game’s appearance and per-
form an in-depth analysis of the GTA-V default characters.
Our findings reveal that the default characters exhibit a re-
stricted and repetitive assortment of human anthropomet-
rics, such as body sizes and heights. Therefore, we directly
manipulate characters’ 3D meshes to align them with the
real-world human size distributions [44]. As a result, we
improve both the realism of the original GTA-V scenes and
their annotations, featuring virtual characters whose height
and weight distributions closely follow the authentic human
variations [46].

In summary, our contributions are four-fold:

 we propose the novel task of Crowd Volume Estimation
(CVE) to regress the volume of large groups of people
from RGB images;

* we release the first CVE benchmark, including metrics
and baselines;

» we introduce ANTHROPOS-V, a dataset explicitly de-
vised for CVE but also encompassing annotations for

other human-centric tasks, with careful attention to
mirror real-world anthropometric and gender statistics;

* we experiment with a novel volume-specific form of
supervision, namely Per-Part Volume Density Maps,
and use it to train our proposed model, STEERER-V,
achieving superior results.

2. Related Works

In this section, we review the existing literature that re-
lates to the proposed CVE task. We discuss studies on
single-subject Volume Estimation (VE) (Sec. 2.1), Crowd-
Counting (Sec. 2.2) and Human Mesh Recovery (Sec. 2.3).

2.1. Single subject VE in controlled environments

Previous literature explored volume estimation, targeting
single-bodies [15,22,29,38,39] or objects [2, 5, 30,31, 40,

, 62] for applications in healthcare and nutrition. In par-
ticular, [29] rely on 3D scans, while [15,30,31, 38] exploit
depth-maps or point clouds data. To deal with scale am-
biguity, [5, 14,40, 61, 62] make use of reference objects,
while [2, 39] employ multiple images of the same object
in different views. While all the mentioned works tightly
depend on controlled environments, scans, or multiple in-
puts, and apply to a single subject at a time, we aim at esti-
mating the total volume of human crowds in the wild. No-
tably, [22] proposed a large-scale video dataset displaying
individual textured SMPL meshes [32], paired with body-
part volume ground truths. However, scenes are designed
by superimposing a single mesh onto 2D bedroom images,
lacking realism and scale consistency between humans and
the background. On the contrary, we propose a dataset of
realistic scenes featuring large crowds.

2.2. Crowd Counting

Crowd Counting aims to estimate the number of people in
images or videos. Typically, datasets in this domain show-
case large crowds from bird-eye views [17,18,47,48,57,65].
While seminal works [4,21,35] cast this problem as a re-
gression task, recent literature [26, 27, 49] address crowd
counting as a localization task. These methods regress the
2D positions of the heads in the images and estimate the
total number by summing the retrieved outcomes after fil-
tering the more uncertain predictions. Density-Map-based
methods [3, 13, 24, 28, 34, 41, 54, 55, 58, 64] express the
ground truth density map y for an image = as a single-
channel image of the same size, where each pixel is as-
signed 1 if it contains the center of a person’s head, O oth-
erwise; y is subsequently smoothed with a Gaussian filter.
The Gaussian filtering operation is common in Counting
tasks [23,28,42,51,63], as it allows to treat the GT density
map as a continuous function [65], which, in turn, allows
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the end-to-end training of the network. Bayesian-based ap-
proaches differ from conventional density-based methods
as they estimate density maps without supervision upon
ground truth density maps. For instance, [27, 33] employ
a bayesian-loss to construct a density contribution proba-
bility model starting from bare annotations. We evaluate
strong Density-Map [13], Localization [49], and Bayesian
models [27, 33] for the CVE task. We introduce baselines
capitalizing on an adaptation of the Density Maps approach
for CVE, namely Volume Density Maps: each pixel con-
taining a person’s head is assigned with the whole person’s
body volume instead of 1.

2.3. Human Mesh Recovery for Few Individuals

Human Mesh Recovery (HMR) regresses the human
3D shape and pose from single RGB images. CLIFF [25]
pairs cropped image features with their bounding box
information, enabling the accurate prediction of global
rotations. In BEDLAM-CLIFF [ 1], the authors train CLIFF
on their dataset and improve its performance. ReFit [59]
exploits a recurrent updater that iteratively adjusts a
parametric human model to align with image features. The
recent TokenHMR [&] uses a tokenized representation of
the human pose and reformulates the problem as a token
prediction. DPMesh [66] leverages a diffusion model to
meliorate robustness to occlusions. Crowd3DNet [60]
focuses on mesh reconstruction of people within crowds in
wide-field images, though tightly assuming the existence of
a common plane where all the actors lie; such assumption
does not hold for the complex scenes of ANTHROPOS-V.
Similarly, [16] exploits pseudo-GT to model the relations
and interactions of the individuals and improve pose and
localization estimation; however, this work do not focus
on human shape, as no shape-related metric is employed.
Contrarily, CVE requires precise volume/shape GT for cor-
rect computation (Sec. 3.2). Thus, we repurpose [1,25,59]
for CVE, pairing them with a human detector.

3. Measuring Crowds Volumes

In this section, we formalize CVE (cf. Sec. 3.1) and de-
fine the metrics for the novel CVE benchmark (cf. Sec. 3.2).

3.1. Problem Formalization

We define Crowd Volume Estimation as the task of es-
timating the undergarment total body volume occupied by
human bodies in a given scene. While CVE can be applied
to videos (that we make available in ANTHROPOS-V), we
define the CVE task to be benchmarked per frame.

Let I be an image and V},; the label of the actual total
volume of human bodies represented in /. We define the
objective of CVE as mgin [|Viot — My(I)||, where My is a

crowd volume estimation function parameterized by 6. This

1200 1400

Figure 2. STEERER-V’s PP-MAE/MAE computed on
ANTHROPOS-V test set.

definition is intentionally general and designed to be inde-
pendent of any specific methodology. Indeed, this formula-
tion enables its application as an objective for both Crowd
Counting and HMR models, as well as for our proposed
method.

3.2. Proposed Metrics

Leveraging earlier research in Crowd Counting [13, 18,
,65], we propose to measure the volume estimation error
with the following suite of metrics:
Mean Absolute Error (MAE), as a standard measure to as-
sess the quality of the estimations. Given a set of images
{I)}, we indicate with {V},} the total volume associated to
each image and with {V},} the estimated one. Hence:

K
1 N
MAE:?Z|V]€_V]€‘ ey
k=1
This measure estimates the accuracy of the predictions on
the whole test set as K represents the total count of the im-
ages belonging to the test set.
Per-Person Mean Absolute Error (PP-MAE), to measure the
average error for each individual. Its formulation can be ex-
pressed as:
K A
1 |Vk — Vk|
PP-MAE = — —_
K I; ng

2

where ny, is the number of persons in the k-th image. PP-
MAE highlights the estimator’s mean error per person, en-
abling evaluation across scenes and datasets with different
numbers of individuals. This is advantageous in CVE, as
crowd sizes vary widely among frames. It is worth noting
that PP-MAE is related to the Normalized Absolute Error
metric used in Crowd Counting [ 3], which normalizes the
mean counting error by the total number of persons.
Although PP-MAE and MAE appear to be closely related,
Fig. 2 confirms the absence of a direct correlation between
the two metrics. The lines composed of aligned points in
Fig. 2 correspond to frames with a fixed human count (as
their slope MAE/PP-MAE equals the number of individu-
als). Thus, comparing MAE vs. PP-MAE facilitates iden-
tifying the frames whose estimation error marginally de-
pends on the number of individuals and more likely stems
from other latent variables (e.g. camera position, weather
and lighting condition).
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4. Crowd Volume Estimation

In this section, we outline how we repurpose Human
Mesh Recovery (HMR) (Sec. 4.1) and adapt Crowd Count-
ing (Sec. 4.2) baselines for our task. In Sec. 4.3, we describe
the intuitions and methodologies of our proposed approach.

4.1. From HMR to CVE

We adapt CLIFF [25], BEDLAM-CLIFF [1], and Re-
Fit [59] to the task of CVE according to the following
pipeline: (1) identifying human occurrences using a hu-
man detector (HD) model, (2) determining the mesh for
each individual in the scene, and (3) calculating the vol-
ume of each mesh. Finally, the total crowd volume is ob-
tained by aggregating the individual volumes. We dub these
baselines as HD+HMR. A shortcoming of this approach is
that these methods rely upon an upstream human detector,
which can fail when multiple human instances populate an
image, as in the case of crowds. To marginalize this issue,
we also consider an oracular baseline that replaces the pre-
dicted bounding-box locations of humans in the scene with
the ground truth ones.

4.2. From Crowd Counting to CVE

To assess whether CVE can be naively solved without
the adoption of any specific strategy, we set a baseline
whose volume estimation stems from Cp 4 (I) x Vp, where
Cp. is a Crowd Counting model', I is the input image, and
Vp is the average per-person volume in the dataset D. As
a statistical reference, we further experiment with an orac-
ular version of this baseline that replaces C'p (I) with the
ground-truth count of image I, namely Oracular C'(I) x Vop.

Additionally, we adapt relevant Localization, Bayesian,
and Density Map approaches from Crowd Counting (cf.
Sec. 2.2). As for the Localization approach, we select P2P-
Net [49]. For CVE purposes, we adjust its architecture to
predict an array of (2+1) scalars, where the additional coor-
dinate represents the volume of the target person.

As Bayesian approaches we consider Bayesian+ [33] and
MAN [27]. We adapt them for CVE by appending an ad-
ditional branch that takes the estimated density map as in-
put and regresses the total volume in the input frame (cf.
Sec. 6.2 and Fig. 6 in the Supplementary Material).

For the Density Map method, we adopt the recent
STEERER [13]. Our adaptation preserves the original net-
work architecture while modifying the model’s supervision
technique: instead of using conventional counting density
maps that label a pixel representing a person’s head with
the value 1, we use Volume Density Maps, where we anno-
tate the pixel with the person’s total volume. This Volume
Density Map is then smoothed using a Gaussian filter.

'We use Bayesian+ [33]. In the Supplementary Material, we demon-
strate that, for counting purposes, it performs best on ANTHROPOS-V.

4.3. Per-part Volume Density Maps

In our proposed approach, we leverage ANTHROPOS-V
per-part volume annotations, discussed in Sec. 6.3. Driven
by the insight that volume is distributed throughout the hu-
man body, we enhance the proposed Volume Density Maps
approach to incorporate this concept. Specifically, since
ANTHROPOS-V provides fine-grained annotations of body
parts volumes of each character, we introduce Per-Part Vol-
ume Density Maps, where specific keypoints of each person
are assigned a portion of the total body volume. For in-
stance, each of the five torso keypoints will be attributed
with % of the torso-only volume. After smoothing this lo-
cal map, the volume is distributed over the interested body
parts (see the second column of Table 3 for visualization).
We train a STEERER-like model from scratch with these
annotations and dub this model as STEERER-V.

S. Experiments

In this section, we evaluate all methods’ performance on
ANTHROPOS-V quantitatively and qualitatively (Secs. 5.1
and 5.2). Sec. 5.3 provides the results of our best model on
real-world datasets.

5.1. Experimental Results

Table 1 reports results on the test set of ANTHROPOS-
V for the CVE task. All the baselines are trained on
ANTHROPOS-V. The HD+HMR baselines’ human detec-
tors are YOLOV7 [56] instances fine-tuned on our dataset.
HD-HMR methods do not perform well. The upper part
of Table 1 shows that HD+HMR methods report suboptimal
performance in CVE tasks. These approaches are limited
by the heterogeneous scales of individuals within crowd
scenes and the limitations of the HD, whose accuracy is
significantly marred by severe occlusions and challenging
environmental conditions. Note that HD not only fails to
generate a bounding box for some individuals, but it can
also propose multiple bounding boxes for the same person,
resulting in redundant volume estimations for the same
individual. Replacing the HD with an oracle that provides
GT bounding boxes yields a marked reduction in volume
estimation error, still reporting a rather large PPMAE with
respect to the Crowd Counting adapted baselines. This
is probably due to the elevated number of occlusions in
ANTHROPOS-V, which hampers the exact body shape
reconstructions (cf. Sec. 6.1 of Sup. Mat.). Our proposed
STEERER-V demonstrates superior performance, surpass-
ing all the oracle-enhanced HMR approaches.
Density maps help in CVE. STEERER demonstrates
superior performance among the methodologies adapted
from Crowd Counting and trained on Volume Density
Maps (second block in Table 1). This result suggests that
Bayesian [27, 33] and localization [49] techniques exhibit
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Model ‘ Oracle | MAE PPMAE | Inf. time

CLIFF [25] 6737 2141 145.7

BEDLAM-CLIFF [1] 6564  21.17 137.9

= ReFit [59] 5952 1879 170.0

E CLIFF [25] v 3702 12.89 56.68

BEDLAM-CLIFF[1] | v 3647 12115 49.73

ReFit [59] v 3468 1131 108.1

Bayesian+ [33] 578.09 17.31 37.50

& P2P [49] 590.91  17.07 61.16

= MAN [27] 557.90  17.03 81.84

g STEERER [13] 506.94  14.43 105.1

o Cp+(I) x Vp 507.97  14.39 37.50
Oracular C(I)xVp v 191.50 532 -

STEERER-V [13] | | 20559 673 | 105.1

Table 1. Results on ANTHROPOS-V, reported in dm?®. Infer-
ence time (ms) is measured on an NVIDIA A100. Methods are
divided into HD+HMR, Crowd Counting, and our proposed ap-
proach. Cg (I) refers to the headcount given by [33], while Vp
is the average human volume. Grayed-out lines use oracular infor-
mation and should not be directly compared with the other results.

suboptimal efficacy in CVE compared to architectures
purely based on density prediction. Indeed, STEERER-V,
a model built up from STEERER that benefits from the
proposed Per-Part Volume Density Maps during training
(cf. Sec. 4.3), reports the best performance. This superior-
ity is attributed to its capacity for fine-grained predictions,
enabling effective management of significant occlusions in-
herent in crowded scenarios. Quantitatively, STEERER-V
reports a minimal average error of 6.73 dm? per individual,
representing a 53.36% improvement over the most effective
Crowd Counting adapted model, STEERER.

Crowd Counting is not enough for CVE. Additionally,
Table 1 presents the results of the Cz (I) x Vp approach
(Sec. 4.2). This method underperforms when compared to
STEERER-V and its oracular counterpart. This is due to
the compounded error arising from substituting individual
body volume estimations with the average volume, Vp, as
well as the inherent detection inaccuracies of the counting
model, Cp4. This comparison underscores the significant
performance degradation that would result in practice from
naively applying a Crowd Counting strategy to CVE, high-
lighting the necessity for a specialized approach designed
specifically for VE.

When considering Oracular C'(I)x Vp, which mimics a per-
fect human detector, something unattainable in practical ap-
plications, the error is reduced. This comparison empha-
sizes the magnitude of the error introduced by the imperfect
detection carried out by Cp (I) x Vp.

It is worth noting that although STEERER-V does not
leverage any privileged information and consequently ex-
hibits imperfect detection, it is comparable with Oracular
C(I)xVp. This indicates that STEERER-V compensates
for its detection inaccuracies achieving a robust per-person
volume estimation, making it the best candidate for practi-

| Cp4(I) x Vp | Refit | B-CLIFF | CLIFF | STEERER | STEERER-V

3DPW 71.3/43 125/75 | 64.0/40 | 69.8/43 102/89 40.4/25
CH -30.0 -10.1 +1.00 -7.30 -3.40

Table 2. Evaluation on 3DPW and CrowdHumans (CH). Reported
metrics are MAE/PP-MAE (3DPW) and the difference between
the average real-world per-person volume and the predicted per-
person one (CH). B-CLIFF stands for BEDLAM-CLIFF.

cal CVE application. This quality primarily originates from
STEERER-V’s training strategy, which integrates body part
detection, mitigating false negatives caused by occlusions,
with expert knowledge of the volume contribution of each
body segment. An additional experiment where we sepa-
rately assess the contributions of the volume estimation and
detection errors to the total error is available in Supplemen-
tary Material’s Sec. 11.

5.2. Qualitative Evaluation

Table 3 presents the qualitative results of our proposed
method, STEERER-V, alongside the Per-Part Volume Den-
sity Map, which serves as its training supervision. Fur-
thermore, we provide qualitative results of STEERER and
BEDLAM-CLIFF. STEERER-V stands out as the top per-
former because of its robustness to occlusion and its ca-
pacity to generalize. The first row demonstrates that both
STEERER and STEERER-V perform well when heads are
visible and occlusions are minimal. However, STEERER
tends to hallucinate volume along the branches of trees,
probably because the model learned that such an object may
hide human heads. Contrarily, STEERER-V, designed to
distribute volume across the entire body, does not suffer
from this side effect, as it does not detect bodies in such sce-
narios. As occlusions intensify, particularly with multiple
people overlapping at a distance (second and third rows),
the performance gap between STEERER and STEERER-
V becomes more pronounced, with STEERER-V being no-
tably better. In the case of the dark image in the fourth row,
STEERER fails to recognize the volume of the person in the
foreground because their head merges with the background,
while STEERER-V focuses on visible body parts, such as
arms or legs, thus reducing the error. Additional qualitative
results are available in the Supplementary Materials.

5.3. From ANTHROPOS-V to real images

We assess the transferability of models trained on
ANTHROPOS-V to real imagery for CVE. Given the ab-
sence of suitable real-world datasets with volume annota-
tions for crowds, we employ a bifurcated evaluation ap-
proach: we use crowd-centric real-world datasets, such as
CrowdHumans [45], which lack volume annotations, and
mesh-based real-world datasets, such as 3DPW [53], which
allow ground-truth volume computation but do not fea-
ture crowds. For CrowdHumans [45], we address the lack
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ANTHROPOS-V GT Per-Part STEERER STEERER-V

PPMAE:9.9

BEDLAM-CLIFF
PPMAE:39.1

PPMAE:23.1

. PPMAE:0.9
@ o

Table 3. Visual results of baseline models and STEERER-V on ANTHROPOS-V, along with the Ground Truth Per-Part-Volume Density

Maps (GT Per Part). STEERER’s concentrates the volume on the heads, whereas STEERER-V distributes it across the entire body.

of volume labels by imputing the average real-world vol-
ume [46] for each individual in the images. We compare
these estimates with each model’s predictions (Table 2).
This experiment assesses the alignment of each model’s
predictions with expected crowd volumes, with STEERER-
V and CLIFF being the most aligned. STEERER-V un-
derestimates the expected volume by 3.40 dm? per person,
while CLIFF overestimates it by 1.00 dm3. Qualitative re-
sults on CrowdHumans are provided in the Supplementary
Materials. For 3DPW [53], we compare each model’s pre-
dictions against ground-truth mesh volumes. However, sev-
eral 3DPW images include unannotated persons, such as
cameramen or unscripted passers-by. Since no ground-truth
is available for these individuals, we manually excluded
these images from our test set, reducing the original test set
to 6989 images. Results indicate that STEERER-V trained
on ANTHROPOS-V outperforms all baseline models (Ta-
ble 2), with MAE and PPMAE registering at 40.40 and
25.28, respectively. Additionally, we evaluated STEERER-
V trained on datasets from [1] and [37] on 3DPW. In this
scenario, STEERER-V continues to showcase superior re-
sults, with its counterparts presenting increased MAE and
PPMAE to (59.72, 37.43) and (44.47, 29.15), respectively.

6. The ANTHROPOS-V dataset

Here we describe the generation of the proposed
ANTHROPOS-V (Sec. 6.1). We detail how we align in-
game meshes to the real-world statistics (Sec. 6.2) and how

we obtain SMPL meshes (Sec. 6.3). We also comment on
ANTHROPOS-V statistics and annotations (Sec. 6.4).

6.1. Dataset Generation

We construct ANTHROPOS-V exploiting the tools in-
troduced in [9, 1 0], which, leveraging the game engine from
Grand Theft Auto V (GTA-V), allow us to create densely
crowded scenes within photorealistic environments. GTA-
V provides several 3D urban settings, with different weather
and lighting conditions during day and night, and a broad
array of characters with diverse appearances, as depicted in
Fig. 3. In addition, differently from previous GTA-based
datasets [9, 10], to achieve a higher degree of photorealism,
we use a professionally designed mod [43] that enhances
the game graphics and improves the behavior and interac-
tion among characters. Moreover, it offers additional atmo-
spherical conditions and improves the physics in the scenes.

6.2. Alignment to real-world body-types

The original GTA-V meshes exhibit a narrow range of
variations in anthropometric features, with utterly repeti-
tive heights and volumes and a noticeable imbalance in gen-
der representation. To address this limitation, we carefully
revise the in-game meshes and code and generate a dis-
tribution of individuals that closely mirrors the real-world
one [44] concerning height, volume, and gender.

To achieve this purpose, first, we conduct an in-depth sta-
tistical analysis of the distribution of the characters’ anthro-
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Figure 3. Examples from ANTHROPOS-V, showcasing several lighting and weather conditions, camera angles, and a variety of physiques.
The crops in the zoomed boxes depict persons with differences in statures and body shapes.
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Figure 4. Statistical analysis of the distributions of mass, height, and Body Mass Index (BMI) of the individuals in ANTHROPOS-V. Solid
curves depict the empirical distributions, while dashed curves refer to the theoretically expected ones [46]. (4a) Distribution of the body
features of the characters’ meshes in GTA-V without any manipulation. (4b) Distribution of the body features of the characters’ meshes in
GTA-V after applying some geometrical transformations. (4c) Distribution of the body features of the resulting fitted SMPL meshes.

pometrics in GTA-V. We consider the mass?, height, and
Body Mass Index (BMI) of the male and female characters
in the game (from now on referred to as “in-game meshes”).
We estimate the mass by multiplying the body volume by
the average body density (1000 kg/m?® as in [7, 38]).

As theoretically proven by [46], such body features can
be represented with random variables M, H, B that follow
a log-normal distribution Ay, 0?):

M

M~ Muarsoig), H o~ Mpa,ogp), B=15 ()

Fig. 4 shows the empirical distributions (solid lines) as op-
posed to the expected distributions (dashed lines).

2medical literature refers to the body mass as “weight”, which in
physics refers to another quantity; we stick with the physics definition.

The body features of the original in-game meshes do
not adhere to the theoretically expected ones, especially for
the height that varies in a narrow range around the mean,
as evident in the middle plot in Fig. 4a. To mitigate such
mismatch and increase the variance, we scale the in-game
meshes along the three axes with scaling factors «, 3,y that
we independently sample from truncated normal distribu-
tions; we carefully choose the hyperparameters for this step
to avoid unfeasible and unnatural bodies and to end up with
meshes that appear realistic (qualitative results of the scal-
ing are reported in the Supplementary Material). The an-
thropometrics of the resulting meshes follow a distribution
that improves the approximation (Fig. 4b). Quantitatively,
the Kullback-Leibler divergence between the empirical and
the expected distributions, averaged across genders, de-
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creases by 27.9%, 63.3%, and 19.8% for mass, height, and
BMLI, respectively. The SMPL fitting process (Sec. 6.3) dis-
regards the clothing, thereby producing meshes that more
closely match the real-world distributions of height [44] and
BMI [36] (Fig. 4c). As a final remark, the BMI of the SMPL
meshes in ANTHROPOS-V ranges in [10, 50] kg/m?, rep-
resenting also underweight and obese individuals.

6.3. SMPL Fitting

To label each character with accurate ground truth vol-
ume, we employ a technique akin to the one described in
[37]. The fitting procedure ensures that the SMPL mesh
tightly conforms to the character mesh’s uncovered body
parts while allowing a looser fit on clothed parts. Details
about this process are described in the Supplementary Ma-
terials. We report that our SMPL meshes have an average
per skin vertex error of 7.32 mm and a penetration error of
10 mm for clothed vertices, where a looser fit is desired.
This measure indicates how much these vertices extend be-
yond the GTA-V mesh. Finally, we use the obtained meshes
to compute ground-truth volume labels for each character.
Notably, besides offering labels for the total body volume,
ANTHROPOS-V includes annotations for the volume of in-
dividual body parts obtained by slicing the SMPL meshes.
We divide the estimated meshes into nine sections: head,
torso, thighs, left and right arms, forearms, and calves. We
then calculate the volume of each of these parts separately.

6.4. Dataset Statistics

ANTHROPOS-V features 768 FHD videos with anno-
tated volumes, SMPL shape parameters, keypoints, and
camera parameters and position. Videos are recorded at 30
fps and display crowds moving in diverse urban scenarios.
ANTHROPOS-V features 701 distinct characters, each with
a variable number of outfits, resulting in over 3k unique ap-
pearances, interacting in 384 diverse scenarios with differ-
ent camera angles and weather conditions. To propose a fair
split, we divide characters into three disjoint sets of 495, 64,
and 142 that we distribute in different train, validation, and
test videos, respectively. Within crowded scenes, characters
engage with each other and with the environment, undertak-
ing interrelated actions. For instance, they avoid collisions
and form queues to navigate stairs or enter confined areas.

7. Limitations and Future Works

As the first endeavor to establish a benchmark for Crowd
Volume Estimation (CVE), our work lays the groundwork
for this emerging field. However, we acknowledge some
aspects of our work that present opportunities for future re-
finement.

We introduced ANTHROPOS-V aiming to bridge the
gap between synthetic and real-world data. While testing
the transferability of the learned knowledge on real im-

ages without fine-grained and precise volume annotations
may suffice to make an initial point on the validity of the
dataset, future work should embark on acquiring detailed
volume estimates of real images. Moreover, it may pursue
even larger crowds, increasingly complex and diverse in-
teractions, and estimates of objects other than people (e.g.
backpacks, bags, etc.). The current output of our model
provides a single per-frame number representing the total
crowd volume. While suitable for many applications, this
approach encourages exploration into more granular spatial
analyses that could further benefit fields such as civil en-
gineering, where detailed volume distribution information
might be valuable.

Finally, we acknowledge that the ethical implications of
CVE from images present complex challenges. Primary
among these is the privacy issue in public spaces, which
intersects with concerns about data security and the poten-
tial for misuse, as the underlying data could be adapted for
unintended surveillance purposes. Furthermore, bias in vol-
ume estimates due to potential underrepresentation in train-
ing data could lead to discriminatory applications. As CVE
technology evolves, these ethical considerations underscore
the critical need for robust guidelines and transparent de-
ployment protocols to ensure that the benefits of CVE can
be realized while safeguarding individual rights.

8. Conclusion

In this study, we have established the first benchmark for
Crowd Volume Estimation. We introduced relevant met-
rics and developed a dataset specifically designed for this
task, focusing on human crowds in real-world-like environ-
ments. Additionally, we evaluated baseline and oracular
models adapted from Crowd Counting and Human Mesh
Recovery domains. Furthermore, we proposed a novel su-
pervision approach called Per-Part Volume Density Maps,
which we utilized to train STEERER-V, achieving supe-
rior results. Given the challenges in gathering real-world
datasets for CVE, we anticipate that introducing this new
task and benchmark will ignite interest in the research com-
munity and inspire future endeavors in the field.
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