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Figure 1. From left to right: sample RGB image from the SynDRA dataset, its corresponding semantic segmentation ground truth, and the
extracted binary mask for ego track discrimination task.

Abstract

The use of deep learning techniques in railway environ-
ments faces significant obstacles, especially for computer
vision tasks. Such obstacles are mainly due to the inher-
ent safety concerns required for installing the proper equip-
ment on a train and the substantial effort required to pre-
cisely annotate large datasets, especially for segmentation
tasks. Public datasets of real-world images are quite scarce
and suffer from severe limitations, such as coarse manual
annotation or narrow range of scenarios. In addition, real-
world datasets often do not contain scenes that represent
critical situations. To address such limitations, this paper
introduces SynDRA, a synthetic dataset of photo-realistic
images generated using a railway simulator built on Un-
real Engine 5. SynDRA offers precise pixel-level anno-
tations across diverse scenarios, thereby facilitating more
effective testing and training of deep learning models for
semantic segmentation tasks in railway settings. The ad-
vantages of the proposed dataset are validated through a
series of experiments that highlight the potential of Syn-
DRA to enhance the performance of deep learning models
in scenarios where real-world annotated data is scarce. The
dataset is publicly available at the following link: https:
//syndra.retis.santannapisa.it

1. Introduction

In recent years, the railway sector has seen an increas-
ing interest in computer vision tasks, driven by the need

for automating a larger number of train operations [31], [2].
Despite such a growing interest, significant challenges re-
main to be solved to deploy deep learning models in rail-
way environments. One of the primary obstacles is due to
the safety concerns and permissions required to mount the
proper equipment on the train. Another difficulty is the sub-
stantial effort required to annotate large datasets, especially
for segmentation tasks.

The consequence of such difficulties is a scarcity of pub-
licly available datasets in the railway domain. In fact, most
of the datasets referenced in recent works [26] are not pub-
licly accessible, which significantly slows down research
and innovation. While the autonomous driving domain ben-
efits from a variety of computer vision datasets [35], the
railway domain is limited to only a few public datasets, such
as RailSem19 [36], for coarse semantic segmentation, and
OSDaR23 [30], for object and rail detection. These datasets
have their own limitations, such as a coarse manual annota-
tions or a limited scenario diversity.

Given these issues, simulators and synthetic datasets
present a promising alternative. Although synthetic data
is still far from perfect due to the distributional shift com-
pared to real-world images, and challenges such as memory
and computational issues when representing high-fidelity
meshes, recent advances in graphic engines have signifi-
cantly enhanced the quality of synthetic data. This progress
makes them a viable solution for generating large amounts
of data across diverse scenarios and operating conditions.

In particular, the use of dedicated simulators presents
several advantages with respect to an ad-hoc data acqui-
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sition campaign: (i) high flexibility to replicate a variety
of real-world scenarios with high fidelity; (ii) automatic
and fine-grained annotation of each generated image for
specific vision tasks; (iii) possibility of generating critical
corner-case situations, which are difficult to replicate in a
real environment, such as unauthorized pedestrian crossings
or the presence of various obstacles on the track (e.g., ani-
mals, rocks, trees); and (iv) possibility of changing weather
and lighting conditions, further enhancing the variety of the
generated data. In addition, the data generated by graphi-
cal simulators can be used for proof-of-concept validation
in conjunction with real-world data to enhance model per-
formance, as demonstrated in previous studies [28], [33].
Despite these advantages, there are currently few simula-
tors capable of generating synthetic data in railway envi-
ronments [11]. To fill this gap, this paper introduces Syn-
DRA, a public synthetic dataset specifically designed for
computer vision tasks in railway applications.

Generated using a railway simulator developed with Un-
real Engine 5 (UE5), SynDRA features photo-realistic im-
ages and corresponding ground-truth data for segmentation
tasks within railway environments, as illustrated in Figure
1. The dataset is designed to be updated with new scenar-
ios and operating conditions. Experimental results are also
presented to assess how synthetic data can enhance the per-
formance of vision models in these tasks. In summary, this
paper provides the following contributions:

• It presents SynDRA, a novel synthetic dataset for vi-
sual segmentation tasks in railway applications. The
dataset is designed to be easily extended with new en-
vironments or tasks, such as depth estimation and ob-
ject detection, as well as additional data streams from
different sensors, as LiDARs and infrared cameras.

• It presents a set of experiments that demonstrate the
benefits of using synthetic images in combination with
real-world samples for semantic segmentation and ego
track discrimination tasks. The results indicate that
incorporating synthetic data in the training phase en-
hances the model performance, especially when real-
world annotated data are scarce.

The remainder of this paper is organized as follows: Sec-
tion 2 analyzes the related literature; Section 3 presents the
characteristics of the dataset and details about data genera-
tion; Section 4 shows the experimental results; and Section
5 states the conclusions and possible future directions.

2. Related Work

This section reviews the existing open datasets contain-
ing real-world or synthetic images of railway environments.

Real-world datasets. As mentioned in Section 1, only
a few datasets for computer vision tasks in railway envi-

ronments are publicly available. One of the most notable
is RailSem19 [36], which includes 8,500 images from both
railway and tram scenes taken from different countries, in
all seasons, and under varying weather conditions. The
dataset was constructed by accurately sampling 530 video
sequences that were captured using a broad range of cam-
era models and mounting positions. The major strength of
this dataset is its great image variability, which is benefi-
cial for training robust neural models. On the other hand,
since images are filtered from real-world sequences, they
lack temporal coherence. In addition, the semi-automated
procedure used to annotate the segmentation masks of the
images is not always precise and consistent.

Another key dataset is OSDaR23 [30], which includes
45 sequences, for a total number of 1,534 annotated multi
frames, each composed of nine camera frames, one radar
frame and six LiDAR frames. Annotations include di-
verse types of labels such as bounding boxes and rail poly-
lines. Unfortunately, many of the subsequences are ac-
quired while the train is stationary, leading to multiple
frames with little or no variation. Additionally, the images
in this dataset are not labeled for semantic segmentation
tasks.

Other datasets provide valuable data for specific tasks,
such as railway traffic signal detection and recogni-
tion [13, 16], place recognition [29], and pedestrian [32]
or rail detection [19], but RailSem19 and OSDaR23 stand
out for their breadth and depth, making them crucial for
developing and testing visual perception tasks in railway
environments.

Synthetic datasets. Given the limitations of current
real-world datasets and the challenges outlined in Sec-
tion 1 regarding extensive acquisition campaigns, the re-
search community has turned to synthetic datasets to val-
idate algorithms in fully controlled environments. These
datasets can be divided into two categories: (i) those that
modify real-world images using generative AI techniques
and (ii) those generated by simulating virtual worlds.

Within the first category, Decker et al. [9] used Genera-
tive Adversarial Networks (GANs) to enhance RailSem19
by adding new images with different lighting and weather
conditions. RailSet [38] is another dataset specifically de-
signed for detecting anomalies in railway environments
such as holes and rail discontinuities. To address the lack
of publicly available anomaly samples, the authors used a
deep learning algorithm known as StyleMapGAN [14] to
synthetically generate images of abnormal scenes.

Similarly, Chen et al. [6] employed ChatGPT [22] and
diffusion models [27] to generate synthetic data for detect-
ing foreign objects on railroad transmission lines.

Finally, Li et al. [17] and Brucker et al. [5] used similar
approaches to randomly combine images of various obsta-
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cles with traffic scenes taken from the driver’s perspective
to create a synthetic training dataset for obstacle detection.

The latter category requires the creation of virtual worlds
and a simulator that generates sensory data, such as images
or point clouds, which closely resemble real-world data.

Examples of simulation environments of this type are
CARLA [10], widely used in the automotive domain, and
Gazebo [15], widely used for robotics.

In the railway domain, a similar approach was followed
by de Gordoa et al. [8], who developed a synthetic image
dataset by extending CARLA (built on UE4), to generate
railway imagery under diverse lighting and weather condi-
tions and labels for tasks such as semantic segmentation,
3D bounding boxes, and odometry. D’Amico et al. [11] in-
troduced TrainSim, a private simulation framework specif-
ically developed for railway environments using UE4, ca-
pable of generating images and point clouds for tasks such
as train localization and ego track discrimination. While
TrainSim utilized an earlier version of Unreal Engine, our
new framework leverages the latest version of UE5, unlock-
ing a higher level of graphical fidelity, performance, and
toolset capabilities. Notably, our framework leverages real-
world databases, such as OpenStreetMap (OSM), to accu-
rately reconstruct real-world environments with their inher-
ent complexity. Additionally, it incorporates dynamic ele-
ments, including moving vehicles and pedestrians, to cre-
ate realistic and highly detailed simulation scenarios that
closely mirror real-world conditions.

Other synthetic datasets generated from simulated envi-
ronments are RailEnV-PASMVS [4], which features images
of track geometry including rail components like the rail
profile, e-clip fastener, insulator pad, concrete sleeper, and
ballast, and SARD [21], which focuses exclusively on point
clouds of railway signals. Such datasets, however, fall out-
side the scope of this work as they target different tasks.

All these initiatives underline the growing importance of
synthetic data in overcoming the various challenges asso-
ciated with real-world data acquisition. By allowing a full
control of the railway environment and the generated sce-
narios, synthetic datasets play a crucial role for advancing
railway perception technologies. For a systematic review of
public datasets for railway applications, please refer to the
work by Pappaterra et al. [25].

3. Dataset generation and statistics
This section describes the procedure for generating the

SynDRA dataset: Section 3.1 illustrates the simulation and
dataset generation framework, Section 3.2 presents the vir-
tual scenarios used, and Section 3.3 details the labeling pol-
icy adopted for semantic segmentation and introduces some
dataset statistics. Some ethical considerations related to
real-world assets gathered from different databases are dis-
cussed in the supplementary material.

3.1. Simulation Framework

The simulator used to generate SynDRA is built on
UE5, leveraging its advanced rendering features to obtain
photo-realistic images. The generation process is illustrated
in Figure 2 and involves three key stages: Information Col-
lection, Scenario Development, and Simulation Execution.

Figure 2. Block diagram of the dataset generation process.

Information Collection. Accurate emulation of real-
world railway environments is achieved by collecting
information on railway routes, road networks, surrounding
landmarks, and height maps. Such data are used to generate
the virtual scenarios that closely reflect the complexity and
diversity of actual railway settings. While the simulator can
accept data from any source, OpenStreetMap [23] (OSM),
and BayernAtlas [1] are used. Additionally, highly realistic
3D meshes of railway infrastructure components are
obtained through two UE5 plugins, TrainTemplate [37] and
RailwaySystem [20], while other environmental assets are
sourced from the Epic Games Megascan Marketplace [12]
and various online marketplaces 1.

Scenario Development. The geo-referenced com-
ponents gathered from OSM are placed in the virtual
landscape automatically after a local coordinate conver-
sion: OSM provides information on railway paths, road
networks, surrounding landscapes and land use for specific
areas (such as farmlands, buildings, forests, and more);
the heightmaps from BayernAtlas are integrated into the
virtual world to replicate the terrain’s elevation accurately.
Each scenario is designed to cover a 4km-by-4km area,
consistent with the default landscape dimensions of UE5.
Figure 3 compares the simulated landscape with its real-

1Primarily: https://www.turbosquid.com/ and https://sketchfab.com
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world counterpart viewed from Google Earth 2.

(a)

(b)

Figure 3. Comparison between a SynDRA virtual scenario includ-
ing roads, railways, and farmlands derived from OSM (a) and its
real-world counterpart captured from Google Earth (b).

Simulation Execution. The framework simulates the
movement of trains, vehicles, and pedestrians within the en-
vironment. Train movement is governed by a first-order dy-
namic system that incorporates maximum speed limits ob-
tained from the OSM database. Virtual sensors are strategi-
cally positioned on the front of the train to capture data from
the train’s perspective. Specifically, the SynDRA dataset
employs a stereo camera system, where each camera has a
resolution of 1080×1920 pixels and a 90-degree horizontal
field of view. The cameras are aligned with the ground and
positioned 3.50 meters above the ground, with one camera
offset 30 cm to the left and the other 30 cm to the right of
the rail’s center-line. The Sensor Handler manages the data
acquisition process, while the Data Export module manages
the storage and organization of the collected data for subse-
quent analysis through visual algorithms.

3.2. Scenarios

The SynDRA dataset currently includes four distinct
4km-by-4km scenarios, each carefully designed to repre-
sent different railway environments:

• Scenario 1: it features a field landscape with roads run-
ning parallel to the railway. The two-way railway in-

2https://www.google.it/intl/it/earth/index.html

cludes multiple bridges crossing over roads and rivers,
providing a varied terrain with both natural and man-
made elements.

• Scenario 2: It is set along a two-way railway passing
through a tunnel, surrounded primarily by farmlands
and natural areas, with a small cluster of buildings near
the tunnel’s exit.

• Scenario 3: It includes a single rail track passing
through a dense forest and an urban area. The rail track
runs alongside a complex road network with multiple
crossings, bordered by various buildings and parking
areas on the right side.

• Scenario 4: It includes a two-way railroad starting
from a urban area with a station expanding into three
tracks before merging back into two. The route passes
through forest and farmland areas.

Each scenario is enhanced with distinct textures and ma-
terials for the terrain, as well as various meshes for trees,
rocks, and surrounding vegetation, providing a realistic and
immersive environment.

The simulation framework can also generate various
lighting conditions and weather effects. The dataset is pri-
marily organized by visibility condition: (i) High-Visibility
(HV) conditions, including scenarios with sunny weather
during morning, afternoon, and evening light; and (ii) Low-
Visibility (LV) conditions, includes scenarios under rain and
fog, all captured with the same lighting condition.

Each scenario is traversed in both directions, capturing
image sequences from different perspectives. For every sce-
nario, the dataset provides 2 sequences (forward and re-
verse), repeated across 3 HV conditions and 2 LV condi-
tions. These sequences are recorded from both left and
right cameras, resulting in 12 HV sequences and 8 LV se-
quences per scenario, totaling 48 HV sequences and 32 LV
sequences across all scenarios.

3.3. Labels Policy and Dataset Statistics

In SynDRA, class labels are listed in Figure 1 and in-
clude road, sidewalk, human, etc., as well as others railway-
specific labels for a detailed and nuanced segmentation of
the scene, as ballast-ext-other, sleeper-ext-other, ballast-
int-other, sleeper-int-other, railraised-other, ballast-ext-
main, sleeper-ext-main, ballast-int-main, sleeper-int-main,
and railraised-main. The terms “main” and “other” are used
to differentiate between the ego track (i.e., the railway on
which the train with the camera is running) and other nearby
or parallel tracks where other trains may be operating.

To ensure compatibility with existing datasets, class la-
bels are aligned with those used in RailSem19 [36] when-
ever possible. As Figure 4 shows, while RailSem19 uses the
trackbed and rail-track classes for both the ballast and the
sleepers, in SynDRA these classes are divided into specific
portions: the terms “int” and “ext” refer to the part between
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and outside the rails, respectively.
For the classes that are unique in SynDRA, a mapping

for aggregating these classes into the broader categories de-
fined in RailSem19 is straightforward to obtain. This ap-
proach allows SynDRA to be used alongside RailSem19,
facilitating transfer learning and comparative studies.

This choice of class labels ensures both flexibility and
domain-specific detail. In fact, by dividing the canonical
RailSem19 railway-related classes into several sub-classes,
a neural network may accurately discriminate specific por-
tions of the track, and the role of the track itself in the cur-
rent train operation. This distinction is useful for safety-
critical applications, where precise localization of the ego-
track is required, but it is highly adaptable to general-
purpose computer vision, where more specific labels might
not be crucial.

(a)

(b)

Figure 4. Correspondence between different classes in RailSem19
(a) and SynDRA (b). The mapping from SynDRA to RailSem19
combines outer-sleeper and outer-ballast into trackbed, inner-
sleeper and inner-ballast into rail-track.

Semantic labels were generated using a specific feature
of UE5, known as the custom stencil. In this process, each
virtual object is assigned a unique 8-digit value, and a cor-
responding UE5 post-processing material is applied to cap-
ture this information during camera acquisition. UE5 en-
sures that labels are densely populated and automatically
assigned, representing the visual elements within the scene.

A possible hurdle to the use of synthetic labels is the
extremely fine granularity of the segmentation mask. In
fact, overly fine-grained labeling, such as portions of sky
through tree branches, or the difference between inner
and outer ballast, may exceed the discriminating capacity
of some models and confuse neural networks, leading to
misclassification and reduction of segmentation accuracy.
For similar reasons, differentiating between the ego-track
and other tracks can introduce additional complexity, par-
ticularly in scenes with multiple tracks in close proximity.

Dataset Statistics. As discussed in Section 3.2, Syn-

DRA encompasses four distinct scenarios, each tailored
with specific objects during its design. Figure 5a illus-
trates the class distribution within each scenario, mea-
sured by the number of pixels. To facilitate a comparison
with state-of-the-art real-world segmentation datasets, Fig-
ure 5b highlights the proportional differences between Syn-
DRA and RailSem19. It is worth noting that SynDRA in-
cludes additional classes, requiring a specific mapping to
the RailSem19 classes. Note that all RailSem19 statistics
were calculated excluding images containing tram scenes,
as they do not align with our railway environments or our
railway-specific classes.

The statistics for the SynDRA dataset focus on a sin-
gle sequence from each scenario. Specifically, we report
the pixel counts from the left camera during a sunny, morn-
ing, forward-running sequence, as there is no difference be-
tween HV and LV segmentation masks, and distributions
from the left and right cameras and forward and backward
sequences are comparable.

4. Experimental Results
This section presents the results of the experiments car-

ried out on semantic segmentation (Section 4.1) and ego-
track discrimination (Section 4.2). Such results showcase
how a synthetic railway dataset might be used to increase
the final performance, especially when real-world data are
scarce. All the experiments have been performed on an
NVidia Tesla A100 GPU with 40 GBs.

4.1. Semantic Segmentation

Semantic segmentation is one of the most widely applied
tasks in scene understanding for driving applications [7].
Recent works have extended this task to railway scenarios,
using RailSem19 [36], which is the largest railway dataset
for semantic segmentation (see Section 2).

Implementation details. To evaluate the benefits of
introducing synthetic samples of SynDRA in the training
phase, we conducted several fine-tuning experiments on
two neural network models, BisenetX39 [34] and DDR-
Net23Slim [24], pretrained on Cityscapes [7] to avoid learn-
ing the feature extractor from scratch. The fine-tuning was
done using the RailSem19 dataset, filtering out all the im-
ages containing trams (which are not in the distribution of
interest) and those where the ego-track was not recogniz-
able due to the viewing angle, occlusions, or other factors.
The filtered dataset includes 6572 images, where 5000 sam-
ples were used for testing, while a variable number of sam-
ples (i.e., 15, 25, up to 250 samples) was used for training
to replicate situations where real-world training data is lim-
ited. Then, we trained the models with and without adding
extra synthetic data from SynDRA. When adding SynDRA
data, we used 50 samples from the morning sequence of
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(a)

(b)

Figure 5. SynDRA dataset statistics. (a) Pixel count for each class in each scenario. The statistics for each scenario are taken by the left
camera, morning, sunny, forward-running sequence; (b) Comparison between SynDRA and RailSem19 for the proportion of the number
of the pixels of each class. Please note that due to the definition of additional classes in SynDRA, multiple classes have been mapped to
a single class (Railraised, Rail-track, Trackbed); the scales are adapted to the proportion of each set of classes showed to allow a clearer
visualization of the numerical values.

each scenario, for a total number of 200 synthetic samples.
Note that a higher number of samples per scenario lead to
many repetitive frames, thus increasing the risk of overfit-
ting with SynDRA distribution (see suplementary material).

The fine-tuning process consisted of 1000 backward up-
dates, where all the models parameters were updated. The
Adam optimizer was used with a learning rate of 10−3 and
a batch size of 16. Data augmentation was applied to both
RailSem and SynDRA training images, using random crop
(512,512), random horizontal flip, and jitter. The standard
pixel-wise cross entropy was used as a loss function.

Regarding the addressed classes, potentially all those
available in SynDRA could be used (see Figure 5b). How-
ever, to ensure consistent mapping between RailSem19 and
SynDRA, we selected a subset of SynDRA classes, focus-
ing on the most essential for railway applications, as those
reported on the x-axis of the plot in Figure 6. Specifi-
cally, “Railway” includes the entire area within the tracks,
comprising railraised and internal track objects (ballast and
sleepers). “Trackbed” refers to the area outside the tracks,
including the external part of ballast and sleepers. Since the
models were originally pre-trained on Cityscapes [7], the

last linear layers were modified to fit the addressed number
of classes in railway scenarios.

Results. The results on test data after fine-tuning are
presented in Figure 6 for both BisenetX39 (top) and DDR-
Net23Slim (bottom). As shown in the left and center bar
plots, when limited labeled samples from RailSem are avail-
able (e.g., 15 and 25), the introduction of 200 samples from
SynDRA yields significant benefits across all the addressed
classes. Conversely, with a larger number of real-labeled
samples (e.g., 50), the results indicate that additional syn-
thetic samples have less impact, as the class-IoUs are ap-
proximately the same with and without SynDRA samples.
These conclusions are consistent for both the tested models,
highlighting how the use of SynDRA is beneficial when a
small number of real training samples are available.

In the supplementary material, we provide additional re-
sults for different amounts of RailSem samples, and fur-
ther experiments to understand the impact of using different
numbers of samples from SynDRA.

For completeness, Figure 7 shows segmentation outputs
obtained with DDRNet using 25 RailSem training samples
with (d) and without (c) the 200 SynDRA samples. As high-
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Figure 6. Finetuning results for Bisenet (top) and DDRNet (bottom) using different amounts of RailSem samples (15, 25, 50) with (blue)
and without (red) SynDRA samples. The tests were conducted over 3 runs, with the variation shown by error bars. In these runs, the
selection of samples from SynDRA and RailSem, as well as the seeds for applying data augmentation transformations, were randomized.

lighted in red, there is a notable improvement in the predic-
tion of poles and the railway area, demonstrating the bene-
fits of introducing synthetic data in the training phase when
labeled real-world data is scarce. Note that, as shown in
the ground truth annotations (b), the labels of RailSem are
sometimes noisy and particularly coarse, with some railway
objects being annotated quite ambiguously.

4.2. Ego-Track Discrimination

Ego-track discrimination is a segmentation-based task
aiming at detecting the portion of the image between the
two rails where the train is running. As a sub-problem of
rail detection, it has been studied and researched in previous
works [18], as it is an important step in the pipeline for the
more complex task of obstacle detection on the track [26].

In this case too, the experiments were designed to show
that using an additional synthetic dataset improves the
performance of a model trained on real-world data, by first
varying the number of RailSem19 samples while fixing
the SynDRA portion, and then doing the opposite. The
objective is to characterize how additional synthetic images
affect the final (real-world) performance, especially when
considering scarce availability of real-world images.

Implementation details. We used the DDRNet23Slim
[24] architecture, pretrained on the Cityscapes dataset. The
final layer was replaced with a linear layer with 2 output
channels to suit the binary segmentation task. Similarly
to the semantic segmentation experiments, we selected the

RailSem19 dataset for training, filtering out not relevant im-
ages (see previous settings).

The final evaluations were performed on the OSDaR23
dataset, selecting all the images from the sequences where
the train is moving, and only one from those where the train
is still, for a total of 465 samples. As mentioned in Section
2, since OSDaR23 was built from short sequences, it is not
really suitable for large-scale training (unlike RailSem19
which varies wildly in distribution); however, it closely re-
sembles a practical industrial computer vision application
in railway context, which is our specific interest. In both
cases, the binary mask of the image region occupied by
the track of the marching train was not readily available,
but could be obtained with a simple algorithm starting from
the annotated polyline of couples of rails. The mask was
created by running a polygon filling algorithm available in
OpenCV [3]. To discriminate the ego-track from the oth-
ers, the most centered one was selected; however, manual
checking was necessary on the RailSem19 dataset for the
extreme variations of the viewing angle. Additional details
on the labeling process are in the supplementary material.

From each experiment we report the average maximum
performance of 5 different 30-epochs runs, with starting
learning rate 1e-3, optimized with Adam.

Results. Figure 8a summarizes the results, comparing
the performance in terms of mIoU for the same architec-
ture trained on increasing number of RailSem19 samples
and a fixed number of SynDRA samples (50 for each se-
quence, 200 in total). Conversely, Figure 8b depicts the

3443



(a) Railsem tested images (b) Ground Truth (c) Outputs w/o SynDRA samples (d) Outputs w/ SynDRA samples

Figure 7. Illustration from the tested samples of RailSem. The output predictions were obtained using a DDRNet trained with (d) and
without (c) SynDRA samples. Areas of greatest interest are highlighted in red to show the improvements.

(a)

(b)

Figure 8. (a) Results for ego-track discrimination as a function
of the number of RailSem19 samples, fixing the number of Syn-
DRA samples to a total of 200. (b) Results for ego-track discrimi-
nation, fixing the number of RailSem19 samples to 500 and vary-
ing the total number of SynDRA used. The error bars depicts the
standard deviation among the 5 randomized runs.

same metric when fixing the number of RailSem19 sam-
ples to 500, while varying the number of SynDRA sam-
ples used for training. Additional metrics are reported in
the supplementary material. The performance on ego-track
discrimination is non-negligibly improved by the introduc-
tion of the SynDRA samples, at least when less than 2000
samples from the real world are available. Notably, the
use of SynDRA images not only improves performance
but also helps stability, as the standard deviation decreases.

It is also important to note that increasing the number of
RailSem19 samples is not always correlated with perfor-
mance improvement, as there is a clear fluctuation in Fig-
ure 8a. This might be due to the fact that RailSem19 is
a highly-varied dataset that includes all sorts of images.
Hence, when a small subset is used, it is possible that the
influence of an additional “bad” sample reflects in a drop in
performance. Conversely, SynDRA images are much more
similar to OSDaR23 and, up to a certain number of samples,
help RailSem19 with the domain shift.

5. Conclusion

To address the limited availability of railway vision
datasets and simulated environments, this work introduces
SynDRA, a synthetic dataset generated using Unreal Engine
5. SynDRA provides photo-realistic images with precise
pixel-level annotations. The design of these environments
was carefully planned and supported by analysis, while the
generation pipeline allows for easy extensions of new sce-
narios and integration of other annotations.

Experimental tests showed that SynDRA’s annotated
samples enhance the performance of vision models in se-
mantic segmentation and ego discrimination tasks, specifi-
cally in situations where real-world annotated data is scarce.

Future work will build upon the versatility of the gen-
eration pipeline by extending the dataset with new sce-
narios, the integration of LiDAR sensors and object de-
tection, and further analysis with low-visibility data. The
current version of the dataset, which includes four distinct
scenarios collected under varying conditions, is publicly
available for download at https://syndra.retis.
santannapisa.it.
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