
Uncertainty-guided Metric Learning without Labels

Dhanunjaya Varma Devalraju and C Chandra Sekhar
Department of Computer Science and Engineering

Indian Institute of Technology Madras, India
cs21d006@smail.iitm.ac.in, chandra@cse.iitm.ac.in

Abstract

Unsupervised metric learning aims to learn the discrim-
inative representations by grouping similar examples in the
absence of labels. Many unsupervised metric learning algo-
rithms combine clustering-based pseudo-label generation
with embedding fine-tuning. However, pseudo-labels can
be unreliable and noisy. This could affect metric learn-
ing and degrade the quality of the learned representations.
In this work, we propose an approach to reduce the neg-
ative effect of label noise on learning discriminative em-
beddings by using context and prediction uncertainty. In
particular, we refine the pseudo-labels by aggregating in-
formation from neighbors. We propose a function to weigh
the pairs, leveraging their prediction confidence and uncer-
tainty. We modify the metric learning loss function to incor-
porate this weight. Experimental results demonstrate the
effectiveness of our proposed method on standard datasets
for metric learning.

1. Introduction
Learning similarity between objects has been crucial in

many machine learning and computer vision tasks. Met-
ric learning encapsulates the concept of similarity. Metric
learning techniques aim to learn an embedding space where
similar objects are brought closer and dissimilar objects are
moved apart. Deep neural networks have been commonly
used to model the function that maps objects from an in-
put space into an embedding space. The supervised metric
learning uses the labels to generate pairs/triplets and learns
metric from them. The unsupervised metric learning learns
by exploring the structure present in the data. Supervised
metric learning methods have shown remarkable progress
in learning discriminative features or embeddings. Since la-
bels are expensive and unlabeled data is abundant, recently,
there has been a lot of focus on developing unsupervised
techniques.

Existing approaches to unsupervised metric learning can
be categorized into instance discrimination methods [7, 33,

37] and pseudo-labeling methods [3, 4, 9, 10, 13, 17, 34].
The instance discrimination method considers an instance
and its transformations as one class and learns transfor-
mation invariant representations. However, these methods
rely heavily on augmentation, making them not suitable
for the domains where augmentation is not effective [25].
The pseudo-labeling method applies clustering algorithms
like k-means [3, 4, 13, 17], hierarchical clustering [34], or
graph clustering [9, 10] to cluster the samples in the fea-
ture space. These methods consider the cluster indices as
pseudo-labels and learn the metric using a supervised met-
ric learning loss function. The pseudo-labeling methods
have shown impressive results in unsupervised metric learn-
ing. However, pseudo-labels generated from clustering are
highly noisy. Such noisy labels may affect the metric learn-
ing performance and degrade the quality of the learned rep-
resentations. To deal with label noise, existing methods
use auxiliary tasks like rotation prediction [3] and attention
consistency [17]. Some methods use relative orders [13]
and weight function in terms of bilinear similarity [9, 10].
However, the problem persists, and improving the quality
of pseudo-labels may improve the model performance.

The pseudo-labeling technique is also used in other set-
tings like semi-supervised learning [8, 23, 25], and few shot
learning [21]. In semi-supervised learning, the labeled data
set is used to train/fine-tune an initial model. This trained
model is used to predict labels for the unlabeled data. The
predicted labels are considered as pseudo-labels. The un-
labeled data with pseudo-labels and the labeled data are
combined to learn the final model. These methods also suf-
fer from label noise. To address this problem, the pseudo-
label refinement/selection techniques [8, 23, 25] are used.
In [11, 21, 25], it was shown that the pseudo-label noise is
due to the poor network calibration that may produce an in-
correct label with high confidence. They have also shown
that network calibration is related to prediction uncertainty,
and selecting samples with low uncertainty improves the
model performance. Similarly, Zheng et al. [38] used pre-
diction uncertainty to identify noisy labels and reduce the
negative effect of label noise by incorporating the predic-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7029

tion uncertainty as a weight term in the loss function.
Motivated by this, we propose an uncertainty-guided

metric learning (UGML) framework for unsupervised met-
ric learning. The proposed framework is a pseudo-labeling
method that utilizes prediction uncertainty to alleviate the
negative effect of label noise. However, the challenge
is that, unlike semi-supervised learning, the unsupervised
metric learning model cannot access any labels, not even
a few labeled samples. Therefore, the noise could be high,
causing unreliable uncertainty estimates that may induce lit-
tle to no improvement in the model performance. To over-
come this, we refine the model predictions by aggregating
knowledge from neighbors (context) [15,19] before estimat-
ing the prediction uncertainty. The underlying assumption
is that semantically similar samples should lie close on the
data manifold [15].

In this work, we use a classifier network to estimate the
prediction uncertainty. The proposed classifier is a convo-
lutional neural network (CNN). Since the CNN is a non-
probabilistic model, it can not be directly used to estimate
uncertainty. In general, a Bayesian neural network (BNN)
is required to estimate the uncertainty [14, 21]. The BNN
places a distribution over the network weights and takes av-
erage over all possible weights for inference [14]. How-
ever, inference in a BNN is challenging [14]. Therefore,
similar to [14, 21, 25], we also adopt the dropout method to
approximate the BNN inference in a CNN. We add a few
dropout layers to the classifier model and train the model
using the pseudo-labels obtained from clustering. We en-
able the dropouts during the inference and perform several
stochastic forward passes to get probability distributions.
Then, we perform neighborhood aggregation to refine the
model predictions. The refined distributions are used to
compute the prediction mean and prediction variance. The
prediction mean and prediction variance are used to obtain
the refined pseudo-labels and uncertainty, respectively. Ad-
ditionally, we propose incorporating a pairwise weight term
into a metric learning loss to reduce the negative effect of
label noise. The weight term is a function of prediction
confidence (from prediction mean) and uncertainty (from
prediction variance) to penalize the pairs with high uncer-
tainty and low confidence. This formulation is inspired by
the sample selection strategy employed by the uncertainty-
aware pseudo-label selection [25].

The main contribution of this work can be summarized
as follows:

• We introduce a novel uncertainty-guided metric learn-
ing framework (UGML), that reduces label noise and
learns more discriminative embeddings.

• We develop a strategy to refine pseudo-labels and es-
timate uncertainty by using knowledge from neighbor-
hood (context) and dropout.

• We propose a formulation for pairwise confidence and
uncertainty that is incorporated into the metric learning
loss function.

2. Related work

Unsupervised metric learning has mostly been studied in
two directions, instance discrimination [7,18,33,35,37] and
pseudo-labeling [3,4,9,10,13,17,34]. Instance discrimina-
tion methods are based on the idea of learning transforma-
tion invariant features. The Exemplar method [7] randomly
samples a patch and applies stochastic data augmentation
to form a surrogate class, and trains a classifier network to
discriminate between these surrogate classes. In Exemplar,
features are compared with classifier weights, limiting its
effectiveness and discriminability. To overcome this, Wu
et al. [33] extends the Exemplar to incorporate compari-
son over features by using a memory bank with noise con-
trastive estimation. This technique is also ineffective as the
memory bank keeps the outdated features. To address this
inefficiency issue, Ye et al. [37] proposed to compare the
features from an instance and its augmentation and solve it
as a binary classification problem. Li et al. [18] proposed
the spatial assembly network that learns feature embedding
invariant under generic spatial variations such as changes in
the spatial layout of objects, object part configurations, and
scene structures. However, all these instance discrimination
methods fail to capture intra-class variations [15].

Clustering is the most natural method of identifying the
semantic similarity among the examples in the absence of
labels. The pseudo-labeling methods apply clustering al-
gorithms like k-means [3, 4, 13, 17], hierarchical cluster-
ing [34], or graph clustering [9, 10] to cluster the samples
in the feature space. The cluster indices are used to ap-
proximate the class-equivalence relations for the supervised
metric learning loss functions. Kim et al. [15] used a combi-
nation of pairwise and contextual similarity to approximate
the class-equivalence relation. Methods [3, 4, 13, 17, 34]
that repetitively use the clustering algorithms incur substan-
tial computational complexity. Further, all these pseudo-
labeling methods suffer from high label noise. Existing
techniques make use of auxiliary tasks to deal with label
noise [3, 9, 10, 13, 17].

3. The Proposed Framework

Let D = {xi}Ni=1 be the given unlabeled dataset with
N examples. Let femb(·) be the model that transforms the
examples from a given input space to a feature space. The
femb(·) is usually a pre-trained CNN. Let gemb(·) be an em-
bedding layer that projects from the feature space to an em-
bedding space. Then the metric learning problem involves
learning the parameters of femb(·) and gemb(·) given D
such that the semantically similar examples (positive pairs)

7030

are pulled together and the dissimilar examples (negative
pairs) are pushed away in the embedding space. Supervised
metric learning uses class labels to construct the positive
and negative pairs, and then uses these pairs to learn the em-
bedding. However, our goal is to learn the embedding space
in the absence of labels. We propose a new framework that
uses contextual information and prediction uncertainty to
learn the embedding space in the absence of labels.

3.1. Framework overview

The proposed framework is shown in Fig. 1. The frame-
work has a feature extractor, a classification network, and an
embedding network. The feature extractor is a pre-trained
CNN model used to generate initial features for the cluster-
ing algorithm to generate the pseudo-labels. The classifi-
cation network has an encoder fcls(·) followed by an em-
bedding layer gcls(·) and an output softmax layer hcls(·).
The output from the embedding layer gcls(·) is used to es-
timate the contextual similarity. The contextual similar-
ity and the probability distributions from the softmax layer
hcls(·) are used to estimate the confidence scores and un-
certainty. The estimated confidence scores are used to re-
fine the pseudo-labels obtained from clustering. In general,
the pseudo-labels from clustering can be noisy and lead to
an inferior performance and instability while training the
embedding network [3]. The refined pseudo-labels help in
reducing this noise. Further, the estimated uncertainty is
used to weigh the refined pseudo-labels while training the
embedding network. This further helps improve the model
performance as the weight term specifies how reliable the
pseudo-label associated with each example is. Our embed-
ding network has an encoder femb(·) followed by an em-
bedding layer gemb(·).

As shown in Fig. 1, the proposed framework has four
significant steps, namely: (1) Pseudo-label generation; (2)
Classifier training for model uncertainty estimation; (3) Un-
certainty estimation using Monte Carlo (MC) dropout and
contextual similarity; (4) Learning the embedding.

3.2. Pseudo-label generation

Most of the existing unsupervised metric learning meth-
ods [3, 4, 9, 12, 13, 17] employ pseudo-labeling to obtain
the supervision that facilitates the use of loss functions de-
veloped for supervised metric learning. The pseudo-label
generation process generally involves clustering the exam-
ples in a feature space and using the cluster indices as the
pseudo-labels. Further, it is a common practice to obtain
the features for clustering from a pre-trained model in an
unsupervised fashion [3]. We also use the same process as
[3, 4, 13, 17] to generate pseudo-labels. As shown in Fig. 1
step 1, the pseudo-label generation step consists of a fea-
ture extractor followed by clustering. The feature extractor
for image data can be any pre-trained CNN model trained

with ImageNet [26] for classification. In this work, we use
the k-means clustering algorithm to cluster the representa-
tions from the feature extractor. Upon clustering, the clus-
ter indices are considered as pseudo-labels and are used to
train the classifier and embedding networks in the proposed
framework. Further, unlike methods in [3,4,13,17], there is
no cluster reassignment.

However, the major challenge is that pseudo-labels can
be noisy and can lead to poor performance. We refine and
reweigh the pseudo-labels to overcome this issue using con-
textual similarity and prediction uncertainty. We train a
classifier network using the obtained pseudo-labels to es-
timate the contextual similarity and prediction uncertainty.

3.3. Classifier training for uncertainty estimation

Given the pre-trained CNN model (fcls(·)), we add a
fully connected (embedding) layer (gcls(·)), a classification
layer (hcls(·)) and dropouts to form a classification net-
work. We then fine-tune this classification network using
the pseudo-labels from clustering and the cross-entropy loss
function. This classification network is used to refine the
pseudo-labels by performing neighborhood aggregation and
estimate the prediction uncertainty.

3.4. Batch creation for neighborhood aggregation

For neighborhood aggregation, it is ideal to use the en-
tire dataset to fully utilize the context. However, for large
datasets like SOP, the probability density matrix Pi for the
ith example has dimensions 15× 10, 000 (see Sec. 3.5), ex-
panding to 15×59, 551×10, 000 for the entire training set,
making it inefficient to store and process the entire matrix
in memory without efficient batch construction. Random
sampling, on the other hand, could lead to the loss of con-
textual information. Furthermore, there is no guarantee that
the harder classes that are close to one another will be cho-
sen in a batch with random sampling. To overcome this, we
propose a new approach to create a mini-batch by clustering
classes that are close to each other in the feature space of the
classification model, i.e., gcls(fcls(·)). This approach first
computes the centroids by gathering the features for each
class based on the classifier network’s predictions. Then, it
employs hierarchical agglomerative clustering on centroids
to identify the classes that are close to each other. Samples
from these classes are then used to create the mini-batch.

3.5. Uncertainty estimation using MC dropout and
contextual similarity

Similar to [21, 25], we use dropouts to compute the
uncertainty estimates for the training data. Let ψ(·) =
hcls(gcls(fcls(·))) be the classification network parame-
terized by the weight vector W . Once the classification
network is trained, the dropouts are enabled, and several
stochastic forward passes of training data are performed

7031

Figure 1. Overview of the proposed framework. The proposed framework has four main steps. Step 1: A pre-trained model to extract the
image features, followed by k-means clustering to generate pseudo-labels; Step 2: The pseudo-labels are used to train a classifier; Step 3:
The classifier along with MC dropout and context is used to estimate the classifier’s uncertainty in the pseudo-labels; Step 4: The estimated
uncertainty is used to weigh the positive and negative pairs in the multi-similarity loss while training the final embedding model.

through the classification network. For every example, such
a stochastic forward pass produces a posterior probability
distribution. The dropout-enabled stochastic forward pass
is equivalent to sampling a masked classification network
weights W̃ ∼ q∗

θ(W), where q∗
θ(W) is the the dropout dis-

tribution [14, 21].
For each example xi, the T stochastic forward passes

through the dropout enabled network produce a set of T
probability distributions, denoted by Pi, as shown below.

pt
i = softmax(ψ

W̃t
(xi)); W̃t ∼ q∗

θ(W) (1)

Pi = [pt
i]

T
t=1 (2)

Let C be the number of clusters. Then the vector pt
i of

length C specifies the probability distribution correspond-
ing to ith example at tth forward pass. The matrix Pi

of dimension T × C is a collection of pt
i corresponding

to T stochastic forward passes. The refined pseudo-labels
and uncertainty estimates are obtained from Pi, as done
in [21, 25], which have access to a limited set of labeled
samples. However, unlike these methods [21, 25], we do
not have access to any labels. On the contrary, the pseudo-
labels from clustering may suffer from heavy noise [13].
Hence, the uncertainty estimates from Pi alone may not
be adequate for unsupervised metric learning. Therefore,
we propose to refine Pi by aggregating information from
neighbors, i.e., context [15, 19]. The refined Pi is, in turn,
used to estimate the refined pseudo-labels and uncertainty.

The underlying assumption is that semantically similar ex-
amples should lie close on the data manifold. Given two
samples, the semantic similarity is measured by computing
the pairwise similarity between the feature vectors from the
feature extractor. The pairwise similarity sij between two
examples xi and xj is given by

sij = exp
(
− ||zi−zj ||22

τ

)
(3)

where τ is the Gaussian kernel width, zi and zj are the fea-
ture vectors obtained from the feature extractor correspond-
ing to xi and xj , respectively.

As shown in Fig. 1 step 3, given an example xi, the pair-
wise similarities between xi and all the other examples in
a given mini-batch (from sec 3.4) are used to find the k-
nearest neighbors. These k-nearest neighbors are consid-
ered as context, and the information from neighbors is ag-
gregated as follows:

P̃i =
1
k

∑
j∈Nk(i)

Pj (4)

where Nk(i) is the set of indices of the k-nearest neighbors
of ith example (xi), including itself, i.e., i ∈ Nk(i). In
order to further improve the reliability of the predictions
from Eq. 4, we adopt the idea of query expansion [2, 5, 6].
Specifically, as stated in [15], we average the aggregated
predictions of xi and its neighbors as given below to get
refined probabilities.

P̂i =
1

⌊ k
2 ⌋

∑
h∈N k

2
(i) P̃h (5)

7032

Here, N k
2
(i) is a subset of Nk(i) and contains indices of

top-k2 nearest neighbors of ith example (xi), including it-
self. From the refined probabilities P̂i, the confidence
scores of label presence (or absence) are obtained by com-
puting the prediction mean as the average over the T prob-
ability distributions, as shown below.

p̂i =
1
T

∑T
t=1 P̂

t
i (6)

Here, P̂t
i is a vector of length C corresponding to ith exam-

ple at tth forward pass. Once we have the prediction mean,
the updated pseudo-label (ŷi) and its confidence (µi) corre-
sponding to the example xi are given by:

ŷi = argmaxc(p̂i), µi = maxc(p̂i) (7)

The updated pseudo-labels are used to identify the positive
and negative pairs for every example xi to train the embed-
ding network (sec 3.6). Furthermore, similar to [14, 21],
we compute the prediction variance (V ar(P̂ŷi

i)) associated
with the pseudo-label ŷi and consider it as the prediction
uncertainty (σ2

i).

σ2
i = V ar(P̂ŷi

i) (8)

Here, P̂ŷi

i is a column vector of length T . The predic-
tion uncertainty (σ2

i) helps to identify more certain pseudo-
labeled examples. If the uncertainty is higher, the model
is less certain about the assigned pseudo-label. Therefore,
we make the embedding network account for classifier un-
certainty by incorporating the inverse of variance to weigh
the loss incurred by an example. A smaller weight is used
for the example with high uncertainty to reduce its effect on
overall loss. Further, it may be possible that the model is
less confident (i.e., small µi) even if the uncertainty is low.
Therefore, the weight function that uses the confidence and
uncertainty for a given example is devised as follows:

wi =
µi

σi
(9)

However, the metric learning loss functions generally de-
pend on the distance between pairs, triplets, or quadruplets.
So, the per example weight function in Eq. 9 needs modi-
fication to account for the pair confidence and uncertainty.
We use the average of the per example weights to get the per
pair (or triplets or quadruplets) weights. Therefore, given
two examples xi and xl along with their confidence and un-
certainty values as µi, µl, 1

σi
and 1

σl
, the per pair weight wil

is given by
wil =

1
2

(
µi

σi
+ µl

σl

)
(10)

3.6. Training the embedding network

We use the multi-similarity loss [31] to train the embed-
ding network. Two factors influence the choice of multi-
similarity loss. Firstly, it exploits multiple similarities to

extract informative pairs and shows an impressive perfor-
mance in supervised metric learning. Secondly, it has
been commonly used even in unsupervised metric learn-
ing [3, 13].

The multi-similarity loss [31] uses the hard example
mining based on pairwise cosine similarity in the embed-
ding space. This helps in extracting informative pairs and
speeds up the training process. The vanilla multi-similarity
loss is defined as follows:

LMS =
1

m

m∑
i=1

(
1

α
log(1 +

∑
l∈P+

i

e−α(Sil−λ)) +

1

β
log(1 +

∑
l∈N−

i

eβ(Sil−λ)))

(11)

where m is the training batch size, and S is the cosine
similarity between the embedding vectors. The P+

i and
N−

i are the sets of selected positive and negative pairs
corresponding to ith example, respectively. The positive
and negative pairs are obtained using the refined pseudo-
labels (ŷ) and hard example mining, i.e., given an anchor
xi, the pair {xi,xj} is chosen as negative pair if Sij >
minyk=yi

Sik − ϵ. Similarly, the pair {xi,xj} is chosen
as positive pair if Sij < maxyk ̸=yi

Sik + ϵ, where ϵ > 0
controls the margin.

We modified the vanilla multi-similarity loss in Eq. 11
to penalize the highly uncertain and less confident pairs by
incorporating weight (wil) from Eq. 10. The modified loss
function is given below.

L̂MS =
1

m

m∑
i=1

(
1

α
log(1 +

∑
l∈P+

i

(wil · e−α(Sil−λ)))

+
1

β
log(1 +

∑
l∈N−

i

(wil · eβ(Sil−λ))))

(12)

We use this modified loss in Eq. 12, to train the embedding
network. In the testing phase, the embeddings extracted
from the gemb(·) layer are used for the image retrieval task.
Following [13], the values of the hyperparameters λ, α and
β are set to 0.5, 2 and 40, respectively.

To analyse the modified loss function, we use the Gen-
eral Pair Weighting (GPW) framework [31]. A good pair-
based loss function, when realized in GPW framework, is
expected to assign higher weights (

∣∣∣∂L(S,y)
∂Sij

∣∣∣) to the infor-
mative pairs. When the vanilla multi-similarity loss (Eq. 11)
is realized in the GPW framework, the positive and negative
pair weights are obtained by computing gradient w.r.t Sij .

The weight of a positive pair {xi,xj} ∈ P+
i is given by:∣∣∣∣∂LMS

∂Sij

∣∣∣∣+ =
1

e−α(λ−Sij) +
∑

l∈P+
i

e−α(Sil−Sij) (13)

and the weight of a negative pair {xi,xj} ∈ N−
i is given

7033

by: ∣∣∣∣∂LMS

∂Sij

∣∣∣∣− =
1

eβ(λ−Sij) +
∑

l∈N−
i

eβ(Sil−Sij) (14)

From Eq. 13, it can be observed that self-similarity (i.e.,
e−α(λ−Sij)) and relative similarity with other positive pairs
(i.e., e−α(Sil−Sij)) are jointly used to compute the weight
of a positive pair. Similar procedures apply for computing
a negative pair weight, as in Eq. 14. These pair weights
assist the loss function by assigning higher weights to the
informative pairs that violate self-similarities and relative
similarities.

Similarly, the positive and negative pairs weights for the
modified multi-similarity loss defined in Eq. 12 obtained by
computing gradient w.r.t Sij are given in Eq. 15 and Eq. 16.

∣∣∣∣∣∂L̂MS

∂Sij

∣∣∣∣∣
+

=
wij

e−α(λ−Sij) +
∑

l∈P+
i

wil · e−α(Sil−Sij)
(15)

∣∣∣∣∣∂L̂MS

∂Sij

∣∣∣∣∣
−

=
wij

eβ(λ−Sij) +
∑

l∈N−
i

wil · eβ(Sil−Sij)
(16)

These pair weights employ pair-wise confidence and uncer-
tainty to weigh the violation of its self-similarity and rel-
ative similarity. This aids the loss function in assigning
higher weights to the more confident and less uncertain in-
formative pairs.

4. Experimental Details
In this section, we describe the experiments used to eval-

uate the proposed framework for image retrieval task.

4.1. Datasets and Evaluation Protocol

The proposed framework is evaluated on three bench-
mark datasets for metric learning, namely CUB-200-2011
(CUB) [30], Cars-196 (Cars) [16], and Stanford Online
Product (SOP) [22]. We follow the protocol provided
in [22] to prepare the train and test sets. The CUB-200-2011
dataset have 200 bird species with a total of 11, 788 images.
The first 100 species with 5, 864 images are used for train-
ing and the remaining 100 species with 5, 924 images are
used for testing. The Cars-196 dataset comprises 16, 185
images of cars categorized into 196 different classes. The
8, 054 images of first 98 classes are used for training and
the 8, 131 images of remaining 98 classes are used for test-
ing. The Stanford Online Product dataset consists of 22, 634
products, with a total of 120, 053 images. The first 11, 318
products having 59, 551 images are used for training and the
remaining 11, 316 products having 60, 502 images are used
for testing.

For a fair comparison, we followed the protocol given
in [36] and evaluated the proposed method on image
retrieval task using the performance metric Recall@K.

Recall@K is the fraction of search queries having at least
one relevant sample among their k-nearest neighbors in a
learned embedding space.

4.2. Feature Extraction

We use two different feature extractors, namely
Regional Maximum Activation of Convolutions (R-
MAC) [29] and Selective Convolutional Descriptor Aggre-
gation (SCDA) [32]. Both are unsupervised methods that
utilize CNNs pre-trained on the ImageNet dataset [26]. As
reported in [32], SCDA features produce the best retrieval
performance on the CUB dataset, while R-MAC performs
best on the Cars dataset. Hence, we use SCDA features as
the strong baseline for the CUB dataset and R-MAC fea-
tures for the Cars datasets, demonstrating that UGML con-
sistently outperforms these baseline methods.

For R-MAC features, similar to [9, 10, 12], we used the
feature map from the final convolutions layer, right before
the average pooling, of the GoogLeNet [28] pre-trained on
ImageNet [26]. We considered three different input scales
(512, 512/

√
2 and 256) forming the regions for the R-MAC.

For each region (h × w × d) with d channels and h × w
spatial resolution, max pooling is applied channel-wise to
get a descriptor of size d. The descriptors from the regions
are l2 normalized, whitened, and sum pooled to get a feature
vector of length d = 512. The sum pooled features are l2
normalized at the end to get a final feature vector.

The SCDA features are obtained by performing descrip-
tor selection and aggregation on the max-pooled feature
maps from the final convolutional layer of VGG16 [27] pre-
trained on the ImageNet [26] dataset. Descriptor selection
involves finding the largest connected component to iden-
tify the descriptors that localize the primary object in the ex-
ample. Descriptor aggregation involves applying max and
average pooling on the identified descriptors and concate-
nating the max and average pooled features to get the SCDA
features. A similar procedure is applied to the ReLU feature
maps from the final convolutional block, scaled by 0.5, and
concatenated with the SCDA features to form SCDA+ fea-
tures. We used the 4096 dimensional SCDA flip+ features
obtained by concatenating the SCDA+ features of an exam-
ple and its horizontal flip. Further, the SCDA and SCDA+

features are l2 normalized before concatenation.

4.3. Implementation Details

We use Inception-V1 [28] pre-trained on ImageNet [26]
as the CNN base for classification and embedding networks.
Both networks are trained with the Adam optimizer and co-
sine annealing [20] for learning rate decay. Following [31],
mini-batches are created by randomly selecting clusters and
sampling M examples from each. We use a mini-batch of
size 120, with M set to 4 for CUB and Cars, and 2 for SOP.

For the classification network, the CNN base is followed

7034

Table 1. Performance of the unsupervised metric learning methods on the datasets CUB, Cars and SOP with network architecture
GoogleNet [28] (Inception-V1). Top 3 results are marked by the colors Red (Top 1), Green (Top 2) and Blue (Top 3).

CUB Cars SOP
Method Dim R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100
MOM [12] 128 - - - 35.5 48.2 60.6 43.3 57.2 73.2
Exemplar [7] 128 38.2 50.3 62.8 36.5 48.1 59.2 45.0 60.3 75.2
NCE [33] 128 39.2 51.4 63.7 37.5 48.7 59.8 46.6 62.3 76.8
DeepCluster [4] 128 42.9 54.1 65.6 32.6 43.8 57.0 34.6 52.6 66.8
ISIF [37] 128 46.2 59.0 70.1 41.3 52.3 63.6 48.9 64.0 78.0
PSLR [35] 128 48.1 60.1 71.8 43.7 54.8 66.1 51.1 66.5 79.8
ROUL [13] 128 56.7 68.4 78.3 45.0 56.9 68.4 53.4 68.8 81.7
SAN [18] 128 55.9 68.0 78.6 44.2 55.5 66.8 58.7 73.1 84.6
STML [15] 128 59.7 71.2 81.0 49.0 60.4 71.3 65.8 80.1 89.9
Ours (SCDA) 128 55.7 67.8 77.9 41.5 53.0 64.3 62.9 77.6 88.2
Ours (R-MAC) 128 53.7 65.4 76.4 45.1 56.8 67.6 62.3 77.0 87.9
UDML-SS [3] 512 54.7 66.9 77.4 45.1 56.1 66.5 63.5 78.0 88.6
TAC-CCL [17] 512 57.5 68.8 78.8 46.1 56.9 67.5 63.9 77.6 87.8
UHML [34] 512 58.9 70.6 80.4 47.7 58.9 70.3 65.1 78.2 88.3
STML [15] 512 60.6 71.7 81.5 50.5 61.8 71.7 65.3 79.8 89.8
Ours (SCDA) 512 58.8 70.7 81.0 48.5 59.5 70.4 63.4 78.0 88.4
Ours (R-MAC) 512 56.7 68.4 79.0 53.7 65.1 74.4 62.9 77.3 88.1

by a 512-dimensional fully connected layer (gcls) and a
classification layer (hcls) with the number of clusters (C)
set to 100 for CUB and Cars, and 10,000 for SOP, following
common practice in unsupervised metric learning [3,13,17].
Dropout applied to the third and fourth inception blocks of
Inception-V1. The embedding network is the CNN base fol-
lowed by a 128/512 dimensional embedding layer (gemb).
The values of τ , k, and T are set to 3, 5, and 15, respectively.
More details are given in the supplementary material.

4.4. Comparison with State-of-the-Art Methods

We compare the proposed framework with the state-of-
the-art methods available in the literature for embedding di-
mensions 128 and 512. The results on the datasets CUB,
Cars, and SOP with the ImageNet pre-trained Inception-V1
base are summarized in Table 1. The top three results for
each dataset and different embedding sizes are highlighted
with Red, Green, and Blue colors. The best result is marked
in Red, the second best in Green, and the third best in Blue.

As shown in Table 1, our results are comparable with
the state-of-the-art results on all three datasets. With 512
dimensional embedding, the proposed method outperforms
all other techniques with R-MAC features on the Cars
dataset. It achieves the second best with SCDA features
on the CUB dataset and the third best with SCDA features
on the cars and SOP datasets. With 128 dimensional em-
bedding, the proposed method achieves second best with
SCDA features on the SOP dataset and third best with R-
MAC features on the Cars and SOP dataset. Further, except
for the model trained with 128 dimensional embedding on
the cars dataset, the proposed method outperforms the in-
stance discrimination methods Exemplar, NCE, ISIF, and
PSLR, and our results are comparable to those of the SAN.
However, compared to top-performing methods like STML,

Table 2. Ablation study on efficiency comparison.

Training time (minutes)
Methods CUB Cars

STML [15] 45 68
UGML(SCDA) 35 51

UGML(R-MAC) 31 46

UHML, and ROUL, our results are sometimes comparable
but occasionally fall short. The possible reason could be
that the proposed framework relies heavily on initial fea-
tures and does not update pseudo-labels after initial refine-
ment. In contrast, STML, UHML, and ROUL periodically
update pseudo-labels (UHML and ROUL) through costly
clustering steps or class-equivalence (STML) using a com-
plex student-teacher model.

UGML involves two training processes requiring 50 and
20 epochs, along with one-time operations such as feature
extraction, clustering, and neighborhood aggregation, plus
15 forward passes (dropout) for uncertainty estimation. On
the other hand, each epoch in STML requires one complete
forward pass to extract information for NN batch construc-
tion, and additional forward passes through both the teacher
and student (two heads) for computing contextualized se-
mantic similarity and contrastive losses. Further, STML in-
curs additional processing for computing k-reciprocal near-
est neighbors, updating teacher parameters, knowledge dis-
tillation, and handling two contrastive losses. Therefore,
STML with three full forward passes for each epoch and
the above additional overhead in the loop for 90 epochs
makes it more complex than UGML, which requires fewer
epochs and has one-time computation overheads. The train-
ing cost of STML and UGML, including all steps as well as
cost for feature extraction, when run on a single RTX 3090
24GB GPU, is presented in Table 2. As indicated in Table 2,
UGML is computationally more efficient than STML.

7035

Table 3. Performance (R@1) on the CUB dataset using the Vision
Transformers (ViT) from Unicom as the base.

CUB
Method ViT-B/32 ViT-B/16 ViT-L/14
Unicom [1] 83.7 86.5 88.5
UGML(SCDA) 85.0 87.7 89.0

Table 4. Performance on the SOP dataset using a randomly initial-
ized ResNet-18.

SOP
Method R@1 R@10 R@100
PSLR [35] 42.3 57.7 72.5
ROUL [13] 45.4 60.5 74.8
SAN [18] 46.3 61.9 77.0
STML [15] 60.7 74.8 85.2
UGML(SCDA) 57.8 73.1 84.8

Furthermore, as seen in Table 1, our best results for the
CUB and Cars datasets with 512 dimensional embeddings
are comparable to STML. However, our performance lags
behind STML with 128 dimensional embeddings, though
it remains comparable with other top-performing methods
like ROUL and SAN. This discrepancy can be attributed to
the auxiliary higher-dimensional (1024) embedding space
that STML learns. This higher-dimensional space facilitates
the transfer of knowledge to the lower-dimensional spaces
(512 or 128) used for evaluation, thereby narrowing the per-
formance gap and resulting in minimal variation between
the 512 and 128 dimensional embeddings.

4.5. Learning with Vision Transformer (ViT)

We evaluated UGML using various Vision Transformer
models from Unicom [1] as the backbone, and the results
on the CUB dataset are given in Table 3. Unicom [1] is
a representation learning method trained on the large-scale
image-text dataset LAION 400M, utilizing image and text
features extracted from the pre-trained CLIP model [24]. As
shown in Table 3, UGML outperforms Unicom baselines
with ViT-B/32, ViT-B/16, and ViT-L/14 models.

4.6. Unsupervised Metric Learning from Scratch

We also validate the performance of the proposed frame-
work on the SOP dataset using a randomly initialized
ResNet-18 and 128 dimensional embedding layer. The
model is trained with modified multi-similarity loss L̂MS

(Eq. 12) using refined pseudo-labels (ŷ) and uncertainty
weights. The results are presented in Table 4. Our results
are within a margin of 3% from the STML and outperform
the second best method by a margin of 11.5%, 11.2% and
7.8% for Recall@1, Recall@10, and Recall@100.

4.7. Ablation study

To understand the effect of each component in the pro-
posed UGML on the model performance, we studied them
in isolation and summarized their performance in Table 5.

Table 5. Ablation study of UGML components on the CUB and
Cars datasets.

CUB (SCDA) Cars (R-MAC)
Methods R@1 R@2 R@4 R@1 R@2 R@4

B1 57.4 69.4 79.8 51.6 62.7 72.4
B2 57.3 69.7 79.6 52.2 62.7 73.8
U1 57.9 69.6 79.8 53.0 64.4 73.7
M1 57.5 69.6 79.6 52.8 63.4 73.8

UGML 58.8 70.7 81.0 53.7 65.1 74.4

The UGML has two major components: (1) Pseudo-label
refinement using neighborhood aggregation and (2) Pair-
weights in terms of confidence and uncertainty. For com-
parison, we use two baselines, namely B1 and B2. B1
uses pseudo-labels from clustering (Step 1 in Fig. 1) and
LMS (Eq. 11) loss function to train the embedding net-
work. Similarly, B2 uses predictions from the classification
network (Step 2 in Fig. 1) and LMS (Eq. 11) loss func-
tion to train the embedding network. U1 is an embedding
network trained with the predictions from the classification
network and L̂MS (Eq. 12) loss function. M1 is an em-
bedding network trained with the refined pseudo-labels (ŷ)
and LMS (Eq. 11) loss function, without uncertainty weight
term. Table 5 presents the results for these four models and
UGML using a 512 dimensional embedding. The results
indicate that both pseudo-label refinement and uncertainty
pair-weight components contribute to performance gains,
and their combination produces better results. Further, the
improvements are consistent across the datasets and various
initial clustering feature choices.

Additional ablation studies and experimental results are
included in the supplemental material.

5. Conclusion

We presented an approach that exploits the context and
prediction uncertainty to improve the quality of learned rep-
resentations in the absence of labels. The key idea is to re-
fine the noisy pseudo-labels using context and re-weighting
the informative pairs for metric learning loss using predic-
tion confidence and uncertainty. Dropouts are used to es-
timate the prediction uncertainty of the underlying neural
network. Multi-similarity loss, a pair-based loss, was mod-
ified to assign higher weights to the more confident and
less uncertain informative pairs using the prediction con-
fidence and uncertainty. The proposed approach achieves
performance comparable to many existing methods on three
benchmark datasets for metric learning while being compu-
tationally faster. We have empirically shown the effective-
ness and consistency of the proposed framework with differ-
ent unsupervised feature extraction techniques. The quality
of the initial features from feature extraction limits the per-
formance of our approach. In the future, we can extend this
approach to reduce this dependency.

7036

References
[1] Xiang An, Jiankang Deng, Kaicheng Yang, Jaiwei Li, Ziy-

ong Feng, Jia Guo, Jing Yang, and Tongliang Liu. Unicom:
Universal and compact representation learning for image re-
trieval. In The Eleventh International Conference on Learn-
ing Representations, 2023. 8

[2] Relja Arandjelović and Andrew Zisserman. Three things ev-
eryone should know to improve object retrieval. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2911–2918. IEEE, 2012. 4

[3] Xuefei Cao, Bor-Chun Chen, and Ser-Nam Lim. Unsuper-
vised deep metric learning via auxiliary rotation loss. arXiv
preprint arXiv:1911.07072, 2019. 1, 2, 3, 5, 7

[4] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 132–149, 2018. 1,
2, 3, 7

[5] Ondřej Chum, Andrej Mikulı́k, Michal Perdoch, and Jiřı́
Matas. Total recall ii: Query expansion revisited. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 889–896, 2011. 4

[6] Ondrej Chum, James Philbin, Josef Sivic, Michael Isard, and
Andrew Zisserman. Total recall: Automatic query expansion
with a generative feature model for object retrieval. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 1–8. IEEE, 2007. 4

[7] Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springen-
berg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with exemplar convolutional
neural networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(09):1734–1747, 2016. 1, 2, 7

[8] Jiali Duan, Yen-Liang Lin, Son Tran, Larry S Davis, and C-
C Jay Kuo. Slade: A self-training framework for distance
metric learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
9644–9653, 2021. 1

[9] Ujjal Kr Dutta, Mehrtash Harandi, and Chellu Chandra
Sekhar. Unsupervised deep metric learning via orthogonal-
ity based probabilistic loss. IEEE Transactions on Artificial
Intelligence, 1(1):74–84, 2020. 1, 2, 3, 6

[10] Ujjal Kr Dutta and Chandra Sekhar C. A geometric ap-
proach for unsupervised similarity learning. In ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4202–4206, 2020. 1,
2, 6

[11] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Proceedings
of the 34th International Conference on Machine Learning,
pages 1321–1330, 2017. 1

[12] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej
Chum. Mining on manifolds: Metric learning without labels.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7642–7651, 2018. 3, 6, 7

[13] Shichao Kan, Yigang Cen, Yang Li, Vladimir Mladenovic,
and Zhihai He. Relative order analysis and optimization
for unsupervised deep metric learning. In 2021 IEEE/CVF

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13994–14003, 2021. 1, 2, 3, 4, 5, 7, 8

[14] Alex Kendall and Yarin Gal. What uncertainties do we need
in Bayesian deep learning for computer vision? Advances in
Neural Information Processing Systems, 30, 2017. 2, 4, 5

[15] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak.
Self-taught metric learning without labels. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7431–7441, 2022. 2, 4, 7, 8

[16] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
Proceedings of the IEEE International Conference on Com-
puter Vision Workshops, pages 554–561, 2013. 6

[17] Yang Li, Shichao Kan, and Zhihai He. Unsupervised deep
metric learning with transformed attention consistency and
contrastive clustering loss. In European Conference on Com-
puter Vision, pages 141–157. Springer, 2020. 1, 2, 3, 7

[18] Yang Li, Shichao Kan, Jianhe Yuan, Wenming Cao, and Zhi-
hai He. Spatial assembly networks for image representa-
tion learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13876–
13885, 2021. 2, 7, 8

[19] Mattia Litrico, Alessio Del Bue, and Pietro Morerio. Guid-
ing pseudo-labels with uncertainty estimation for source-
free unsupervised domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7640–7650, 2023. 2, 4

[20] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 6

[21] Subhabrata Mukherjee and Ahmed Awadallah. Uncertainty-
aware self-training for few-shot text classification. Advances
in Neural Information Processing Systems, 33:21199–21212,
2020. 1, 2, 3, 4, 5

[22] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured fea-
ture embedding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4004–
4012, 2016. 6

[23] Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta
pseudo labels. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11557–
11568, 2021. 1

[24] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 8

[25] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat,
and Mubarak Shah. In defense of pseudo-labeling: An
uncertainty-aware pseudo-label selection framework for
semi-supervised learning. In International Conference on
Learning Representations, 2021. 1, 2, 3, 4

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

7037

Li Fei-Fei. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115:211–
252, 2015. 3, 6

[27] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–9, 2015.
6, 7

[29] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular ob-
ject retrieval with integral max-pooling of CNN activations.
arXiv preprint arXiv:1511.05879, 2015. 6

[30] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011. 6

[31] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong,
and Matthew R Scott. Multi-similarity loss with general
pair weighting for deep metric learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5022–5030, 2019. 5, 6

[32] Xiu-Shen Wei, Jian-Hao Luo, Jianxin Wu, and Zhi-Hua
Zhou. Selective convolutional descriptor aggregation for
fine-grained image retrieval. IEEE Transactions on Image
Processing, 26(6):2868–2881, 2017. 6

[33] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3733–
3742, 2018. 1, 2, 7

[34] Jiexi Yan, Lei Luo, Cheng Deng, and Heng Huang. Un-
supervised hyperbolic metric learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12465–12474, 2021. 1, 2, 7

[35] Mang Ye and Jianbing Shen. Probabilistic structural latent
representation for unsupervised embedding. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5457–5466, 2020. 2, 7, 8

[36] Mang Ye, Jianbing Shen, Xu Zhang, Pong C. Yuen,
and Shih-Fu Chang. Augmentation invariant and in-
stance spreading feature for softmax embedding. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
44(2):924–939, 2022. 6

[37] Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang. Un-
supervised embedding learning via invariant and spreading
instance feature. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
6210–6219, 2019. 1, 2, 7

[38] Kecheng Zheng, Cuiling Lan, Wenjun Zeng, Zhizheng
Zhang, and Zheng-Jun Zha. Exploiting sample uncertainty
for domain adaptive person re-identification. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35,
pages 3538–3546, 2021. 1

7038

