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Abstract

Masked Autoencoders (MAEs) are an important di-

vide in self-supervised learning (SSL) due to their in-

dependence from augmentation techniques for generating

positive (and/or negative) pairs as in contrastive frame-

works. Their masking and reconstruction strategy also

nicely aligns with SSL approaches in natural language pro-

cessing. Most MAEs are built upon Transformer-based ar-

chitectures where visual features are not regularized as op-

posed to their convolutional neural network (CNN) based

counterparts, which can potentially hinder their perfor-

mance. To address this, we introduce MAGMA, a novel

batch-wide layer-wise regularization loss applied to rep-

resentations of different Transformer layers. We demon-

strate that by plugging in the proposed regularization loss,

one can significantly improve the performance of MAE-

based models. We further demonstrate the impact of the

proposed loss on optimizing other generic SSL approaches

(such as VICReg and SimCLR), broadening the impact of

the proposed approach. Our code base can be found here:

https://github.com/adondera/magma

1. Introduction

Self-supervised learning has made significant progress

over the recent years by producing results on par with super-

vised baselines [3,5–7,13,34], thus rendering it as a promis-

ing paradigm for learning representations without access to

labels. Many notable approaches in self-supervised learn-

ing such as contrastive learning [7], clustering-based meth-

ods [5], redundancy minimization [3, 34] and distillation-

based methods [13] aim to learn representations that gener-

alize well by avoiding degenerate solutions and representa-

tional collapse by utilising a joint embedding architecture

to enforce consistency between representations of differ-

ent image-views. Inspired by natural language processing

* equal contribution

(NLP), Masked Autoencoders (MAE) approach the task of

self-supervised pre-training by a conceptually simple idea

of masking a portion of the input data to then learn to pre-

dict the removed content. Specifically, this is applied to

images by masking a very large portion (eg. 75%) of their

content by replacing it with random patches. This creates

a challenging pretext task for image representation learning

that requires the neural network to develop a holistic under-

standing beyond low-level image statistics [14]. By mask-

ing a large part of the image and processing only the un-

masked region, MAEs provide a computationally efficient

way of pre-training large-scale vision transformers such as

ViT-B/H/S [12, 14]. However, due to the lack of an ob-

jective that optimizes for contrasting negative pairs of im-

ages, the features learnt by MAE pre-training require large

amounts of labeled data to be fine-tuned for satisfactory

downstream task performance [21]. Moreover, deep archi-

tectures such as convolutional neural networks are designed

with inherent regularization characteristics such as trans-

lation invariance, equivariance, and parameter sharing that

are relevant to learning information-rich features from im-

ages for multiple vision-oriented tasks. On the other hand,

ViT-based architectures operate on patches of images and

lack these aforementioned regularization characteristics in

their feature extraction process. In an ideal scenario, a well-

trained network should exhibit a crucial property: if two

similar inputs are fed into the network, their resulting out-

puts should also be close together. This principle ensures

that the network learns robust representations that capture

the underlying structure of the data, not just random noise

or specific details. Deviations from this principle can in-

dicate the network is overly sensitive to small input varia-

tions, leading to poor generalization performance on unseen

data. One way to enforce this behavior is through manifold

regularization, which aims to guide the model toward learn-

ing smoother representations aligned with the intrinsic data

geometry [4]. To this end, we introduce MAGMA, a novel

batch-wide loss that regularizes representations across mul-

tiple different layers of a feature extractor. Our extensive

experiments, ablations, and analyses empirically demon-
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Figure 1. Visualization for the proposed regularization loss MAGMA with MAE: MAGMA penalizes representations that are close in the latent

space of intermediate layer k but far apart in layer l latent space. This induces a regularization effect across different layers that preserves

inter-sample and intra-batch relationships thus enforcing consistency in the latent representation space. Note that we demonstrate this for

MAE based pre-training with a transformer encoder-decoder architecture such as ViT.

strate improved downstream image classification perfor-

mance on MAE-based baselines by simply plugging in the

proposed regularization loss during the pre-training phase.

To corroborate the general applicability and broader impact

of MAGMA, we demonstrate improved and on-par perfor-

mance of other generic SSL approaches such as VICReg [3]

and SimCLR [7] when pre-trained with our proposed loss.

2. Related Work

Self-supervised learning. Self-supervised learning

(SSL) is crucial for overcoming the limitations of tradi-

tional supervised learning, which requires vast amounts of

expensive, hand-labeled data. By automatically generating

labels from the data itself, self-supervised techniques enable

models to learn meaningful representations from unlabeled

data, reducing our reliance on manual annotation. A com-

mon strategy in self-supervised learning (SSL) is to exploit

augmentation invariance. By enforcing similarity between

augmented views of the same image, these methods aim

to learn representations that are robust to common image

transformations. To prevent model collapse, various tech-

niques are employed, such as negative sampling [7], cluster

assignments, [5], feature decorrelation [3, 34], or asymmet-

ric architectures [13].

Masked Autoencoders. The success of self-supervised

learning in Natural Language Processing (NLP), particu-

larly with masked language modeling techniques in models

like BERT [11] has inspired analogous developments within

computer vision. Masked Autoencoders (MAEs) [14] take

the idea of masking and apply it to an autoencoder struc-

ture with a pixel-level reconstruction loss. This results in

impressive performance across various downstream tasks

[8, 24, 35, 37]. Other similar works include BEiT [2], Sim-

MIM [32], and iBOT [36], with close connections to con-

trastive learning [18, 35].

Manifold regularization. At the core of MAGMA lies

the seminal piece of work of [4]. The authors provide a

geometrically intuitive and novel semi-supervised learning

framework that leverages the underlying geometry of data

distributions under the assumption that two points close to-

gether on the manifold (i.e., similar in the true underlying

structure of the data), should have their corresponding tar-

get outputs also be similar. This idea has been success-

fully applied in deep learning across of variety of tasks,

such as speech recognition [28, 29], NLP [22, 33] and vi-

sion [15–17, 26], showcasing its usefulness in the general

setting. MAGMA extends the concept of manifold regular-

ization to the self-supervised setting, guiding internal net-

work transformations to promote smoother, more general-

izable representations. While [26] explores a similar direc-

tion, their approach relies on Siamese networks to explicitly

calculate similarity measures between input images. In con-

trast, our regularization operates directly on the representa-

tions generated within the network, offering a more tightly

integrated self-supervised mechanism.

3. Method: MAGMA

Given an unlabeled dataset Du with samples x ∈ Du

our goal is to train an encoder fθ with L layers to produce

information-rich representations in a self-supervised fash-

ion. During inference, the parameters of the encoder are

frozen θ and a linear layer is trained in a supervised fash-

ion. This procedure is known as linear probing and is the

commonly adopted setup in SSL literature. We denote a

batch of B samples as B. In this setting, our goal is to apply

a batch-level regularization loss in a layer-wise fashion on

a set of layers K ⊆ [L]:

  \label {eq:genericloss} \mathcal {L}(\mathcal {B}, \mathcal {K}; \theta ) = \mathcal {L}_{SSL}(\mathcal {B}; \theta ) + \lambda \mathcal {L}_{Reg}(\mathcal {B}, \mathcal {K}; \theta ), \nonumber       
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where the first term denotes a standard self-supervised

learning loss, and λ is a weighting parameter between the

two terms. While any set of layers can in practice be

adopted for such a regularization, we demonstrate later on

that applying this on an intermediate and the last layer

K = {l, L} would yield the maximum impact. Notably,

this is applied only at the pretraining phase.

3.1. Batch-Wide Layer-Wise Manifold Reg.

We denote the representation output of layer l ∈ [L] of fθ

for input image i ∈ B as Z
(l)
i . Inspired by [4], we propose

to apply the following batch-wide layer-wise regularization
term to enforce consistency among the output representa-
tions of the selected layers:

  \label {eq:2} \mathcal {L}_{\text {Reg}}(\mathcal {B}, \mathcal {K}; \theta ) = \frac {1}{B^2} \sum _{k, l \in \mathcal {K}} \, \sum _{i, j \in [B]} w(Z_{i}^{(k)}, Z_{j}^{(k)}) \cdot || Z_{i}^{(l)} - Z_{j}^{(l)} ||^2  














 


  







(1)

where w(.) : RD×R
D → R can be any similarity kernel, D

being the size of the vectorized version of Z. In our study,

we employ the Radial Basis Function (RBF) kernel due to

its favorable properties as discussed in [4]. Thus, we have:

  \label {eq:4} w(Z_{i}^{(k)}, Z_{j}^{(k)}) = \exp {(\frac {-||Z_{i}^{(k)} - Z_{j}^{(k)}||^2}{2\sigma })} \nonumber 

 


   



 







where σ is a free parameter. We choose σ2 = var(dij),

with dij = ||Z
(k)
i −Z

(k)
j ||2, following the approach in [25]

for enhanced training stability. Dynamically adjustment of

σ this way ensures our regularization adapts to the spread of

features inside a batch: the more spread out the features are

(i.e. higher σ) the wider the influence of the RBF kernel.

Conversely, a lower spread would result in a more focused

kernel (focusing on finer, more local distinctions). Note

that in Eq. 1, layer k is considered as the reference layer

and layer l is regularized accordingly. More concretely, if

two instances (Zi and Zj) have closer representations in the

manifold space of layer k (leading to higher w(Z
(k)
i , Z

(k)
j )),

but are far apart in the manifold space of layer l, LReg would

heavily penalize them, as a result pulling them closer in the

regularized manifold. We illustrate later on that in practice

these regularizations would not only regularize layer l but

also all the previous layers.

The regularization loss in Eq. 1 can be reformulated in

terms of the Laplacian matrix L determined by all pairs of

instances (Z
(k)
i , Z

(k)
j ) in a batch, and is defined as follows:

  \label {eq:6} \mathcal {L}_{\text {Reg}}(\mathcal {B}, \mathcal {K}; \theta ) = \frac {1}{B^2} \texttt {Trace}(Z^{(l)T} L Z^{(l)}), \nonumber  





We make use of the normalized Laplacian for better stability

during training, defined as follows:

  \label {eq:7} L = D^{-\frac {1}{2}}WD^{-\frac {1}{2}},\: D_{ii}=\sum _jW_{ij} = \sum _jw(Z_{i}^{(k)}, Z_{j}^{(k)}), \nonumber 







  











 




Application to Transformers. For the sake of gen-

erality, we have so far formulated the problem so that it

would be readily applied to any layered neural network ar-

chitecture. Even though, we have only observed signif-

icant impact on ViT based architectures. The only dif-

ference for ViT based architectures is that per layer l we

would have P patches each of which returning a represen-

tation Z
(l)
i,p, ∀p ∈ [P ], where the image level representation

would simply be the average of all those representations

Z
(l)
i =

∑
p Z

(l)
i,p. The reason behind this averaging strategy

is that applying the regularization over the representations

of individual patches across different images is not ideal due

to patch noise and lack of global context. This may result

in irrelevant computations since similar patches within an

image already share context through self-attention.

4. Impact of Architectures and Pretraining

The proposed regularization can be seamlessly incorpo-

rated into various self-supervised methods, with the caveat

that the chosen architecture and pretraining approach play

an important role in determining the efficacy of the regular-

ization. The inherent characteristics of CNN-based archi-

tectures can diminish the impact of regularization. For in-

stance parameter sharing, translation invariance and equiv-

ariance in CNNs, which facilitates the reuse of learned fea-

tures across various input regions, can result in reduced reg-

ularization impact. In contrast, Transformers lack these spe-

cific characteristics, potentially making them more suitable

for this regularization.

The nature of the pretraining method significantly

influences the impact of regularization. Contrastive

methods (e.g., SimCLR, MoCo), clustering approaches

(SwAV), distillation techniques (DINO, BYOL), and Info-

Max/Dimension Contrastive methods all aim to bring repre-

sentations of augmented views of the same image closer to-

gether, essentially performing a task related to our proposed

regularization. Therefore, the proposed regularization will

have a diminished impact on these methods. On the other

hand, Masked Autoencoders (MAE)’s exhibits a generative

nature, by randomly masking large portions of an image and

reconstructing the missing pixels. Since this process is ap-

plied individually, it is also not sharing any information be-

tween representations within a batch. These characteristics

make it better suited for the regularization term. As a result,

our study will primarily focus on MAEs as they align well

with the objectives of our proposed regularization approach.

5. Experiments

Our goal in this section is to evaluate the impact of

adding our regularization term on top of pre-existing SSL

methods, both quantitatively and qualitatively. We aim to

address the following questions:
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Table 1. Linear probing accuracy and k-nn accuracy (k=10) of models pretrained and evaluated on the given datasets. Adding our proposed

regularization term to the baseline method generally increases performance.

CIFAR-100 STL-10 Tiny-ImageNet ImageNet-100

Method linear knn linear knn linear knn linear knn

MAE 38.2 36.6 66.5 62.0 17.8 17.7 58.0 47.5

M-MAE (ours) 43.3 40.7 71.0 65.9 20.9 20.5 69.0 49.8

U-MAE 45.3 45.9 74.9 72.1 21.5 19.0 69.5 56.8

MU-MAE (ours) 46.4 46.4 75.6 73.0 25.2 23.9 73.4 60.1

SimCLR 62.8 58.7 90.4 86.9 50.9 43.5 67.8 65.3

M-SimCLR (ours) 63.2 59.4 90.5 86.9 51.0 44.6 68.7 65.6

VICReg 63.6 60.8 87.4 84.5 45.2 40.5 68.4 62.1

M-VICReg (ours) 64.7 61.9 87.4 84.5 45.8 40.5 70.4 65.1

Table 2. Linear probing (LP) and fine-tuning (FT) accuracy of models pretrained on ImageNet-100.

CIFAR-100 STL-10 Tiny-ImageNet ImageNet-100

Method LP FT LP FT LP FT LP FT

MAE 31.5 76.9 67.8 82.2 27.8 63.1 58.0 79.8

M-MAE (ours) 51.6 75.6 84.8 85.5 43.1 63.1 69.0 80.6

Table 3. Linear probing results on different versions of ImageNet

for MAE U-MAE with and without regularization.

Method 1% 5% 10% 100%

MAE 0.5 2.7 4.3 50.5

M-MAE (ours) 1.6 8.8 13.2 51.0

U-MAE 2.9 15.4 25.6 55.3

MU-MAE (ours) 4.9 20.1 29.6 57.4

[Q1] How does LReg influence downstream classification?

[Q2] What is the effect of LReg on the training dynamics?

[Q3] What are the important hyperparameters of the pro-

posed regularization?

[Q4] Is the impact of LReg on representations qualitatively

noticeable?

Benchmark Datasets. We evaluate our proposed reg-

ularization on commonly adopted datasets for the down-

stream task of image classification, namely, CIFAR100

[19], STL-10 [9], Tiny-Imagenet [20], and ImageNet-100

[27]. This selection of datasets provides various challenges

in terms of data resolution, number of classes, and overall

complexity of context presented in the sample image. By

testing across diverse datasets, we showcase the robustness

and generalizability of our proposed regularization.

Baseline methods. We evaluate the efficacy of our pro-

posed regularization on several SSL methods (to demon-

strate its versatility), with an emphasis on MAE for the rea-

sons discussed in Sec. 4. This includes U-MAE [35], an im-

provement over the baseline MAE addressing dimensional

collapse with an additional regularization term. Addition-

ally, we investigate the impact on two other widely adopted

SSL baselines: SimCLR [7] and VICReg [3].

Implementation details. We focus on the impact of reg-

ularization by keeping the architectural and hyperparame-

ter choice intact throughout the experimentation, except for

the ablation studies. For low(er)-resolution datasets (CI-

FAR100, STL-10, and Tiny-ImageNet) we use a ViT-Tiny

backbone, while for ImageNet-100, we use ViT-Base. We

select the best-performing hyperparameter setting for each

baseline method and add our regularization on top of it. For

our regularization, we tune three parameters: the regulariza-

tion weight λ, the number of warmup epochs est, and the du-

ration of the regularizer edur. More details on the choice of

(hyper)parameters can be found in the supplementary ma-

terial. Notably, for all the other baselines, we present the

reproduction results in one optimized pipeline, which in al-

most all cases leads to performances over the originally re-

ported results in [3, 7, 14, 35].

Evaluation protocol. For our main results, we follow

the commonly adopted protocol in SSL, based on freezing

the network encoder after the pretraining phase and train-

ing a linear layer on top of it in a supervised fashion. For

all baselines, we train for 100 epochs using SGD, using a

learning rate of 0.1 with decay at steps 60 and 80, and a

batch size of 256. In addition, we also evaluate the k-nearest

neighbours (kNN) classification accuracy using k = 10 and

a Euclidean distance measure.

5.1. [AQ1] Comparison Against Other Baselines

Table 1 summarizes the results of applying MAGMA on

top of the aforementioned four baselines (MAE, U-MAE,

SimCLR, and VICReg). We pretrain and evaluate on the

same datasets to showcase the robustness of MAGMA over

various pretraining scenarios. As can be seen, our proposed

approach offers significant improvements across all four
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(a) Regularization loss tracked throughout pretraining for MAE and M-

MAE, on ImageNet-100

(b) Online accuracy tracked throughout the pretraining phase for MAE

and M-MAE, on ImageNet-100.

Figure 2. (a) The regularization loss showed for MAE and M-MAE. For MAE we calculate the loss without backpropagating. For M-MAE,

we apply the loss after 10 warmup epochs, and take it out after 100 epochs. (b) The online accuracy was obtained by training a linear layer

on the representations produced by the encoder throughout pretraining. The accuracy slightly drops for M-MAE when the regularization

kicks in but increases at a significantly higher rate compared to MAE.

datasets by outperforming baseline MAE, both in the linear

setting (+5.1% on CIFAR-100, +4.5% on STL10, +2.9%

on Tiny-ImageNet and +11% on ImageNet-100), as well

for kNN one (+4.1% on CIFAR-100, +3.9% on STL-10,

+2.8% on Tiny-ImageNet, and +2.3% on ImageNet 100).

For U-MAE, while the improvements are still significant,

except for Tiny-ImageNet, they are smaller in magnitude.

Going beyond MAEs, the results on SimCLR and VICReg,

show some marginal improvement opening the door for fur-

ther investigation and broader impact. To further demon-

strate the impact of MAGMA’s enhanced self-supervised rep-

resentation learning at the pretraining phase, we evaluate

classification performance of MAE and M-MAE on differ-

ent datasets by linear-probing and fine-tuning in Table 2.

As can be seen, M-MAE significantly outperforms MAE

across all datasets when using linear probing for down-

stream dataset classification, offering improvements up to

20%. Full fine-tuning (especially in low-data regimes) can

lead to overfitting to the target dataset [35], completely de-

feating the purpose and ruling out the impact of our regu-

larization. This is what we also observe in Table 2, where

M-MAE offers similar results as compared to the baseline

MAE. To assess the effectiveness of MAGMA in lower-data

regimes and the commonly adopted large-scale SSL pre-

training, we conducted linear probing evaluations on vari-

ous versions of ImageNet, where we equally sampled 1%,

5%, 10% and the complete 100% split from each class of

the original dataset for training. Table 3 demonstrates that

both M-MAE and MU-MAE significantly outperform their

respective baselines (MAE and U-MAE) across all partial

sampling ratios by atleast 1.5% and up to 8.9%, as well as

for the full ImageNet-1k dataset by 0.5% and 2.1%. This

shows the efficacy of MAGMA in scenarios not only with lim-

ited data but also for large-scale pre-training.

5.2. [AQ2] Training Dynamics

Figure 2a illustrates the value of the proposed loss term

(LReg) throughout training epochs. The dashed line illus-

trates the scenario in which LReg is evaluated but not back-

propagated. This curve manifest signs of instability (lack of

consistency) in the manifold space of representations (for

selected layers 11 and 12). The solid curve shows the im-

pact of backpropagating LReg (applying MAGMA at epoch

10) where a sudden change of behavior is apparent upon the

introduction of LReg in the optimization. The fact that the

LReg drops drastically instead of ascending (dashed line)

after being introduced, together with the stability of the loss

after removal (at epoch 110), as well as the consistently bet-

ter online accuracy of M-MAE as seen in Fig. 2b, could po-

tentially suggest that the optimization is now steered in a

different direction, leading to an overall significantly bet-

ter performance. Based on this, we hypothesize that the est

parameter is best set around the point when the LReg loss

would start increasing.

Which layers to regularize on? We have run extensive

experimentation to effectively select the target layers for ap-

plying MAGMA. It turns out regularizing the last layer with

respect to the penultimate layer seems to have the maximum

impact, in ViT based architecture. In Fig. 3, we demonstrate

that choosing k = 10 (11-th later in ViT base architecture)
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Figure 3. Effect of regularization. Implication: if the representa-

tions from any two layers are close, then the output representation

will also be close.

as the reference and l = 11 (last year) not only leads to

regularizing loss across the two layers, but also results in

percolated impact through all the previous layers.

5.3. [AQ3] Ablations on Important Parameters

We evaluate the impact of three pivotal regularization pa-

rameters (i) λ in Eq. (1), (ii) the epoch at which MAGMAis

applied, est, and (iii) the duration over which the regulariza-

tion is applied before being plugged out, edur. The results

for the first three parameters are summarized in Tab. 4.

The regularization weight λ directly controls the strength

of the regularization effect in the overall optimization loss

Eq. (1). Intuitively, lower weight for LReg might not sig-

nificantly impact the overall optimization, whereas higher

weight could lead to an over-regularized optimization and

a degraded performance. The results show a similar trend:

lowering the weight to 0.1 leads to a performance similar

to the baseline (+2%). Increasing the weight by a factor of

10 reduces the gain slightly by 1%. Interestingly, reducing

the weight to 0.01 leads to lower downstream classification

performance than the baseline. We hypothesize that this is

because the regularization introduces a competing gradient

signal which inadvertently hinders training performance.

The warm up period est allows the model to train for a

few epochs without LReg to help it establish a reasonable

foundation for learning basic representations. This could

prevent the regularization from overly restricting the model

too early in the training process. As can be seen from Tab. 4,

a small number of epochs for est would already be enough

for a maximal impact. Delaying this further seems to have

an increasingly negative impact.

Lastly, the duration parameter edur, determines the

amount of pressure put on the model to develop smooth and

aligned representations across layers. We experiment with

different values ranging from only 10 epochs, up until the

end of training (i.e. a duration of 390 epochs). The results

show that the impact of this parameter is less pronounced.

There is a slight decrease in performance (by about 0.5%),

for significantly lower or higher duration periods. It seems

that applying MAGMA for a number of epochs already regu-

larizes the representations across the network with a linger-

ing impact from which point onward it can be plugged out

without hampering the overall performance. As discussed

earlier in Sec. 5.2, we hypothesize that this lingering im-

pact is related to the adjusted optimization landscape as a

result of applying the proposed regularization.

To further investigate the sensitivity of MAGMA, we eval-

uate the performance by changing the backbone architecture

starting from small to larger (ViT-S to ViT-L). As can be

seen in Tab. 5, increasing the capacity of the backbone re-

sults in considerable performance improvement in the base-

line approaches (MAE and U-MAE) where the performance

boosts decreases for changing the backbone from ViT-B to

ViT-L. Interestingly, similarly significant boost can be ob-

served on the MAGMA optimized baselines (M-MAE, MU-

MAE), offering consistent improvement over the baselines.

5.4. [AQ4] Qualitative Analysis

PacMAP. To qualitatively assess the impact of our

regularization, we visualize the representations of MAE,

U-MAE, as well as their regularized version, M-MAE,

and MU-MAE, on a random sample of 10 classes from

ImageNet-100. We use PacMAP [31] for dimensionality re-

duction. PaCMAP outperforms t-SNE [30] and UMAP [23]

in preserving the global structure of high-dimensional data

within visualizations. This means it more accurately reflects

the large-scale relationships and patterns present in the orig-

inal dataset. We include the linear accuracy, as well as the

Davies-Bouldin Index (DBI) [10] alongside the visualiza-

tions. DBI is a common metric used to evaluate clustering

algorithms, where lower DBI scores indicate better separa-

tion between clusters and tighter groupings within clusters.

Results are shown in Fig. 4. Comparing (a) MAE with

(b) M-MAE, we observe a slight improvement in the clus-

tering structure after applying MAGMA. The M-MAE rep-

resentations exhibit tighter clusters with better class sepa-

ration, leading to a higher linear accuracy (69.0 vs. 58.0)

and a lower DBI (5.6 vs. 6.2). Similarly, comparing (c) U-

MAE and (d) MU-MAE reveals that incorporating MAGMA

into U-MAE further refines the representation space. While

U-MAE already improves upon the baseline, MU-MAE

achieves even tighter clusters and greater inter-class sepa-

ration, resulting in a further boost in accuracy (73.4) and

a lower DBI (5.9). This highlights the complementary na-

ture of MAGMA and U-MAE, where MAGMA enhances

the already improved representations learned by U-MAE.

PCA. Inspired by [1], we take our pretrained MAEs

6895



Table 4. Linear accuracy performance using different choices of hyperparameters for regularization. Results computed on ImageNet-100.

λ 1 0.1 0.01 10 1 1 1 1 1 1 1 1

est 10 10 10 10 0 2 20 50 10 10 10 10

edur 100 100 100 100 100 100 100 100 10 50 200 390

Accuracy 69.0 60.0 54.6 67.9 68.2 69.0 65.5 62.7 68.5 68.8 69.0 68.5

Label

(a) MAE

Label

(b) M-MAE

Label

(c) U-MAE

Label

(d) MU-MAE

Figure 4. PaCMAP plots for MAE-based methods. Applying MAGMA on top of U-MAE leads to compact and well-defined clusters.

Table 5. Linear probing with different ViTs on ImageNet-100.

Method ViT-S ViT-B ViT-L

MAE 46.8 57.9 60.6

M-MAE (ours) 61.2 69.2 73.9

U-MAE 57.6 69.5 78.2

MU-MAE (ours) 62 73.4 78.4

and extract features from each patch, and each layer (in

this case, we isolate the key features from the self-attention

mechanism), apply PCA, and take the leading component.

We use upsampling to obtain a heatmap of the same res-

olution as the original image. This provides a qualitative

analysis of the quality of the intermediate representations

learned by the models, showcasing the impact of the added

regularization term. One visible pattern is the reduction in

noise, specifically in the first and last layers, that M-MAE

exhibits when compared to its MAE counterpart.

Attention maps. We investigate the impact of the differ-

ent regularizations on the self-attention maps of the ViT-B

architecture’s last layer. To this end, we randomly select

images from the ImageNet-1K validation set and visualize

their corresponding attention maps in Fig. 6. Our obser-

vations reveal that the baseline MAE model often tends to

attend to the background of the image, in line with find-

ings from prior work [21]. In contrast, we notice differ-

ences when applying MAGMA: it appears to promote a se-

mantic separation of the attention focus, where the model
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Figure 5. Visualization of PCA’s leading component for features extracted from different layers of a ViT-B pretrained using MAE, M-MAE

(ours), U-MAE, and MU-MAE (ours).

Figure 6. Attention maps from the 12 attention heads of the last layer of a ViT-B. The maps are extracted over the four MAE-based methods

evaluated: MAE, M-MAE (ours), U-MAE, MU-MAE (ours)

tends to attend primarily to either the background or the

central object, but rarely both simultaneously. This sug-

gests that MAGMA guides the model towards learning more

specialized and semantically coherent representations, im-

proving its ability to distinguish between foreground and

background elements.

6. Concluding Remarks

We propose MAGMA, a novel regularization technique

that regularizes the representations and enforces consis-

tency across layers of a transformer-based MAE. We

demonstrate the efficacy of the proposed approach through

a suite of experimentation resulting in significant perfor-

mance gain over MAE-based baselines in most scenarios.

Computational complexity. M-MAE offers a 1.5% and

MU-MAE a 2% drop in throughput (100MB GPU-memory)

compared to their respective MAE and U-MAE baselines,

thus adding an insignificant extra computation cost to the

baseline methods while keeping the parameter count same

all across. More details are included in Section 3 of the

supplementary material.

Broader impact. MAGMA can be rather straightfor-

wardly applied to any kind of SSL approach irrespective

of the backbone architecture. As discussed in Section 3

this applies to any layered deep networks, irrespective of

an encoder-decoder architecture. This potentially broadens

the application of MAGMA to contexts even beyond computer

vision. This is an avenue for future work.

Limitations. Going beyond ViT-based architectures to

CNNs, we observed that the impact of MAGMA is consid-

erably smaller. We argue that standard operations in modern

CNN-based architectures (such as average pooling, weight

sharing, etc.) might already serve as a regularizer, minimiz-

ing the impact of MAGMA. Note that CNN architectures are

outside the scope of this work (as reflected throughout the

paper), thus, will investigate this in our future work.
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