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Abstract

Self-driving research often underrepresents cyclist colli-
sions and safety. To address this, we present CycleCrash,
a novel dataset consisting of 3,000 dashcam videos with
436,347 frames that capture cyclists in a range of critical
situations, from collisions to safe interactions. This dataset
enables 9 different cyclist collision prediction and classifi-
cation tasks focusing on potentially hazardous conditions
for cyclists and is annotated with collision-related, cyclist-
related, and scene-related labels. Next, we propose Vid-
NeXt, a novel method that leverages a ConvNeXt spatial
encoder and a non-stationary transformer to capture the
temporal dynamics of videos for the tasks defined in our
dataset. To demonstrate the effectiveness of our method and
create additional baselines on CycleCrash, we apply and
compare 7 models along with a detailed ablation. We re-
lease the dataset and code at https://github.com/
DeSinister/CycleCrash/.

1. Introduction

The growing popularity of cycling as a sustainable and
healthy means of urban commuting brings inherent risks
and safety concerns placing cyclists among the most vul-
nerable road users [34, 49]. Recent studies show that over
130,000 cyclist injuries occur annually due to crashes, while
cyclist fatalities have grown by more than 50% over a
decade [11, 31]. While machine learning has provided a
means to address many problems related to self-driving ve-
hicles, the development of such data-driven solutions for
cyclist safety is hindered by the lack of available data that
is targetted for this particular problem [18, 32].

Some recent self-driving vehicle datasets [27, 47, 63, 64]
have considered bicycles alongside cars for tasks such as
object recognition, time-to-collision, and traffic scene un-
derstanding. However, the limited representation of cyclist-
related instances in these datasets poses a challenge, as they
make up only a small proportion of the data. For exam-
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Figure 1. A few samples from CycleCrash showcasing various
cyclist-related interactions with different vehicles along with col-
lision severity levels.

ple, among widely used urban driving datasets, DoTA [63]
contains only 1,031 frames with at least one cyclist, while
KITTI [21] has only 1,627 such frames. Moreover, while
datasets like SUTD-TrafficQA [61] explore causal consid-
erations like fault, the existing datasets do not explicitly
provide the necessary annotations to facilitate cyclist safety,
such as cyclist behaviour risk levels or collision severity.

To address this issue and facilitate deep learning solu-
tions for cyclist safety, we present CycleCrash, a novel
dataset that explicitly addresses several key challenges in
this area. CycleCrash comprises 3, 000 videos sourced pri-
marily from the web. In summary, we make the following
contributions. (1) CycleCrash comprises 3,000 video clips
of cyclist-related scenes along with 13 types of annotation,
organized into the 3 categories of collision-related, cyclist-
related, and scene-related. Fig. 1 shows different interac-
tions of cyclists in the CycleCrash dataset along with asso-
ciated collision severity levels. (2) We define 9 key tasks
(classification or regression) based on our dataset, with im-
plications on cyclist safety. (3) To accurately perform the
defined safety-related tasks based on the collected data, we
propose VidNeXt, a novel architecture for video represen-
tation learning. VidNeXt combines a ConvNeXt feature ex-
tractor with a non-stationary transformer for the first time
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Dataset Year Duration (hr) Clips Cyclist Frames Cyclist BBox Collision Time Cyclist Age Risky Behav. Severity Fault Right-of-way Cyclist Dir.

KITTI [21] 2012 1.5 22 1,627 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
DAD [12] 2017 2.4 1,730 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
CCV [40] 2018 0.1 177 ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
CADP [47] 2018 5.2 1,416 <50k ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
DACACD [6] 2019 5.0 392 ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
A3D [64] 2019 3.6 1,500 ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
STAG-Nets [27] 2019 8.9 803 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗
BDD100k [66] 2020 1,111.1 100k 13,122† ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
DoTA [63] 2020 20.0 4,677 1,031 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗
WOD [51] 2020 10 1,000 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
nuScene [10] 2020 5.5 1,000 <11.8k ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
CCD [5] 2020 6.3 1,500 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗
RetroTrucks [24] 2020 1.9 474 ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
DADA2000 [19] 2021 6.1 2,000 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SUTD-TrafficQA [61] 2021 ✗ 10k ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Lyft Level5 [28] 2021 1,118 170k 20,928† ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CycleCrash (ours) 2024 4.1 3,000 436k ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of CycleCrash against existing datasets. † indicates partial annotation, ✓ indicates that the label is available, while
✗ indicates that the information/label is unavailable or unknown.

and is, explicitly designed to learn both stationary and non-
stationary spatiotemporal information from videos, which
allows it to perform accurate prediction and classification.
Through extensive experiments, we show that our model
outperforms various baselines on most CycleCrash tasks.

2. Related Works

We summarize existing crash-related datasets from the
literature in Tab. 1, and observe that none specifically fo-
cus on cyclists. Therefore in this section, we present the
next most relevant body of work, i.e., datasets and methods
focusing on self-driving vehicles, and car collisions.
Car Collision Datasets. Early datasets focusing on car
collisions, such as Car Crash Videos (CCV) [40] and its
successors [6, 47, 50, 61], include annotations of car colli-
sions viewed from the vantage of fixed perspective cameras
such as pole-mounted CCTV cameras. In contrast, newer
datasets use dashcam videos widely accessible from inter-
net sources. As observed in Tab. 1, CADP [47] offers the
highest number of cyclist frames among the datasets that re-
port this count, with fewer than 50,000 frames. This demon-
strates a clear gap, as it encompasses only about one-ninth
of the cyclist frames available in the CycleCrash dataset.

Additionally, it is observed that despite containing 3,000
video clips, CycleCrash’s total duration is only 4.1 hours,
which is shorter than some other datasets containing fewer
video clips. This is expected because we temporally crop
the video clips in CycleCrash to exclude those parts of the
video which do not contain relevant cyclist information.

A wide variety of methods for addressing traffic safety
have been previously outlined, such as identifying the oc-
currence of collisions which was first introduced by the
DAD dataset [12], ‘time-to-collision’ which was coined
by the CADP dataset [47], as well as SUTD-TrafficQA
dataset [61], which is a video-based question-answering

dataset that also includes causal considerations such as
‘fault’. However, annotations such as ‘right-of-way’ have
been relatively unexplored. CycleCrash introduces novel
annotations such as the ‘cyclist behaviour risk index’ and
‘severity’, which have not been utilised before to the best
of our knowledge. These annotations can play an impor-
tant role in responding promptly to avoid collisions, as well
as potentially alerting first responders in critical situations.
Furthermore, the types of annotations in existing datasets
are often fragmented, highlighting the absence of a unified
dataset with credible cyclist frames and a comprehensive
collection of annotations for cyclist safety. Owing to its
specific cyclist-related focus, CycleCrash provides a unique
resource to enable increased cyclist safety, e.g., cyclist ac-
cident prediction, time-to-collision forecasting, etc., for the
autonomous driving and driver assist research community.
Methods. The evolution of urban-traffic-related video clas-
sification and detection methods closely aligns with dataset
diversity. Early approaches focused on conventional meth-
ods such as YOLO [9] for binary collision detection [40].
Convolutional neural nets (CNNs) when in combination
with LSTMs [43], or in the form of 3D-CNN (such as
ResNet3D, X3D, DensNet3D etc.) [20,23] show prominent
application in urban traffic video-based tasks [3,42,62,67],
although they are somewhat computationally expensive.
R(2+1)D [55] was introduced to address these computa-
tional drawbacks with divided spatial and temporal CNNs.

Transformers [56] have demonstrated tremendous suc-
cess in the vision domain, and have been adapted for urban-
traffic-related video tasks including object detection, mul-
tiple object tracking [29], natural driving action recogni-
tion [15] and anomaly detection [1, 13, 16, 37, 48] . Exam-
ples of such transformer-based methods include ViViT [4],
VideoMAE [54,58] and TimeSformer [8], all of which also
apply similar spatiotemporal division potentially inspired
by R(2+1)D. However, they still are ineffective in captur-
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ing global representation and aren’t specifically designed to
handle stationary and non-stationary elements of temporal
information. In processing the temporal domain, a common
pre-processing step is to adopt stationarization to improve
predictability, albeit at the cost of losing non-stationary in-
formation. We propose VidNeXt to address this issue by us-
ing both stationary and non-stationary components for im-
proved video representation learning (see Sec. 4).

3. CycleCrash Dataset
To address the limitations identified in prior works re-

garding cyclist safety, we introduce CycleCrash. In this
section, we describe the collection procedure, data format,
annotations, and other details of this dataset. The dataset
along with the tool kit (see Appendix A for details) will be
made publicly available upon publication of the work.

3.1. Data Collection

We curated the dataset from the web, namely from
YouTube [65], Vimeo [57], DailyMotion [14], Facebook
[17], Instagram [30], X (formerly known as Twitter) [60],
and TikTok [53]. Each video contains one or more cyclists,
as viewed from vehicle dashcams. The following are the
criteria used to qualify a video for inclusion in our dataset,
where the first four constitute a collision or a near-miss:

• There exists a collision or near-miss involving a cyclist
and a motor vehicle (i.e. car, motorcycle, bus, etc.);

• There exists a collision between a cyclist and a pedes-
trian or another cyclist;

• There exists a loss of balance or fall due to potholes,
animals, mechanical failure of the bicycle, etc.;

• There exists risky behaviour shown by the cyclist, jus-
tifying the need for extra attention to be given by
drivers to prevent a collision;

• There exists a cyclist navigating safely in an urban traf-
fic scenario, without depicting risky behaviour or be-
ing involved in a collision or near-miss.

The dataset comprises 3,000 video clips, out of which 2,000
are accident-free and 1,000 exhibit potential accidents of
various levels of severity and near-misses involving a cyclist
of interest. We collected dashcam videos instead of fixed-
perspective CCTV footage to facilitate the development and
integration of cyclist collision warning and mitigation sys-
tems in vehicles.

3.2. Data Format and Structure

CycleCrash is a curated list of video links accompa-
nied by precise start and end timestamps. All videos are
sourced explicitly from public posts, ensuring no private
videos are used. Following established practices from prior
works, such as [5, 63, 64], we do not download or share
the videos. Instead, we provide links to the original videos
along with the relevant timestamps. We create and include

a library with our dataset, that downloads and pre-processes
the videos for uniformity in spatiotemporal properties. Our
pre-processing pipeline includes:
Temporal Cropping. Each video is temporally cropped
based on the provided start and end times.
File Conversion. All videos are converted to .mp4 format.
Spatial Cropping and Scaling. Videos are rescaled to a
uniform resolution of 1, 280 × 720 pixels using interpola-
tion. When a video is not in a 16/9 aspect ratio, they are
cropped before rescaling to achieve the desired aspect ratio.
Frame Rate Adjustment. Videos are adjusted to a consis-
tent frame rate of 30 frames per second (fps). For videos
that were initially higher than 30 fps, our library performs
temporal sub-sampling, whereas, for videos with lower fps
rates, the library performs up-sampling using interpolation.
Color Normalization. Videos are z-score normalized.

3.3. Dataset Annotation

We conducted a comprehensive survey on possible at-
tributes for safety [33,48,52] and compiled a list, which we
then narrowed down to 13 annotations based on perceived
importance. The 13 different annotations, organized into
three categories, are as follows:
Collision-related, which refers to characteristics associ-
ated with annotations in the context of a collision or close
call. Factors like the right-of-way and time of collision con-
tribute to enabling autonomous vehicles to predict and avoid
collisions. They include ‘right-of-way’, ‘time-to-collision’,
‘type of object involved’, ‘fault’, ‘severity’;
Cyclist-related, which captures information regarding the
cyclist of interest e.g., cyclist behaviour risk index, age or
appearance. They include ‘cyclist behaviour risk index’,
‘cyclist age’, ‘cyclist type’ (competitive or recreational),
‘cyclist bounding box’, and ‘direction of the cyclist’;
Scene-related, which provides additional information re-
garding the motion of the vehicle involved in the scene, as
well as the cameras used to capture the videos. They include
the ‘direction of the object involved’, ‘camera position’, and
‘ego-vehicle involved’.

We present a detailed description of each annotation in
Tab. 2, and examples of annotated videos in Fig. 2 (addi-
tional visuals are presented in Appendix F).

3.4. Quality Control

The videos were collected based on search terms such
as ‘cyclist hitting car’, ‘bicyclist car accident’, ‘cyclist ac-
cident dashcam’, and others (please see the full list in Ap-
pendix B). The videos were automatically processed to en-
sure their frame rates were at least 20 fps, and that their
resolutions were greater than 854 × 480 pixels. Following
this, they underwent further human inspection to ensure the
conditions in Sec. 3.1 were met. The selected set of videos
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No. Annotation Description Options
1 Right-of-way Binary label capturing the priority between the cyclist

of interest and others involved (e.g., vehicle, other cy-
clists, pedestrian)

Yes, No

2 Time-to-collision Exact timestamp on which the collision begins if one
exists in the video clip

Timestamp (if a collision occurs)

3 Type of object involved 17-class categorization to describe the type of object
involved in the interaction

Car, Bus, Train, Cyclist, Pedestrian, Pothole,
Animal, etc.

4 Fault Binary label determining whether the collision was
the cyclist of interest’s fault

Yes, No

5 Severity 5-class categorization to describe the intensity of the
collision

Safe, Minor, Moderate, High, Very high

6 Cyclist behaviour risk index 4-class categorization to indicate the risk levels por-
trayed by the cyclist

Low, Moderate, High, Very High

7 Cyclist age 3-class categorization of the age of the cyclist. Young, Adult, Old
8 Cyclist type Binary label capturing if the cyclist is participating in

competitive or recreational cycling
Competitive, Recreational

9 Cyclist bounding box Bounding box captured around the interested cyclist Coordinates in x,y,w,h format
10 Direction of the cyclist 5-class categorization of the direction of the cyclist’s

motion as observed from the ego-vehicle along the
medial and lateral directions

Forward (+ve medial motion x+), Backward
(-ve medial motion x−), Left (-ve lateral mo-
tion y−), Right (+ve lateral motion x+), and
stationary (no motion)

11 Direction of the object involved 5-class categorization of the direction of the object
involved as observed from the ego-vehicle along the
medial and lateral directions

Forward, Backward, Left, Right, Stationary

12 Camera position Categorization based on the camera’s position
(Front/Back) and the camera carrying vehicle

Front dashcam, Back dashcam, Front cyclist-
helmet camera etc.

13 Ego-vehicle involved Binary label indicating whether the ego-vehicle is in-
volved in a collision or not

Yes, No

Table 2. Descriptions of annotations provided in CycleCrash along with possible options.

were then preprocessed and filtered algorithmically into the
common configuration described in Sec. 3.2.

To ensure bias mitigation for subjective annotations such
as risk, we provided labellers with detailed instructions to
pay attention to traffic rules, legal speed, distance from
other objects and vehicles, etc. For age, labellers were in-
structed to consider the visual appearance of the cyclist. For
severity, labellers were asked to pay attention to collision
impact and degree of estimated injury caused to the cy-
clist. When video data lacked sufficient information to con-
fidently determine scores for ‘right-of-way’, ‘fault’, ‘age’,
and ‘cyclist type’, annotators were asked to use ‘-1’. Each
video was annotated by three different labellers with valid
driving licenses and sufficient knowledge of traffic condi-
tions. We employed the Latin Square method [7] for la-
belling, which presented each labeller with an equal dis-
tribution of tasks and scenarios, thereby reducing bias and
enhancing the quality of the dataset’s annotations. For cate-
gorical annotations we use the median, while for continuous
labels, an average of the values is used. Qualitative labels
including ‘risk’ and ‘age’ have been previously labelled in
other datasets [35, 52], and we followed a similar labelling
protocol. Lastly, we follow [2, 46], and use Randolph’s Co-
efficient [44] to measure inter-annotator agreement for ‘cy-
clist age’ (0.81), ‘severity’ (0.76), and ‘risk’ (0.84), which
are considerably higher than previous works and indicate
substantial agreement among labellers.

3.5. Tasks and Metrics

We define 9 tasks based on the labels, as follows.
Task 1: Cyclist Behaviour Risk Index Prediction esti-
mates the cyclist’s level of risky behaviour based collected
for our dataset which is first recorded on a continuous scale
of 0 to 1 and subsequently quantized into the 4 classes
‘Low’, ‘Moderate’, ‘High’, and ‘Very High’, to reduce sub-
jective variability and cast the task as a classification prob-
lem rather than regression. We adopt accuracy and F1 as the
metrics to quantify the performance on this task.
Task 2: Right-of-way Classification involves classifying
the priority in a cyclist’s interaction with another vehicle or
pedestrian. We treat this task as a binary classification to
determine if the cyclist has the right-of-way or not. We use
accuracy and F1 to evaluate performance on this task. Al-
though a few prior works [5, 61] have implicitly analyzed
right-of-way as a fault-related factor, they have not exclu-
sively outlined right-of-way as a separate task.
Task 3: Cyclist Collision Anticipation predicts whether
the sequence will result in a collision or not within a speci-
fied timeframe of t seconds, where t is a predefined horizon.
Prior works [5, 6, 24, 40, 61, 63] have explored this task in
other contexts using horizons ranging from 0.33 to 0.64 sec-
onds, whereas we standardize on a horizon of 1 second. We
use binary accuracy to quantify performance on this task.
Task 4: Time-to-Collision Prediction is a regression task
that involves predicting the exact moment when a collision
with a cyclist will occur following the completion of the
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Time to collision: 2.6 seconds Time to collision: 1.4 seconds Time to collision: 0.2 seconds

(a) A young recreational cyclist, with a very high risk index, and a direction of left to right, is depicted. A car
carrying the dashcam records another car driving forward and colliding with the cyclist at 2.6 seconds from the first
frame. Here the car had the right-of-way and the cyclist was at fault.

Time to collision: 2.4 seconds Time to collision: 1.2 seconds Time to collision: 0.00 seconds

(b) An adult recreational cyclist, with a low risk index, and a direction of right to left, is depicted. A dashcam on a
car records another car driving forward and colliding with the cyclist at 2.4 seconds from the first frame. Here the
cyclist had the right-of-way and the car was at fault.

Time to collision: 1.6 seconds Time to collision: 1.1 seconds Time to collision: 0.2 seconds

(c) A young recreational cyclist, with a moderate risk index, and a backward direction, is depicted. A car carrying
the dashcam drives forward and collides with the cyclist at 1.6 seconds from the first frame. Here the car had the
right-of-way and the cyclist was at fault.

Figure 2. Sample frames from 3 video clips along with descriptions and annotations from the CycleCrash dataset.

video sequence. We use MSE for the evaluation of this task.
Task 5: Severity Classification indicates the impact of an
accident on the cyclist into 5 classes: ‘safe’, ‘minor’, ‘mod-
erate’, ‘high’, and ‘very high’. We employ both accuracy
and F1 as evaluation metrics for this task.
Task 6: Fault Classification involves characterizing the
fault in the case of a collision or a near-collision between
the cyclist and the other object involved. We treat this as a
binary classification task to estimate whether the cyclist was
at fault. We use accuracy and F1 to evaluate performance
on this task.
Task 7: Cyclist Age Classification involves classifying the
age of the cyclist of interest into one of the three categories:
‘young’, ‘adult’, or ‘old’.
Task 8: Direction of the Cyclist Detection classifies the fi-
nal direction of the cyclist in the given video into five differ-
ent possible classes: ‘forward’, ‘backward’, ‘left’, ‘right’,
or ‘stationary’. We employ both accuracy and F1 as evalu-
ation metrics for this task.
Task 9: Direction of the Object Involved Detection is a
similar task to ‘Direction of the Cyclist Detection’, which
aims to estimate the final direction of the other object in-
volved with the five possible categories.

For the task of ‘Cyclist Behaviour Risk Index Predic-
tion’, ‘Direction of the Cyclist Detection’, and ‘Cyclist Age

Classification’, all 3, 000 videos (both collision and safe)
were considered. For the rest of the tasks, the 1, 000 colli-
sion or near-miss videos were used. We provide the results
for a multi-task implementation with all 9 tasks in Appendix
C and discuss future research directions in Appendix D.

3.6. Data Statistics

The proposed CycleCrash dataset contains 3, 000 videos,
with durations varying from 1.5 to 21 seconds, totalling
over 436, 347 frames. We present the key statistics of our
dataset in Fig. 3 and Fig. 4. Fig. 3 (i) illustrates the dis-
tribution of time-to-collision in seconds, while Fig. 3 (ii)
highlights the distribution of the duration of all video clips
in the dataset. Fig. 3 (iii) provides a breakdown of the types
of objects involved in cyclist collisions. We observe that
in the majority of videos, the other object involved is the
car as expected. Fig. 3 (iv) presents the distribution of in-
stances across different cyclist behaviour risk indexes, sug-
gesting that in most cases, cyclists show reasonably low-
risk behaviour across the dataset. Fig. 3 (v) depicts the per-
ceived age distribution of the cyclists in the videos, indicat-
ing that the majority of subjects are adults. Finally, Fig. 3
(vi) presents the fault distribution, demonstrating that fault
is reasonably similar between cyclists and others.

Fig. 4 (i) displays the frequency of collisions based on
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Figure 3. Distribution of CycleCrash data for (i) time-to-collision,
(ii) duration of video clips, (iii) other objects involved, (iv) be-
haviour risk index, (v) age, and fault.

Figure 4. Relationship between (i) direction of cyclists and objects
involved in collisions, (ii) fault and age.

the directions of the cyclist and the other objects involved
relative to the ego-motion of the dashcam. It is observed
that the highest number of collisions occur when the di-
rection of the cyclist is toward the left and the direction
of the other object involved is forward. Additionally, we
observe that the lowest collisions occur when the cyclist
is stationary. To clarify, the occurrence of rare accidents
between stationary cyclists and stationary objects (n = 2)
refers to instances where the object, e.g., a traffic sign, falls
on a stationary cyclist. Moreover, Fig. 4 (ii) presents fault
against cyclist age, where we observe that young cyclists
are 3 times more likely to be at fault compared to adults,
while this factor is 1.6 times for older cyclists. Additional
statistics are provided in Appendix E.

4. Proposed Method: VidNeXt

Videos, like most time-series data, contain both station-
ary (information with constant statistical moments in time)
and non-stationary components. State-of-the-art video
learning networks, however, have not been designed with
explicit learning of stationary and non-stationary informa-

tion in mind. This, we believe, can inhibit robust forecast-
ing [36,59,68,69], which is a key factor for the tasks defined
based on our dataset. To address this issue and effectively
perform the tasks facilitated with CycleCrash, we design
VidNeXt (see Fig. 5a), a model that employs a dedicated
spatial learner followed by temporal encoding of both sta-
tionary and non-stationary information.

The spatial component of VidNeXt is a ConvNeXt [38]
feature extractor. This encoder is a CNN which borrows
design elements from transformers and is, therefore, more
compatible with them [38] through leveraging layer nor-
malization and GELU activations [26]. We empirically
find that the base version of ConvNeXt [38] works best
for our purpose. This is followed by an encoder-decoder
transformer [36] comprising transformer blocks with de-
stationary attention (see Fig. 5b) which was originally de-
signed for time-series forecasting.

The temporal component in VidNeXt, as demonstrated
in [36], involves the normalization of a series of embed-
dings (see Fig. 5a), along with the computation of statistical
moments such as mean and variance. This normalization
process results in stationary series x′ containing stationary
information. Subsequently, the attention mechanism cal-
culates attention scores based on this stationary series. To
incorporate the non-stationary component into the attention
scores, they are rescaled using re-scaling factors (∆) and
(τ ) in the self-attention block, referred to as ‘de-stationary
attention’. These factors are determined via a projector
based on the raw data x and the statistical moments cal-
culated during normalization. Following this, the output
embeddings from the encoder-decoder architecture (y′) are
de-normalized using the previously calculated means and
variances. Finally, an MLP head is applied to the video em-
beddings according to the specific requirements of one of a
number of tasks.

The motivation behind disentangling complementary el-
ements, namely stationary and non-stationary information,
stems from two main factors. First, stationarization aims to
attenuate non-stationarity, leading to improved predictabil-
ity. Second, while stationarized series may offer better
predictability, they may offer limited insights for forecast-
ing real-world spurious events. This limitation can result
in over-stationarization, where transformers generate indis-
tinguishable temporal attention for different series. Thus,
re-incorporating intrinsic non-stationary information such
as statistical moments of spatial embeddings is crucial for
enhancing overall predictability. The non-stationary trans-
former in [36] was originally used for time series forecast-
ing with an input time series sequence of length 96 and a
prediction sequence of length 48. We modify the time se-
ries sequence length to match the number of frames in the
input, which in our case is 30. We also set the prediction
length to a value of 1, to indicate a 1D vector representing
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(b) Transformer block with de-stationary attention

Figure 5. (a) The architecture of the proposed method, VidNeXt is presented. First, ConvNeXt is used to encode the video frames. Next,
the frame embeddings are normalized for stationarity. Non-stationary information is reintegrated into the transformer blocks via rescaling
factors τ and ∆, determined by the projector based on the previous normalization layer. (b) Architectural details of transformer with
de-stationary attention.

the whole video. We use the same output embedding di-
mension of ConvNeXt as the input embedding dimension
length of the encoder and decoder.

5. Experiments

Dataset Splits. We randomly partition the videos into train-
ing and testing sets with 7 : 3 ratio. Each video is then seg-
mented into 1-second sequences with 0.5-second overlaps.
We provide the code to obtain the fixed splits to allow fair
comparisons.
Baseline Models. For baseline comparisons, we have
selected models widely adopted in the community for
video processing tasks: ResNet50 3D [23], R(2+1)D [55],
X3D [20], TimeSformer [8], and ViViT [4]. ResNet50
3D, R(2+1)D, and X3D are used as common convolutional
video learners. Notably, we use the X3D-XS, X3D-S, and
X3D-M versions, which use 4, 13, and 16 input frames
respectively. Additionally, we include TimeSformer and
ViViT as competitive transformer-based methods. All the
baseline models input a common frame size of 224×224. In
addition to the baselines, we present two ablation variants
to isolate the impact of the spatial and temporal components
of VidNeXt. In the first variant (ConvNeXt+VT), we use a
vanilla transformer (VT) instead of a non-stationary trans-
former (NST) for the temporal component, while the second
variant (ResNet+NST) involves ResNet-18 [25] instead of
ConvNeXt for the spatial component.
Training Details. We train all models on 30-frame (1
sec.) video clips. The networks are trained using batch size
32, AdamW [39] optimization, and ReduceLROnPlateau
scheduling with learning rate 2e−6 for 50 epochs. For all
the encoder backbones used in this study, including base-
line models and components of our proposed method, we

use the pretrained weights provided with their public distri-
butions [4,8,20,23,25,38,55]. As indicated earlier, all video
frames are initially 1280 × 720 pixels. Following [22, 45],
we first perform augmentation on all video sequences by
randomly cropping at 700× 700 pixels followed by ran-
dom flipping with a probability of 0.25. The ‘Time-to-
collision Prediction’ task is inherently imbalanced because
segmentation tends to produce most labels in videos with
shorter time-to-collision values and fewer with longer ones.
To address this, we upsampled videos by duplicating and
augmenting brightness, contrast, saturation, and hue to the
training data. We use the spatial dimension of 224 × 224
pixels. We utilize cross-entropy loss for classification tasks
and mean squared error for the regression tasks. Addition-
ally, we perform mixed-precision training [41] on two 40
GB NVIDIA A100 GPUs to save the computation overhead.
We use the available implementations of the baseline mod-
els in PyTorch.
Results. We perform the 9 tasks described earlier in
Sec. 3.5 and present the results in Tab. 3. We observe that
for the majority of tasks defined in CycleCrash, VidNeXt
outperforms prior methods. This is evident as the proposed
method outperforms the others on most tasks, for instance
‘Cyclist Behavior Risk Index Prediction’, ‘Right-of-way
Classification’, ‘Cyclist Collision Anticipation’, ‘Severity
Classification’, ‘Fault Classification’, ‘Cyclist Age Classi-
fication’, and ‘Cyclist Direction Detection’. Among two
tasks where VidNeXt does not perform the best, it never-
theless yields the second-best performance in metrics such
as MSE in ‘Time-to-collision Prediction’ and F1 in ‘Direc-
tion of the Object Involved Detection’. We notice a clear
difference between the performance of the ablation vari-
ants and the proposed method in almost every task, with
the highest margin of improvement being up to 8.4% in ac-
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Method Risk Right-of-way Collision Time-to-coll. Severity Fault Age Direction Object

Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑ MSE↓ Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑
TimeSformer [8] 65.74 41.79 60.20 55.71 66.45 69.69 1.41 36.49 23.01 59.65 51.03 93.77 66.68 47.19 31.38 45.02 29.00
ViViT [4] 65.12 39.06 52.84 53.74 57.01 69.92 1.33 47.51 24.47 53.37 50.42 93.56 66.34 36.29 27.99 46.30 26.34
ResNet50 3D [23] 65.76 39.53 59.41 53.97 63.10 60.24 1.38 56.60 26.12 59.37 54.91 94.21 54.86 46.30 30.12 43.27 27.77
R(2+1)D [55] 66.54 39.56 60.31 53.42 67.71 63.33 1.43 56.63 25.46 50.53 52.62 94.41 53.24 47.49 30.36 40.75 25.48
X3D-M [20] 64.76 38.75 59.83 57.57 63.72 61.08 1.44 54.45 24.70 52.16 52.19 94.34 53.78 47.82 31.85 42.72 23.79
X3D-S [20] 63.37 36.28 60.10 56.90 61.49 61.13 1.47 51.80 24.09 60.47 51.88 94.38 54.30 45.62 30.05 42.03 22.38
X3D-XS [20] 64.77 37.23 59.37 53.43 60.59 60.73 1.47 51.39 23.77 56.10 52.59 93.87 52.37 46.77 30.22 41.73 26.57
ConvNeXt+VT 64.89 40.05 61.13 54.00 63.50 65.06 1.56 53.80 26.54 56.74 55.72 94.55 66.78 46.46 32.62 42.85 25.16
ResNet+NST 67.18 40.74 61.77 58.62 60.79 62.28 1.39 53.88 24.67 57.17 54.08 94.52 53.49 45.12 28.48 44.17 26.91
VidNeXt (Ours) 66.20 41.96 64.28 57.51 64.84 70.84 1.38 59.66 31.78 65.16 52.51 94.57 67.88 47.94 31.20 42.31 28.37

Table 3. Combined experimental results for tasks 1 through 9. The methods above the line are baselines based on prior works, while those
below the line are VidNeXt and its ablation variants.

Trained on Vehicles Splits Tested on Eval. Accuracy F1

CCD [5] Cars 1
CCD - 76.14 66.23
CycleCrash Finetuning 55.76 25.28
CycleCrash Linear 59.78 (+4.0) 44.28 (+21.5)

DoTA [63] Cars, Cyclist 3
DoTA - 77.61 84.03
CycleCrash Finetuning 56.57 60.75
CycleCrash Linear 59.51 (+2.9) 62.12 (+1.4)

CycleCrash
(Ours) Cyclist 1

CycleCrash - 67.71 63.33
CCD Finetuning 54.81 54.17
CCD Linear 62.44 (+7.6) 53.28 (−0.9)
DoTA Finetuning 63.62 73.14
DoTA Linear 68.78 (+5.2) 81.22 (+8.1)

Table 4. Results of cross-dataset evaluation for collision anticipa-
tion using R(2+1)D.

curacy and 14.4% of F1. We also observe that among the
other baselines and ablation variants, ConvNeXt+VT and
ResNet+NST generally emerge as the second-best or third-
best models following VidNeXt.

We perform cross-dataset evaluations on the ‘Collision
Anticipation’ task using CCD [5], DoTA [63], and Cycle-
Crash datasets to investigate the transferability of learned
representations. Both CCD and predominantly involve only
car collision events, and so the extent to which collisions
with cars and collisions with cyclists share visual cues re-
mains to be explored. We opt for the R(2+1)D model due to
its strong performance in this specific task and perform both
finetuning(updates all model parameters) and linear evalua-
tions (only updates the final layer, keeping the rest of the
model frozen). The results of these evaluations are pre-
sented in Tab. 4. We observe from this table that training on
CycleCrash and testing on CCD and DoTA yields consid-
erably better results than the other way around, indicating
that CycleCrash contains more information and situations
regarding collisions, filling a unique gap in the landscape
of datasets in this area. This experiment highlights Cycle-
Crash’s potential as a rich resource for pretraining models
focused on collisions and vehicle safety

We evaluate the distribution of the embeddings of our
dataset with respect to CCD and DoTA, in Fig. 6 we visu-
alize 1,000 random samples from each of the datasets us-
ing t-SNE. We use a standard Kinetics400 [33] pre-trained
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Figure 6. t-SNE plot of representations from CycleCrash and two
other datasets.

model for this purpose. We observe in this figure that CCD
and DoTA datasets considerably overlap with one another.
However, while both CCD and DoTA overlap with Cycle-
Crash, our dataset occupies a wider area of the latent space,
indicating that it contains information not present in either
CCD or DoTA. This finding highlights the diverse and dis-
tinct scenarios provided in our dataset.

6. Conclusion
In this paper, we present the CycleCrash dataset, a

unique collection of 3,000 video clips capturing cyclists
in various real-world scenarios, with a particular empha-
sis on potential cyclist safety in urban settings. To the
best of our knowledge, CycleCrash is the first dataset to
focus on cyclist-based collision prevention and understand-
ing. The dataset includes 13 annotations for collision, cy-
clist, and scene-related labels, and defines 9 collision pre-
vention and mitigation tasks. Additionally, we propose Vid-
NeXt, a novel method for video classification and regres-
sion tailored to learn both stationary and non-stationary in-
formation. Furthermore, we evaluate the proposed VidNeXt
method against seven baselines and ablation variants on Cy-
cleCrash, to demonstrate its stronger performance.
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