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Abstract

Colorization is a well-explored problem in the domains
of image and video processing. However, extending col-
orization to 3D scenes presents significant challenges. Re-
cent Neural Radiance Field (NeRF) and Gaussian-Splatting
(3DGS) methods enable high-quality novel-view synthe-
sis for multi-view images. However, the question arises:
How can we colorize these 3D representations? This work
presents a method for synthesizing colorized novel views
from input grayscale multi-view images. Using image or
video colorization methods to colorize novel views from
these 3D representations naively will yield output with se-
vere inconsistencies. We introduce a novel method to use
powerful image colorization models for colorizing 3D rep-
resentations. We propose a distillation-based method that
transfers color from these networks trained on natural im-
ages to the target 3D representation. Notably, this strat-
egy does not add any additional weights or computational
overhead to the original representation during inference.
Extensive experiments demonstrate that our method pro-
duces high-quality colorized views for indoor and outdoor
scenes, showcasing significant cross-view consistency ad-
vantages over baseline approaches. Our method is agnos-
tic to the underlying 3D representation and easily gener-
alizable to NeRF and 3DGS methods. Further, we vali-
date the efficacy of our approach in several diverse applica-
tions: 1.) Infra-Red (IR) multi-view images and 2.) Legacy
grayscale multi-view image sequences. Project Webpage:
https://val.cds.iisc.ac.in/chroma-distill.github.io/

1. Introduction

Adding color to a monochromatic signal is a longstanding
problem [6, 16, 22, 22, 56] in computer vision and graphics.
This monochromatic signal can be obtained from special
sensors such as infra-red (IR) sensors or legacy content such
as old movies. A range of methods have been proposed to
colorize images/videos [21, 26, 42]; however, colorization
of 3D scenes is challenging as it needs to maintain 3D con-
sistency for realistic colorization. Recent exploration of 3D

representations (e.g., NeRF [28] and 3DGS [18]) has en-
abled effective modeling of complex real-world 3D scenes
given multi-view images. Leveraging this, we formulate the
problem of colorization of 3D representations given input
multi-view grayscale images of a scene. To solve this ef-
fectively, we raise the following question: Can we lever-
age rich knowledge learned from existing image coloriza-
tion approaches to colorize these 3D representations?
This practical setting for colorizing 3D representations has
many applications: a) generating colorized novel views
from legacy images/videos, b) generating colorized novel
views from monochromatic signals such as IR and c) en-
hancing the performance of discriminative models (e.g., ob-
ject detection) [50] on monochromatic signals by applying
colorization prior to inference. A straightforward approach
to colorize a 3D representation involves applying image col-
orization methods [19, 56] to the input views before train-
ing the 3D representation. However, this simplistic method
leads to 3D inconsistencies (Fig. 1) across views since each
view is independently colorized, resulting in inconsistent
color assignments to the same 3D point. Another promising
approach is to use video colorization methods on the gener-
ated novel-view sequence. This approach ensures temporal
consistency (Fig. 1) but fails to guarantee 3D consistent col-
orization, as it is not grounded in 3D representation.
In the context of 3D colorization, earlier works [36,49] tried
to colorize point clouds. Another direction is to add texture
to a predefined mesh [4, 52]. However, these methods are
limited to simple synthetic objects. Recent 3D representa-
tions (e.g., NeRF, 3DGS) effectively capture high-quality
geometry of real-world scenes and can propagate losses
from 2D images due to their differentiable nature. This
underscores a need for novel techniques to colorize these
representations and enable realistic colorization of complex
real scenes.
To colorize these 3D representations, a recent method [44]
lifts the encoder features of any 2D vision model to the 3D
representation. The features are rendered in 2D and passed
through the vision model’s decoder to generate a consistent
novel view and obtain the final RGB image. However, the
features are encoded at a very low resolution and may lead
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Figure 1. (a) Overview of our method. Given input multi-view gray-scale views, the proposed approach “ChromaDistill” is able to
generate colorized views which are 3D consistent. Two colorized novel-views (b) and (e) by I. Image-colorization baseline, II. Video-
colorization baseline, and III. our approach on “playground” scene from LLFF [27] dataset. State-of-the-art colorization baselines generate
3D inconsistent novel-views as shown in zoomed-in regions in (c) and (d).

to inconsistent 3D colorization due to independent decoding
with the image space decoder. We hypothesize that there are
two crucial requirements for high-quality 3D colorization:
i) 3D consistency and ii) accurate colorization with minimal
bleeding artifacts.

In this work, we propose a novel framework for accurate
colorization of 3D representations by distilling knowledge
from state-of-the-art image colorization methods. We intro-
duce a two-stage process for effective colorization. In the
first stage, we train a luminance radiance field to learn the
geometry from grayscale images effectively. In the second
stage, we freeze the geometry and distill the chroma compo-
nent from the pre-trained image colorization network. This
two-stage training effectively decouples the geometry and
colorization of the 3D scenes, leading to high-quality col-
orization outputs with refined geometry. Notably, this strat-
egy incurs no additional cost for training a separate col-
orization module for the radiance field networks. Further,
we propose a novel multi-scale self-regularization tech-
nique to mitigate the desaturation (washed-out color) effects
when distilling from the colorization network.

We demonstrate the effectiveness of our approach in col-
orizing both front-facing and unbounded 3D scenes from
widely used 3D datasets [20, 27, 47]. Our method signifi-
cantly outperforms all the baselines in multi-view consis-
tency and realism of colorization. We also compare fa-

vorably to state-of-the-art stylization approaches. Further,
we show results on two downstream tasks: 1) Colorizing
multi-view infrared (IR) images and 2) Colorizing legacy
grayscale content. Notably, when used for the downstream
object detection task, the colorized IR images significantly
improve the detection scores. Our primary contributions
are:

• We introduce a novel approach ChromaDistill for col-
orizing radiance field networks to produce 3D consis-
tent colorized novel views from input grayscale multi-
view images.

• We propose a multi-scale self-regularization to miti-
gate de-saturation in the distilled color.

• We show that the proposed colorization approach is
generalizable to any 3D representation e.g 3DGS [18]
and NeRF [28].

• We demonstrate our approach on two real-world appli-
cations for novel view synthesis: input multi-view IR
images and input grayscale legacy content.

2. Related Work
Image Colorization. One of the earliest deep-learning
based methods [16] used a CNN to estimate color for the
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Figure 2. Overall architecture of our method. First, we train a radiance field network from input multi-view grayscale images in the “Luma
Radiance Field Stage”. Next, we distill knowledge from a teacher colorization network trained on natural images to the radiance field
network trained in the previous stage.

grayscale images by jointly learning global and local fea-
tures. Larsson et al. [22] train the model to predict per-
pixel color histograms by leveraging pre-trained networks
for high and low-level semantics. Zhang et al. [57] also col-
orize a grayscale image using a CNN network. GANs have
also been used for the image colorization task. [41] uses a
generator to produce the chroma component of an image
from a given grayscale image, which is conditioned on se-
mantic cues. GAN methods exhibit strong generalization to
new images. Recently, diffusion-based methods [7,53] have
shown superior performance on this task.
Many methods [9, 16, 22, 56] colorize images only with a
grayscale. As there can be multiple plausible colorized im-
ages, [8,19,25,48] explores generating diverse colorization.
Some of these methods use generative priors for diverse col-
orization. These methods [37,41,59] use semantic informa-
tion for better plausible colorization.
Video Colorization. Compared to image colorization,
video colorization is more challenging as it has to color
an entire sequence while maintaining temporal consistency
along with spatial consistency. [23] introduces an automatic
approach for video colorization with self-regularization and
diversity without using any label data. [54] presents an
exemplar-based method that is temporally consistent and re-
mains similar to the reference image. They use a recurrent
framework using semantic correspondence and color prop-
agation from the previous step.
3D Representations. NeRF [28] has become a popu-
lar choice of 3D representation for novel-view synthe-
sis tasks. Representations like InstantNGP [29], Plenox-
els [11], DVGO [38], Mip-NeRF360 [2], Zip-NeRF [3]
have enhanced the original NeRF [28] by reducing alias-
ing, training and rendering time. Recently, Gaussian-
Splatting [18], which uses rasterization of splats instead of
volumetric rendering, was introduced, accelerating training
and achieving real-time rendering. Further, these represen-
tations have become popular for solving other tasks such as
dynamic scenes [24, 31, 51], hierarchical scenes [10], text-
to-3D generation [39, 46], and large-scale scenes [33].

Knowledge Distillation. Hinton et al. [13] distilled the soft
targets generated by a larger network to a smaller network.
Some common approaches include distillation based on the
activations of hidden layers in the network [12], distillation
based on the intermediate representations generated by the
network [1], and distillation using an adversarial loss func-
tion to match the distributions of activations and intermedi-
ate representations of the two networks [45].

3. Method

3.1. Preliminaries

NeRF. NeRF [28] represents the implicit 3D geometry of a
scene by learning a continuous function f whose input is 3D
location x and a viewing direction d and outputs are color
c and volume density σ, which is parameterized by a multi-
layer perceptron (MLP) network. During rendering, a ray r
is cast from the camera center along the viewing direction d
and is sampled at different intervals. Then, NeRF estimates
the color of a pixel by weighted-averaging of the colors of
sampled 3D points using volumetric rendering [28]. The
MLP is learned by optimizing the squared error between
the rendered pixels f(r) and the ground truth pixels I(p)
from multiple input views:

Lphoto = ||I(p)− f(r)||22 (1)

Hybrid Representations. Recently, hybrid representa-
tions like InstantNGP [29], Plenoxels [11], and DVGO [38]
have become popular as they use grid-based representation,
which is much faster than the traditional NeRF representa-
tions. We develop upon Plenoxels [11], which represents a
3D scene with sparse voxel grids, and learn spherical har-
monics and density for each voxel grid. Spherical harmon-
ics are estimated for each of the color channels. For any ar-
bitrary 3D location, density and spherical harmonics are tri-
linearly interpolated from the nearby voxels. Plenoxels also
use the photometric loss described in NeRF [28] (Eq. 1).
Additionally, they also use total variation (TV) regulariza-
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tion on the voxel grid. The final loss is as follows:

Lrendering = Lphoto + λTV LTV (2)

3.2. Overview

Given a set of multi-view grayscale images of a scene
X = {X1, ..., Xn} and corresponding camera poses P =
{P1, ..., Pn}, we learn a radiance field network fθ which
predicts density σ and color c along a camera ray r. To
achieve this, we propose a two-stage learning framework.
Even though the input to the radiance field network is multi-
view grayscale images, we can still learn the underlying ge-
ometry and luminance of the scene. This is the first stage in
our pipeline: “Luma Radiance Field Stage” which learns
the geometry and luminance of the 3D scene. Next, we
distill the knowledge from a pre-trained colorization net-
work trained on natural images to the learned radiance field
network in the previous stage. This is “Color Distillation
Stage” in our method. Fig. 2 illustrates the overall pipeline
of our method. We discuss“Luma Radiance Field Stage” in
Section 3.3 and “Color Distillation Stage” in Section 3.4.

3.3. Luma Radiance Field Stage

We train a neural radiance field network using Plenox-
els [11] fθ to learn the implicit 3D function of the scene. As
our method does not have access to the color image, we take
photometric loss w.r.t to the ground-truth grayscale image
following Eq. 1. We observe that it has no issues in learning
the grayscale images, both qualitatively and quantitatively.
( Appendix C.1 in the supplementary material)

3.4. Color Distillation Stage

From the previous stage, we have a trained radiance field fθ,
which has learned the implicit 3D function of the scene but
generates grayscale novel views. Directly updating color
information in the learned implicit 3D function is not possi-
ble. To update the implicit 3D representation, we must com-
pute the loss on the rendered view. Therefore, the optimal
strategy for colorizing a radiance field network is to distill
knowledge from pre-trained colorization networks trained
on a large dataset of natural images.
We propose a color distillation strategy that transfers color
details to a 3D scene parameterized by fθ from any image
colorization network T trained on natural images. More
precisely, given a set of multi-view grayscale images of
a scene X = {X1, ..., Xn}, we pass them through the
colorization network T to obtain a set of colorized im-
ages IC = {IC1 , IC2 , ..., ICn }. Corresponding to the cam-
era poses of these images, we obtain rendered images IR =
{IR1 , IR2 , ..., IRn } from fθ trained in the previous stage on X .
We convert both ICi and IRi to Lab color space and distill
knowledge from the color network T . Then, our distillation
loss, LD, can be written as :

Algorithm 1: Color Distillation With Multi-Scale
Regularization (Appendix B.5 for notations)

Input: Trained NeRF model fθ on multi-view
grayscale images, colorization teacher network T

Output: Colorized NeRF model
1: function LOOP(for each image i=1,2.....N do)
2: Li ← ϕ
3: ICi ← T (Xi).
4: Pa ← ϕ
5: Pb ← ϕ
6: function LOOP(for each scale s=K,...,1,0 do)
7: sICi ← downsample(ICi , 2s).
8: sIRi ← fθ(Pi, s)
9: Li ← Li + Ldistill(

sICi ,s IRi ) .
10: function IF(s != K)
11: Li ← Li + ||Pa −s aRi ||+ ||Pb −s bRi ||
12: Pa ← upsample(saRi , 2)
13: Pb ← upsample(sbRi , 2)
14: Update fθ

LD(ICi , IRi ) = ||LC
i −LR

i ||2+||aCi −aRi ||+||bCi −bRi ||
(3)

To summarize, we minimize MSE loss between the luma
channel and use L1 loss for a and b channels. MSE loss
preserves the content of the original grayscale images and
L1 loss on the chroma channels distills the color from the
colorization network. We briefly summarize this color dis-
tillation in Appendix B.4 in the supplementary material.
Multi-scale regularization. Sometimes, colorized views
appear to desaturated or washed out. To mitigate this, we
introduce multi-scale regularization in the colorized views.
In multi-scale regularization, we analyze an image at differ-
ent scales by constructing image pyramids that correspond
to different scales of an image. The lowest level of the
pyramid contains the image structure and dominant color,
while the finer level, as the name indicates, contains finer
features. We create an image pyramid by progressively
sub-sampling an image. Then, we start color distillation
at the coarsest scale, as discussed in the previous section.
For subsequent scales, we regularize the predicted chroma
channels with the prediction from the previous scale. We
provide details about this regularization in Algorithm 1. Pa

and Pb are placeholders to keep the interpolated predicted
chroma channels from the previous scale. We use bilinear
interpolation to upsample the chroma channels. Distilling
color from coarsest-to-finest levels ensures prominent col-
ors are learned during optimization, which mitigates the de-
saturation in the colorized views. We provide ablation in
Appendix C.2 in the supplementary material.
Implementation Details We use Plenoxel as our radiance
field network representation (Section 3.1). We use the loss
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BigColor.→ NeRF NeRF→DeepRemaster Ours (BigColor)NeRF→Deoldify BigColor.→ NeRF NeRF→DeepRemaster Ours (BigColor)NeRF→Deoldify

Figure 3. Qualitative results of our method on baselines for “Pasta” and “Truck” scene. We display two novel views rendered from
different viewpoints, with rows 1 and 3 at the original resolution and rows 2 and 4 zoomed in on the highlighted regions. Even the video-
based baselines (columns 2 and 3) exhibit inconsistencies. Note the color change in highlighted regions in “Truck” scene.

described in Eq. 2 for the datasets used in our experiments.
During the Color Distillation stage, we estimate the loss in
Lab color space as described in Eq. 3. We train Color Dis-
tillation stage only for 10 epochs.

4. Experiments

This section presents qualitative (Section 4.1) and quan-
titative (Section 4.2) experiments to evaluate our method.
Our method’s effectiveness is demonstrated with two im-
age colorization teacher networks [57] and [19]. We com-
pare our approach with two trivial baselines: 1.) colorize
input multi-view grayscale images and then train a radi-
ance field network, and 2.) colorize the generated novel-
view grayscale image sequence using a video colorization
method. To quantitatively evaluate, we use a cross-view
consistency metric using a state-of-the-art optical flow net-
work RAFT [40] discussed in [14, 30]. Further, we also
compare our method with a concurrent work and show that
the stylization methods are unsuitable for the colorization
task in 3D.
In addition, we conducted a user study to qualitatively eval-
uate the colorization results. We also present ablation for
multi-scale regularization in Appendix C.2 in the supple-
mentary material. Finally, we show results on two real-
world downstream applications - colorization of radiance
field networks trained on 1.) Infra-Red (IR) and 2.)In-the-
wild grayscale images. Our experiments show that our ap-
proach outperforms the baseline methods, producing col-
orized novel views while maintaining 3D consistency. We
encourage readers to watch the supplementary video to bet-
ter assess our work.
Datasets. We conduct experiments on two types of real-

scenes: i) forward-facing real scenes LLFF [27] and
Shiny [47] dataset; and ii) 360◦ unbounded real-scenes
Tanks & Temples (TnT) [20] dataset. LLFF [27] dataset
provides 24 scenes captured using a handheld cellphone,
and each scene has 20−30 images. Shiny [47] has 8 scenes
with multi-view images. Tanks & Temples (TnT) [20] also
has 8 scenes that are captured in realistic settings with
an industry-quality laser scanner for capturing the ground
truth. These datasets have a variety in terms of objects,
lighting, and scenarios. For experimentation purposes, we
convert the images in the dataset to grayscale.
Baselines.We compare with the following baselines:

1. Image Colorization → Novel View Synthesis. :
Train Plenoxels [11] on colorized images using image
colorization method [19, 56].

2. Novel View Synthesis → Video Colorization: Train
Plenoxels [11] on grayscale images and obtain col-
orized novel-views by applying state-video coloriza-
tion methods [15, 34] to the rendered images.

For baseline 1, we use [57] and [19] for colorizing the input
views, thus creating two versions for this baseline. Sim-
ilarly, for baseline 2, we create two versions using Deep-
Remaster [15] and DeOldify [34]. Further, we compare
our results with stylization works and a contemporary work
Color-NeRF [5].

4.1. Qualitative Results

Image Colorization → Novel View Synthesis. We com-
pare our method with both versions of this baseline in
Fig. 11. We generate novel views from two different view-
points to facilitate a better comparison of the 3D consis-
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ARF Stylized-NeRF Ref-NPR Ours

Figure 4. (left-to-right) Results from ARF [55], Stylized-
NeRF [14], Ref-NPR [58] and Our method. (Bottom Row)
Zoomed-in region of the highlighted region. Check the artifacts
from results in stylization works

tency. The baselines exhibit significant color variation in the
“Cake” scene, while our method produces results without
color variation. Similarly, for “Leaves” and “Pasta” scenes,
color variations can be observed in the highlighted region.
We also observe similar 3D consistency in the TnT [20]
dataset, as shown in Fig. 11 in the bottom two sets. Our
method visually demonstrates better 3D consistency in the
generated novel views.
Novel View Synthesis → Video Colorization. We com-
pare with the video-colorization-based baseline in Fig. 3 for
the “Pasta” scene from LLFF [27] dataset and the “Truck”
scene from TnT [20] dataset. The video-based baseline
shows better consistency than the image-based baseline but
still produces inconsistent colorization. Our method pre-
serves consistency due to explicit modeling in 3D. We can
observe a color change in the plate and truck body from
Deoldify [34] baseline version. Our method preserves color
consistency on the truck body and plate across two views.
Comparison with NeRF-Stylization methods. We
also compare our method with NeRF-stylization methods
ARF [55], Stylized-NeRF [14] and Ref-NPR [58] by giving
a color image as a style image. We observe artifacts in re-
sults from these stylization methods in Fig. 4. Stylization
involves transferring the overall style of one image to an-
other image or video, focusing on overall texture differences
using loss functions like LPIPS. In contrast, colorization
emphasizes achieving plausible colors by accurately repre-
senting local color values. Therefore, stylization techniques
are unsuitable for the colorization of radiance fields.
Comaprison with Color-NeRF [5] We compared our
method against a concurrent work Color-NeRF. Fig. 5
shows qualitative results for a forward-facing scene from
LLFF. We observe that the novel-views from Color-NeRF
are not consistent. Notice the color change on the plate. In
comparison, results from our method are consistent. Fur-
ther, it takes nearly 10 hours end-to-end on RTX A6000 for
a forward-facing scene for Color-NeRF. Compared to this,
our method takes only 1 hour with Plenoxel backbone and
30 minutes with 3DGS backbone. We produce more com-
parison results in Appendix C.3.

(a) (b) (c) (d)

“P
as
ta
”

“L
ea
ve
s”

Figure 5. (a) & (b) Novel-views from Color-NeRF [5] and (c)
& (d) Novel-views from our method. Bottom row of each scene
illustrates zoomed-in regions. Notice the inconsistency in Color-
NeRF.

Figure 6. (First column) Grayscale novel-view. Colorized novel-
views from our method with Gaussian-Splatting [18] backbone for
“Train”(Top) and “Truck”(Bottom) scenes. These results demon-
strate that our method maintains multi-view consistency and ex-
tends seamlessly to rasterization-based 3D representation.

Table 1. Quantitative results for cross-view short-term and long-
term consistency on LLFF dataset.

Short-Term Consistency ↓ Long-Term Consistency ↓
Cake Pasta Buddha Leaves Cake Pasta Buddha Leaves

BigColor→ NeRF 0.037 0.030 0.022 0.015 0.060 0.039 0.033 0.024
NeRF→ DeepRemaster 0.018 0.015 0.015 0.015 0.032 0.023 0.023 0.021

NeRF→ DeOldify 0.023 0.034 0.017 0.032 0.033 0.049 0.022 0.040
Ours(Colorful Image Colorization) 0.009 0.009 0.008 0.009 0.013 0.017 0.012 0.015

Ours(BigColor) 0.019 0.015 0.015 0.008 0.033 0.025 0.023 0.013

Results with Gaussian-Splatting [18] backbone Our
method can be extended to Gaussian-Splatting representa-
tion, which uses rasterization of Gaussian splats for render-
ing. We provide details for training with Gaussian-Splatting
as backbone in Appendix B.6 of the supplementary ma-
terial. Fig. 6 provides qualitative results on two scenes:
“Train” and “Truck” from TnT [20] dataset. Similar to
the backbone with Plenoxels, we observe that the colorized
novel-views are multi-view consistent.

4.2. Quantitative Results.

Measurement of 3D consistency. To evaluate the 3D con-
sistency across generated novel views, we adopt a strategy
proposed by [21], which is also used by various NeRF-
based stylization methods [14, 30]. First, we render novel
views from the colorized radiance field. We need optical
flow and occlusion masks between two views to compute
the metric. The occlusion mask, denoted as M , represents
occluded regions, out of bounds, or with motion gradients.
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Table 2. Quantitative results for cross-view long-term consistency
on Tanks & Temples dataset.

Long-Term Consistency ↓ Horse M60 Train Truck

Colorful Image Colorization→ NeRF 0.018 0.017 0.028 0.035
BigColor→ NeRF 0.022 0.027 0.034 0.038

NeRF→ DeepRemaster 0.017 0.022 0.024 0.032
NeRF→ DeOldify 0.032 0.031 0.025 0.031

Ours(Colorful Image Colorization) 0.018 0.015 0.026 0.020
Ours(BigColor) 0.020 0.021 0.031 0.028

er
ro
r

Zhang→NeRF Ours→Zhang BigColor→NeRF Ours→BigColor

Figure 7. Metrics distribution
for (Left) [56] and (Right)
BigColor [19] for “cake” scene.
We observe that variation from
our method has less variance
compared to both versions of
the image-colorization-based
baseline.

Figure 8. User Study. Our re-
sult maintains view consistency
after colorization and performs
better than the baselines.

We use RAFT [40] to predict the optical flow between two
views. Then, we warp a rendered view Ii to obtain a warped
view ˆIi+∆; where ∆ is the frame-index offset. Consistency
error is defined as:

Econsistency

(
Ii+∆, Îi+∆

)
=

1

|M |

∥∥∥Ii+∆ − Îi+∆

∥∥∥2 (4)

Similar to [14, 30] we show this metric on short-range
and long-range pairs. For color consistency, we measure
error only in the chroma channels.
Table 1 and 2 show short-term and long-term consistency
metrics for LLFF and TnT datasets, respectively. We ob-
serve that our qualitative findings align with these quanti-
tative results. For our method with [56] and BigColor, we
observe that short-term and long-term consistency improves
for different scenes. For “Pasta” scene in Tab. 1 we see 70%
and 56.41% reduction when compared with image-based
baseline. We observe significant improvement in metrics
when compared with different baselines. Further, our ap-
proach generates better cross-view consistent novel-views,
regardless of the pre-trained colorization teacher. Addition-
ally, our method produces more consistent novel views than
video-based baselines.
Fig. 7 shows the distribution of metrics for the entire render-
ing sequence for both pre-trained models. The error curve
from our method is consistently lower and smoother than
the baselines, validating our claim of consistency in novel
views obtained from our distillation method.
User Study. We provide users with 12 colorized sequences
from LLFF [27], Shiny [47], Shiny Extended [47] and
Tanks & Temples (TnT) [20] to compare our method with
baseline techniques. Users were asked to select the scene

Figure 9. Results on In-the-wild grayscale-sequences. First col-
umn represents the input grayscale scene. Columns 2-3 illustrate
the colorized novel-view sequence from our method. (Top Row)
“Cleveland in 1920s - House”. (Bottom Row) “ Mountain - Cine-
matic Video”. Our method generates consistent colorized views.

Figure 10. (Column 1) Input multi-view IR Sequence. (Columns
2 and 3) Colorized multi-views from Our method. Our approach
yields consistent novel-views for a different input modality.

with the best view consistency, vivid color, and no color
spill into neighboring regions. We invited 30 participants
and asked them to select the best video satisfying these cri-
teria. Fig. 8 shows that our method was preferred 52% of
the time.

5. Applications

Multi-View IR images. Our method is highly significant
for modalities that do not capture color information. One
such popular modality is IR images. For this experiment,
we obtain data from [32]. This dataset is generated from a
custom rig consisting of IR and multi-spectral (MS) sensor
and RGB camera. This dataset contains 16 scenes and 30
views per modality. We show novel views in Fig. 10. We
observe that a teacher trained on natural images works well
for colorizing the scene. We also discuss the benefits of
colorization for the object-detection task in Appendix C.5
in the supplementary material.
In-the-wild grayscale images. We demonstrate our ap-
proach’s capability to colorize real-world old videos. We
extract an image sequence from an old video: “Cleveland
in 1920s” and pass them through COLMAP [35] to extract
camera poses. Then, we use our framework to generate
the color novel views from this grayscale legacy content
input. Similarly, we generate novel views for “Mountain”
sequence. We can observe in Fig. 9 that our method can
get 3D consistent novel views for such sequences. This is
useful in the restoration of the old legacy content.
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Figure 11. Qualitative results of our method with image-colorization baselines. We display two rows of each scene, each rendered
from a different viewpoint. The first four columns depict the original resolution results, while the last four columns show zoomed-in
regions of the highlighted areas in the first four columns. The image-based baselines have color inconsistencies in their results, whereas
our distillation strategy (columns 3, 4, 7, 8) maintains color consistency across different views.

6. Conclusion
We present ChromaDistill, a novel method for colorizing
radiance field networks trained on multi-view grayscale im-
ages. We use a distillation framework that leverages pre-
trained colorization networks on natural images, ensuring
superior 3D consistency compared to baseline methods.
Multi-scale self-regularization prevents color desaturation

during distillation. Our experiments demonstrate robust-
ness to variations in teacher networks. Generated novel
views from our method exhibit greater 3D consistency than
baselines. Additionally, our method extends seamlessly to
rasterization-based representations. A user study showed a
preference for our approach. We also demonstrate applica-
tions to multi-view IR sensors and legacy image sequences.

2407



References
[1] Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing

Fan, and Chenlei Guo. Knowledge distillation from internal
representations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, 2020. 3

[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 3

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields supplemental material. 2023. 3

[4] Alexey Bokhovkin, Shubham Tulsiani, and Angela Dai.
Mesh2tex: Generating mesh textures from image queries. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8918–8928, 2023. 1

[5] Yean Cheng, Renjie Wan, Shuchen Weng, Chengxuan Zhu,
Yakun Chang, and Boxin Shi. Colorizing monochromatic
radiance fields. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 1317–1325, 2024.
5, 6, 1, 2, 3, 4

[6] Zezhou Cheng, Qingxiong Yang, and Bin Sheng. Deep col-
orization. In Proceedings of the IEEE international confer-
ence on computer vision, 2015. 1

[7] Xiaoyan Cong, Yue Wu, Qifeng Chen, and Chenyang Lei.
Automatic controllable colorization via imagination. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2609–2619, 2024. 3

[8] Aditya Deshpande, Jiajun Lu, Mao-Chuang Yeh, Min
Jin Chong, and David Forsyth. Learning diverse image col-
orization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017. 3

[9] Aditya Deshpande, Jason Rock, and David Forsyth. Learn-
ing large-scale automatic image colorization. In Proceed-
ings of the IEEE international conference on computer vi-
sion, 2015. 3

[10] Ankit Dhiman, R Srinath, Harsh Rangwani, Rishubh Pari-
har, Lokesh R Boregowda, Srinath Sridhar, and R Venkatesh
Babu. Strata-nerf: Neural radiance fields for stratified
scenes. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 17603–17614, 2023. 3

[11] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 3, 4, 5, 1

[12] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young
Choi. Knowledge transfer via distillation of activation
boundaries formed by hidden neurons. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
2019. 3

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 3

[14] Yi-Hua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, and Lin
Gao. Stylizednerf: consistent 3d scene stylization as styl-

ized nerf via 2d-3d mutual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 5, 6, 7

[15] Satoshi Iizuka and Edgar Simo-Serra. Deepremaster: tem-
poral source-reference attention networks for comprehensive
video enhancement. ACM Transactions on Graphics (TOG),
38(6), 2019. 5, 6

[16] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let
there be color! joint end-to-end learning of global and local
image priors for automatic image colorization with simulta-
neous classification. ACM Transactions on Graphics (ToG),
35(4), 2016. 1, 2, 3

[17] Xiaoyang Kang, Tao Yang, Wenqi Ouyang, Peiran Ren,
Lingzhi Li, and Xuansong Xie. Ddcolor: Towards photo-
realistic image colorization via dual decoders. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 328–338, 2023. 2

[18] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics,
42(4), July 2023. 1, 2, 3, 6

[19] Geonung Kim, Kyoungkook Kang, Seongtae Kim, Hwayoon
Lee, Sehoon Kim, Jonghyun Kim, Seung-Hwan Baek, and
Sunghyun Cho. Bigcolor: Colorization using a generative
color prior for natural images. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part VII. Springer, 2022. 1, 3, 5,
7, 4, 6

[20] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics (ToG), 36(4),
2017. 2, 5, 6, 7, 3

[21] Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman,
Ersin Yumer, and Ming-Hsuan Yang. Learning blind video
temporal consistency. In Proceedings of the European con-
ference on computer vision (ECCV), 2018. 1, 6

[22] Gustav Larsson, Michael Maire, and Gregory
Shakhnarovich. Learning representations for automatic
colorization. In Computer Vision–ECCV 2016: 14th Eu-
ropean Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part IV 14. Springer, 2016. 1, 3

[23] Chenyang Lei and Qifeng Chen. Fully automatic video col-
orization with self-regularization and diversity. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019. 3

[24] Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu
Tseng, Ayush Saraf, Changil Kim, Yung-Yu Chuang, Jo-
hannes Kopf, and Jia-Bin Huang. Robust dynamic radiance
fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13–23, 2023. 3

[25] Safa Messaoud, David Forsyth, and Alexander G Schwing.
Structural consistency and controllability for diverse col-
orization. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018. 3

[26] Simone Meyer, Victor Cornillère, Abdelaziz Djelouah,
Christopher Schroers, and Markus Gross. Deep video color
propagation. arXiv preprint arXiv:1808.03232, 2018. 1

2408



[27] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 2019. 2, 5, 6, 7

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1), 2021. 1, 2, 3

[29] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 3

[30] Thu Nguyen-Phuoc, Feng Liu, and Lei Xiao. Snerf: stylized
neural implicit representations for 3d scenes. arXiv preprint
arXiv:2207.02363, 2022. 5, 6, 7

[31] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5865–5874, 2021. 3

[32] Matteo Poggi, Pierluigi Zama Ramirez, Fabio Tosi, Samuele
Salti, Stefano Mattoccia, and Luigi Di Stefano. Cross-
spectral neural radiance fields. In 2022 International Con-
ference on 3D Vision (3DV), pages 606–616. IEEE, 2022. 7,
1

[33] Konstantinos Rematas, Andrew Liu, Pratul P Srini-
vasan, Jonathan T Barron, Andrea Tagliasacchi, Thomas
Funkhouser, and Vittorio Ferrari. Urban radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12932–12942, 2022. 3

[34] Antoine Salmona, Lucı́a Bouza, and Julie Delon. Deoldify:
A review and implementation of an automatic colorization
method. Image Processing On Line, 12, 2022. 5, 6

[35] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016. 7,
1

[36] Takayuki Shinohara, Haoyi Xiu, and Masashi Matsuoka.
Point2color: 3d point cloud colorization using a conditional
generative network and differentiable rendering for airborne
lidar. In Proceedings of the IEEE/CVF Conference on
computer vision and pattern recognition, pages 1062–1071,
2021. 1

[37] Jheng-Wei Su, Hung-Kuo Chu, and Jia-Bin Huang. Instance-
aware image colorization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2020. 3

[38] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, 2022. 3

[39] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang
Zeng. Dreamgaussian: Generative gaussian splatting for effi-
cient 3d content creation. arXiv preprint arXiv:2309.16653,
2023. 3

[40] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part II 16. Springer, 2020. 5, 7

[41] Patricia Vitoria, Lara Raad, and Coloma Ballester. Chro-
magan: Adversarial picture colorization with semantic class
distribution. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, 2020. 3

[42] Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio
Guadarrama, and Kevin Murphy. Tracking emerges by col-
orizing videos. In Proceedings of the European conference
on computer vision (ECCV), 2018. 1

[43] Ziyu Wan, Bo Zhang, Dongdong Chen, and Jing Liao. Bring-
ing old films back to life. CVPR, 2022. 1

[44] Peihao Wang, Zhiwen Fan, Zhangyang Wang, Hao Su, Ravi
Ramamoorthi, et al. Lift3d: Zero-shot lifting of any 2d vision
model to 3d. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 21367–
21377, 2024. 1

[45] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi.
Kdgan: Knowledge distillation with generative adversarial
networks. Advances in neural information processing sys-
tems, 31, 2018. 3

[46] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. Advances in Neural Information Processing Systems,
36, 2024. 3

[47] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-
time view synthesis with neural basis expansion. CoRR,
abs/2103.05606, 2021. 2, 5, 7

[48] Yanze Wu, Xintao Wang, Yu Li, Honglun Zhang, Xun Zhao,
and Ying Shan. Towards vivid and diverse image colorization
with generative color prior. In Proceedings of the IEEE/CVF
international conference on computer vision, 2021. 3

[49] Zijie Wu, Yaonan Wang, Mingtao Feng, He Xie, and Ajmal
Mian. Sketch and text guided diffusion model for colored
point cloud generation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
8929–8939, October 2023. 1

[50] Chenfeng Xu, Bichen Wu, Ji Hou, Sam Tsai, Ruilong Li,
Jialiang Wang, Wei Zhan, Zijian He, Peter Vajda, Kurt
Keutzer, et al. Nerf-det: Learning geometry-aware volu-
metric representation for multi-view 3d object detection. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 23320–23330, 2023. 1

[51] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians for high-
fidelity monocular dynamic scene reconstruction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 20331–20341, 2024. 3

[52] Xin Yu, Peng Dai, Wenbo Li, Lan Ma, Zhengzhe Liu, and
Xiaojuan Qi. Texture generation on 3d meshes with point-
uv diffusion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4206–4216, 2023. 1

[53] Nir Zabari, Aharon Azulay, Alexey Gorkor, Tavi Halperin,
and Ohad Fried. Diffusing colors: Image colorization with
text guided diffusion. In SIGGRAPH Asia 2023 Conference
Papers, pages 1–11, 2023. 3

2409



[54] Bo Zhang, Mingming He, Jing Liao, Pedro V Sander, Lu
Yuan, Amine Bermak, and Dong Chen. Deep exemplar-
based video colorization. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
2019. 3

[55] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,
Eli Shechtman, and Noah Snavely. Arf: Artistic radi-
ance fields. In European Conference on Computer Vision.
Springer, 2022. 6

[56] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, Octo-
ber 11-14, 2016, Proceedings, Part III 14. Springer, 2016. 1,
3, 5, 7, 4

[57] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,
Angela S Lin, Tianhe Yu, and Alexei A Efros. Real-time
user-guided image colorization with learned deep priors.
arXiv preprint arXiv:1705.02999, 2017. 3, 5

[58] Yuechen Zhang, Zexin He, Jinbo Xing, Xufeng Yao, and Ji-
aya Jia. Ref-npr: Reference-based non-photorealistic radi-
ance fields for controllable scene stylization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4242–4251, 2023. 6

[59] Jiaojiao Zhao, Jungong Han, Ling Shao, and Cees GM
Snoek. Pixelated semantic colorization. International Jour-
nal of Computer Vision, 128, 2020. 3

2410


