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Bauhaus-Universität Weimar

{firstname}.{lastname}@uni-weimar.de

Abstract

We address domain-agnostic slice-to-volume (S2V) reg-

istration, the alignment of 2D sliced/tomographic images

into 3D volumes without prior knowledge of structure,

shape, or orientation. While S2V registration is well-

studied in medical imaging, which often relies on aux-

iliary information (e.g. landmarks, segmentation masks,

pre-defined orientations, canonical/atlas volumes), appli-

cations such as micro-structure characterization in mate-

rials science lack such domain-specific aids. This leaves

the task inherently ill-posed due to noise, unstructured re-

gions, repetitive patterns, rotational and translational sym-

metries. To address this challenge, we present ”Needles

& Haystacks,”1 a novel multi-domain algorithm develop-

ment dataset with 158, 436 unique registration problems

and ground-truth solutions, based on diverse and openly

licensed real-world volumetric data. Additionally, we pro-

vide an online platform with 8, 461 test problems for repro-

ducible evaluation of competing methods. We also propose

strong baseline solutions with public implementations and

highlight opportunities for further algorithmic advance-

ments.

1. Introduction

The problem of S2V registration is best known from ap-

plications in medical imaging [7, 13]. These applications

include correlative multi-instrument analysis (e.g., cross-

referencing 3D computer tomographic (CT) scans with 2D

tissue classifications from histology), localization of 2D

imaging instruments in image-guided surgeries, and volu-

metric reconstruction from 2D imaging modalities. Medical

S2V deals with well-studied anatomical subjects, making

it feasible to directly harness the existing domain knowl-

edge during registration. This knowledge can be expressed

in the form of landmarks and segmentation masks, which

inform robust initializations. Additionally, favorable indi-

1Project page: https://xaf-cv.github.io/nh-rs2v/
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Figure 1. Examples of S2V registration tasks in ”Needles &

Haystacks”. The dataset encompasses numerous domains: (a,b)

de-contextualized anonymous medical data [21, 58], (c) rocks [1],

(d) soils [59], (e) fossils [41], (f) archeological artifacts [17], etc.

Ground-truth slice position highlighted in red. Volumes visualized

by average projection with batlowW color map [8].

rect conditions, such as prevalent standard orientations and

limited variability in subject appearance, allow for robust

and accurate modeling. At the same time, practical realities

of medical S2V often require accommodating inescapable

non-rigid deformations and temporal changes between the

registered modalities. This constitutes a significant chal-

lenge and is a primary focus of state-of-the-art medical S2V

research.

However, applications of S2V registration extend be-

yond medical imaging, offering insights across disciplines

such as materials science, geology, biology, studies of cul-

tural artifacts, industrial testing. Similar to medical S2V,

spatial allocation of 2D images in the space of 3D volumes

allows strengthening the analysis through bi-directional

cross-referencing of often complementary optical, spectro-

scopic, ultrasound, radiographic measurements, etc. Un-

like in medical imaging, applications of this kind often deal

with subjects of unpredictable shape, structure and orienta-

tion, which poses a serious challenge. In practice, this often

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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necessitates manual initialization by human experts, and,

whenever technically feasible, the labor-intensive introduc-

tion of physical fiducials. Conversely to medical imag-

ing, modeling of non-rigid deformations is less relevant,

as firm materials, e.g. sandstone, wood, are generally less

prone to deformation, while soft materials are usually suf-

ficiently uncomplicated to immobilize. It is therefore clear

that such S2V applications are distinct from the ones typ-

ically encountered in medical imaging. We describe this

class of S2V as domain-agnostic image-based S2V regis-

tration. An accurate and robust fully automatic solution to

domain-agnostic S2V is in high demand and offers signifi-

cant potential for high-impact research.

Domain-agnostic S2V is an ill-posed and extremely hard

problem, as individual 2D slices contain significantly less

information than entire 3D volumes. This initial imbal-

ance conditions the problem to have multiple plausible so-

lutions, which is further exacerbated by ambiguities from

rotational and translational symmetries, measurement noise

and poorly-structured regions. This is similar to challeng-

ing ambiguities in wide-baseline image matching tasks [22].

In recent years, wide-baseline image matching has been

revolutionized through introduction of novel data-driven

methodologies. The development has been made possible to

a significant extent by public availability of datasets, eval-

uations and challenges. To the best of our knowledge, no

commonly recognized datasets or benchmarks have been

proposed in the field of domain-agnostic S2V. This is likely

due to the practical challenges associated with curation of

such datasets. Collecting large and diverse datasets with

accurate ground truth for real-world S2V problems is tech-

nically challenging and costly, and often involves legal (pri-

vacy, data sharing policies) and commercial (business in-

terests) obstacles. We aim to address this deficiency by

contributing a novel large-scale, open source, openly li-

censed dataset. Instead of physically sourcing real-world

S2V problems, we opt to synthetically sample a diverse

multitude of registration tasks from abundantly available,

openly licensed 3D volumes previously published in the

relevant scientific fields. This approach ensures that the

dataset is openly licensed, promoting transparency, repro-

ducibility, and reusability [60]. Our approach to dataset

creation is conceptually similar to that of major datasets in

image matching [9, 28], and can be repurposed in the fu-

ture to produce even larger or more specialized datasets.

With our principled synthetic sampling strategy, we acquire

highly challenging yet feasible registration tasks with error-

free ground-truth. Having accurate ground-truth allows us

to define clear and informative metrics for evaluating reg-

istration solutions, favoring accurate and robust methodolo-

gies. The scale of our dataset indirectly favors sufficiently

fast algorithms, although speed is not our primary perfor-

mance factor. To enable clear ranking of S2V methodolo-

gies, we provide an online evaluation platform containing

8, 461 test problems with non-public ground-truth.

Finally, to gauge the intrinsic challenge of our dataset,

we implement and deploy massive randomized solution

search with classic optimization-based techniques. Ad-

ditionally, we adapt, train and evaluate a modern high-

performing deep-learning architecture for local image fea-

ture matching to the task of domain-agnostic S2V. These

complementary techniques provide strong baseline perfor-

mance but also clearly demonstrate the significant potential

for improvement. Our implementations are open source and

can serve as a basis for future development of novel S2V

methodologies.

In summary, this paper contributes:

• a novel open source and openly licensed dataset for

domain-agnostic image-based rigid S2V registration,

which is well-positioned to simplify and to stimulate

the development of novel methodologies,

• an online benchmark, that adequately represents the

significant challenges of such registration tasks,

• baseline methodologies that demonstrate the feasibil-

ity of the registration and can serve as reference for

future methodologies.

2. Related work

2.1. Domainagnostic S2V in medical imaging

Over the last decades, the problem of S2V registration

has received a lot of coverage in the context of medical

image registration. While practical applications of medical

S2V generally tend to have a different set of requirements

and expectations, select methods in rigid image-based (in-

trinsic) registration, in the taxonomy of [33], are directly

applicable in the context of domain-agnostic S2V. Often an

initial approximation of a more complex registration task,

this formulation allows e.g. to acquire a strong initial guess

for subsequent non-rigid S2V registration. This class of

registration problems has been traditionally approached as

a dissimilarity minimization problem [52], the comprehen-

sive survey on which is provided in [13].

DL-based methodologies have been proposed to over-

come some of the fundamental limitations of optimization-

based medical image registration [7]. In the context of med-

ical S2V, some examples include applications of deep con-

volutional neural networks (CNNs) [19] to perform direct

regression on the manifold of special Euclidean group in 3
dimensions SE(3), as well as self-attention-style layers [62]

and iterative transformer models [61] for further accuracy

improvement. Notably, models from [19, 61, 62] are con-

ceptually applicable only to registration of individual slices

in the space of a single canonical volume (atlas), which has
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limited applicability to our formulation of domain-agnostic

S2V, where arbitrary 2D slices are registered into arbitrary

3D volumes.

Conversely, a recent development [34] has proposed to

induce point-wise correspondences between registered 2D

slices and 3D volumes through the use of a correlation layer,

such as in image matching [54], and was trained on 16 sepa-

rate 3D MRI volumes with 3, 957 individual 2D ultrasound

slices. Since methodology from [34] can be trivially ex-

tended to arbitrary volumetric data, it has direct relevance

for domain-agnostic S2V. To evaluate our data contribu-

tions, we derive and train a complete S2V generalization

of [54], and demonstrate the strength of the approach in the

context of domain-agnostic S2V.

2.2. Image matching and domainagnostic S2V

Applications of image matching (IM) [22], such as 3D

reconstruction, camera re-localization and SLAM share a

number of similar challenges with domain-agnostic S2V

registration. Both methodologies attempt to recover a 6 DoF

pose through spatial allocation of 2D data within a 3D con-

text, even though 3D IM traditionally deals with sparse pro-

jective imaging, while S2V registration is performed within

densely sampled sliced/tomographic 3D context. In both

scenarios, the challenge is to disambiguate the effects of

multiple confounding factors that lead to the possibility of

multiple plausible solutions. This is often the case due to

simultaneous effects of viewpoint and illumination changes

in 3D IM, and due to the effects of local symmetries and

2D/3D information imbalance in S2V. Poorly structured,

repetitive and noisy regions are a common challenge in both

tasks.

In recent years, image matching has witnessed revo-

lutionary developments based on end-to-end deep learn-

ing, most notably the introduction of highly repeatable

and robust salient point detectors and descriptors [6, 10,

36, 44], novel context-aware descriptor matchers [29, 47],

and even detection-free matchers [54, 65]. To a signif-

icant extent, recent advancements made with end-to-end

deep learning have been made possible through the intro-

duction of large-scale publicly available datasets and bench-

marks, e.g. HPatches [3], ETH SfM [49], ScanNet [9],

MegaDepth [28], Image Matching Benchmark/Challenge

[22], etc. Remarkably, both [9] and [28] have applied a

synthetic sampling approach to produce accurate ground-

truth for IM tasks on the basis of real-world 3D recon-

structions, i.e. registered RGB-D sequences in case of [9]

and multi-view stereo reconstructions in case of [28]. Our

work adopts a conceptually similar approach by sampling

domain-agnostic S2V tasks with error-free ground-truth

from existing 3D volumetric reconstructions.

3. Methodology

3.1. Assumptions of rigidity and monomodality

We assume rigid and monomodal registration, where

2D slices align with 3D volumes without deformation and

within the same imaging modality. While real-world ap-

plications of domain-agnostic S2V registration are likely

to be cross-modal, e.g. correlative multi-instrument micro-

structure characterization, our monomodality assumption

is well-justified for several reasons. First, within-mode

registration already poses an extremely hard and unsolved

challenge due to the inherent 2D–3D information imbal-

ance. Second, cross-modal registration often follows do-

main adaptation [56] steps (e.g., image-to-image transla-

tion [46]) that reduce the problem to within-mode regis-

tration in learned [39] or transformed spaces. Finally, the

assumption allows us to sample massive amounts of error-

free ground-truth without the need to collect physical mea-

surements or to perform potentially imperfect simulations

of specific imaging modalities.

3.2. Registration task formulation

Rigid S2V registration is defined [13] as the problem of

finding the affine transformation A that aligns a 2D slice

I with a 3D volume V . To perform this alignment, we

allocate the initial pose of I to the Z = 0 plane in 3D

space. Under rigid motion, A is parameterized by a rota-

tion R ∈ SO(3) and a translation T . We expressed it as:

A(R, T ) = TRST−1
c , (1)

where Tc is translation to the slice center, and S is a known

lateral scaling of the slice. S is fixed to some ground-truth

Ŝ, which we vary across registration tasks to simulate vari-

ation in intersection scale. Assuming monomodality, the

registration task thus requires recovering the correct solu-

tion
{

R̂, T̂
}

, such that I ≈ I
R̂,T̂

, where IR,T denotes

V
(

A−1 (R, T )
)

for the sake of simplicity, and is a slice

sampled from V at a solution candidate {R, T}.

3.3. Dataset curation

The goal of our dataset is to enable development and ro-

bust evaluation of novel S2V methodologies in a domain-

agnostic setting. To this end, we curate diverse volumet-

ric data with balanced domain representation, and sample a

large collection of feasible registration tasks in a principled

way that maximizes internal diversity and challenge.

Volumetric data collection. Our approach leverages

openly licensed real-world volumetric data from published

academic research. Although 3D imaging is costly and

resource-intensive, global efforts towards open scientific

practices have resulted in online sharing of volumetric data

on online platforms such as Zenodo [12], Digital Rocks
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Figure 2. Registration task sampling scheme. From a volume Voriginal (a) randomized matrices A−1

subvolume and A−1

slice (b) sample a cubic

volume V and a square slice I (c). A−1

slice is parametrized with ground-truth non-uniform scaling Ŝ, rotation R̂ and translation T̂ in relation

to V . The registration task is to recover, given I , V and Ŝ, the correct parameters R̂ and T̂ , such that I , when pre-transformed (d) into the

coordinate system of V (e), aligns into its true position within V (f). Illustrated with a µ-CT of a fossil [53].

Portal [42], datadryad.org and figshare.com. While only a

fraction of all collections is licensed non-restrictively with

permissive usage rights, we limit our search to openly li-

censed collections, such that the curated dataset can inherit

the permissive licensing2. Additionally, our limiting fac-

tors include usage rights, volumetric resolution and quality,

which lead us to reject some of the candidate collections.

Based on these criteria, we identify a multitude of indepen-

dent sources of volumetric data, each with distinct prop-

erties and characteristics. We observe that these allow for

a high-level categorization into three branches of science,

which we label as ”Life Sciences” [21, 24, 26, 32, 50, 58],

”Materials Characterization” [1, 2, 11, 16, 20, 25, 31, 35, 37,

38, 43, 48, 51, 59, 64] and ”Paleo-, Archeo- & Anthropol-

ogy” [15, 17, 32, 41, 53]. The significance of such catego-

rization for us lies in the fact that sources which belong

to the same category are considerably more alike, e.g. in

terms of measurement subjects and instruments, between-

item variability, structure and noise patterns. To ensure

technical feasibility and efficiency of subsequent steps, we

manually validate and homogenize the collected volumet-

ric data in various ways, e.g. by the means of transform-

ing, cropping to content and splitting large volumes into

smaller chunks. All volumes are converted into 8-bit un-

signed integer format after contrast adjustment. The initial

imbalance in the number of available volumes Navailable,

both within and between categories, necessitates us to fur-

ther sub-select the collection in order to mitigate these im-

balances. We approach this by selecting individual vol-

umes evenly and randomly between the sources and cate-

gories. In practice, we select an individual volume from a

source with Navailable volumes with a probability propor-

tional to 1
Ncat

1
Navailable

, where the number of all categories

2The dataset is released under CC BY 4.0

Table 1. Collected volumetric data categorization with counts of

available Navailable and kept Nkept volumes, split counts.

Category Sources Navailable Nkept Train / Val / Test

Life Sciences 6 1855 666 342 / 21 / 21

Materials Characterization 11 4200 666 591 / 34 / 34

Paleo-, Archeo- & Anthropology 5 166 166 146 / 10 / 10

Total 22 6221 1498 1079 / 65 / 65

Ncat = 3. Finally, kept volumes in our selection stem ap-

prox. to 44, 46% from life sciences, to 44, 46% from ma-

terials characterization and to 11, 08% from anthropology.

For the purpose of registration task sampling, we split our

selection into train, validation and test sets with the propor-

tions of approx. 90% / 5% / 5%, such that all three sets

contain strictly no overlap of volumetric data. This split is

performed source-wise, such that all data sources are repre-

sented in all sets. A brief overview of data collection results

is presented in Tab. 1, and the details in Supp. Mat., Sec.

1.1, ethical considerations for medical data in Sec. 1.2.

Synthetic sampling of registration tasks. The col-

lected 3D volumes contain rich amount of structure, which

can be used in a multitude of independent registration tasks.

Such partial reuse of volumetric data requires a princi-

pled sampling strategy which can yield unique, meaningful

and feasible registration tasks. We approach this by sam-

pling pairs of subvolumes V and intersecting slices I with

randomized matrices Asubvolume and Aslice (see Fig. 2).

Asubvolume applies arbitrarily strong rotation, as well as

some translation, cropping, and weak shearing, to sub-

select a parallelepiped from the original arbitrarily-shaped

volume. This sub-selected region is rescaled into a cubic

volume V ∈ {0, 1, ...255}
D×D×D

. We provide a formal

definition for Asubvolume in the Supp. Mat., Sec. 1.3. Note
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that Asubvolume is prone to sampling outside the bound-

aries of the original volume. In order to make the best use

of the volumetric data, we do not prohibit out-of-bounds

sampling entirely. Instead, we allow such regions to be

filled via interpolation, which prevents an unfair advan-

tage for the registration algorithm in the form of clearly-

defined boundaries. A single intersecting slice I is sam-

pled for each V by randomizing parameters R̂, T̂ and Ŝ,

which define some ground-truth Â (see Eq. (1)). The first

and second diagonal coefficients of Ŝ are chosen in the

range (0.5, 1.5). Then, Aslice = A−1
subvolumeÂ sub-selects

a rectangle from the original volume, which is rescaled into

a square I ∈ {0, 1, ...255}
D×D

. We randomize all non-

rotational sampling parameters uniformly, while rotations

are randomized for uniform cover on the SO(3). As a re-

sult, a registration task with ground-truth solution
{

R̂, T̂
}

has been sampled, for which I , V , and Ŝ are the given in-

puts.

Validation and feasibility of registration tasks. Our

randomized sampling approach generally produces unique

and challenging registration tasks, yet some of the sampled

tasks have low practical value for our purposes. This is the

case when sampled slices and subvolumes contain too lit-

tle or too ambigous an overlap of information, and cannot

meaningfully contribute to training or evalution of registra-

tion algorithms. One example is when too large of a portion

of the subvolume is sampled outside the boundaries of the

original volume, which results in poor and uncharacteristic

3D structure. Another unreasonable outcome is when the

intersection between the slice and the volume is too small,

which imposes purely numerical limits on the precision of

the registration. Additionally, some of the registration tasks

are infeasible to solve when the slices are sampled from

monotonous or featureless regions, or from regions over-

powered by noise to the extent that the underlying structure

is suppressed. To ensure practicality of our dataset, we im-

plement a systematic validation process, the goal of which

is to filter out such tasks. We only accept such registration

tasks which simultaneously satisfy the requirements that:

(1) out-of-bounds regions in V do not exceed 25%, (2) I
intersects V at least to 75% of its area, and (3) the ground-

truth solution
{

R̂, T̂
}

is a well-defined local minimum to

an L2 dissimilarity minimization task argmin
R,T

M(R, T ),

M(R, T ) =

{1,...,D}2

∑

(i,j)

|I(i, j)− IR,T (i, j))|
2

D2
. (2)

All intensities are linearly scaled such that V is normalized

by 3× σ, where σ is the standard deviation of intensities in

V . We evaluate Jacobian J (M) and Hessian H(M) at the

ground-truth
{

R̂, T̂
}

, and accept it as a stable local mini-

Figure 3. Registration task feasibility test outcomes. Sam-

pled slices visualized in the coordinate space of the original vol-

ume. Sampled slices that satisfy the test (top/left, green) demon-

strate clearly defined structure, while the rejected problems (bot-

tom/right, red) are subject to rotational and translational ambigui-

ties. µ-CT scan of a fly [32], isosurface rendering.

mum if the conditions hold:











|M
R̂,T̂

| < C1,

max(|J (M
R̂,T̂

)|) < C2,

λmin(H(M
R̂,T̂

)) > C3,

(3)

where λmin(H) is the smallest eigenvalue of the Hessian.

Coefficients C1, C2 and C3 are hand-chosen empirically.

We start from 1.0 for C1 and C2, and 0 for C3, and progres-

sively strengthen the conditions, such that for all sources

of volumetric data the clearly unreasonable tasks are sys-

tematically rejected, while a sufficient amount of reason-

able tasks is accepted (see Fig. 3). Finally, we arrive at

C1 = 0.1, C2 = 0.5 and C3 = 0.01. Effectively, our

approach guarantees that the accepted tasks can be solved

at least by minimizing Eq. (2) when initialized sufficiently

close to the ground-truth solution.

Dataset split. We apply our validation process after ran-

domly sampling a large number of problems per volume.

We then reject the infeasible, and keep at most 125 prob-

lems per volume. As a result, we produce a collection

of 166, 897 unique S2V registration problems (see Fig. 1,

more examples in Supp. Mat., Sec. 1.5). Finally, we end up

with a train/validation/test split of 149, 895 / 8, 541 / 8, 461
registration problems. We also provide an additional,

smaller train/validation split, in order to support fast cycles

of validation, where just 10% of problems are available per
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Table 2. Optimization results (mAA). LO marks 1 pass of SLSQP for the best candidate. Nrand is the count of random initializations.

Nrand
Subplex [45] + LO COBYLA [40] + LO LBFGS [30] SLSQP [27]

@ 5° @ 10° @ 20° @ 5° @ 10° @ 20° @ 5° @ 10° @ 20° @ 5° @ 10° @ 20°

1 0.53 % 0.57 % 0.70 % 0.22 % 0.25 % 0.33 % 0.33 % 0.33 % 0.35 % 0.53 % 0.54 % 0.63 %

2 0.81 % 0.88 % 0.98 % 0.46 % 0.54 % 0.73 % 0.79 % 0.83 % 0.94 % 0.99 % 1.04 % 1.23 %

8 2.15 % 2.21 % 2.58 % 1.75 % 1.79 % 1.90 % 2.72 % 2.79 % 2.97 % 3.51 % 3.56 % 3.80 %

16 4.17 % 4.21 % 4.69 % 3.51 % 3.56 % 3.80 % 3.90 % 4.05 % 4.42 % 5.83 % 5.96 % 6.33 %

64 11.16 % 11.46 % 12.34 % 9.78 % 10.04 % 10.71 % 13.11 % 13.36 % 14.06 % 16.51 % 16.85 % 17.64 %

128 16.45 % 16.81 % 17.97 % 14.28 % 14.43 % 15.31 % 19.34 % 19.93 % 20.99 % 23.86 % 24.41 % 25.81 %

256 23.46 % 23.95 % 25.28 % 20.07 % 20.15 % 21.13 % 26.69 % 27.07 % 28.17 % 31.97 % 32.73 % 34.11 %

512 30.33 % 30.73 % 32.07 % 27.35 % 27.69 % 28.82 % 34.52 % 34.91 % 35.95 % 40.18 % 40.91 % 42.13 %

1024 39.34 % 39.93 % 41.40 % 34.14 % 34.59 % 35.94 % 41.07 % 41.55 % 42.66 % 46.91 % 47.45 % 48.61 %

2048 47.13 % 47.48 % 48.85 % 42.21 % 42.75 % 44.12 % 47.61 % 48.11 % 49.32 % 53.05 % 53.60 % 54.62 %

volume, which results in a split of 16, 152 / 912.

3.4. Evaluation metrics for registration accuracy

We evaluate solutions {R, T} against the ground truth
{

R̂, T̂
}

through angular pose error, similar to e.g. [22,63].

This approach allows for scale-independent comparison be-

tween poses that is independent from metric units of dis-

tance. We express translations in unit-norm vector form,

while rotations are represented by single-cover unit-norm

quaternions r and r̂. Then, the total angular pose error is

e = max
(〈

t, t̂
〉

, ⟨r, r̂⟩
)

, where ⟨·, ·⟩ is the internal prod-

uct. We accumulate angular errors for entire sets of solu-

tions into the widely-used mean Average Accuracy (mAA)

[63] metric, which is common in image matching evalua-

tions [22]. mAA is calculated by integrating over the nor-

malized histogram of errors with a bin resolution of 1◦ up

to a threshold θmax: mAA(θmax) =
∑θmax

θ=1
A(θ)
θmax

, where A(θ)
is the accuracy at error threshold θ. mAA reports on the

cumulative error distribution, which has an advantage over

the plain accuracy metric in that methodologies which pro-

duce the lowest possible errors are favored. The chosen θmax

defines the upper limit on the acceptable error of registra-

tion, i.e. all errors above the threshold are considered to be

equally incorrect. We rank methodologies by reporting on

the mAA at thresholds of 5◦, 10◦ and 20◦, which can inform

applications with diverging accuracy requirements.

4. Evaluation

To assess the challenges posed by our curated dataset

and benchmark, we evaluate the performance of two distinct

methodologies for S2V registration. First, we examine clas-

sic optimization-based registration in a massive randomized

search campaign. Rapid algorithm development cycles are

enabled here by validating on a reduced validation set. Sec-

ond, we explore modern deep learning-based approach in-

spired by recent advances in end-to-end image matching.

To this end, we adapt and train LoFTR-S2V, a detector-free

Table 3. Evaluation of dissimilarity criteria with random search (at

65, 536 initializations).

@ 5◦ @ 10◦ @ 20◦❫

ZNCC 5.13 % 5.44 % 6.34 %

MSE 5.26 % 5.49 % 6.51 %

MAE 8.27 % 8.34 % 9.14 %

learned local feature matcher. We validate alternatives for

robust registration based on the predicted correspondences,

and apply local optimization (LO) steps to refine the predic-

tion. For both methodologies, the best-performing variants

are submitted to the test set benchmark as baseline refer-

ences for future research. Our evaluation serves as an ex-

ample of how both hand-crafted and deep-learned method-

ologies can be developed and evaluated using our dataset

and benchmark. It also highlights the significant potential

for improvement, as well as the key advantages of learning-

based registration.

4.1. Optimizationbased registration

Classic optimization-based S2V registration is defined

[13] as a minimization problem over some dissimilarity cri-

terion M , which for our case takes the form of:

argmin
R,T

M (IR,T , I) . (4)

We represent R and T as a set of 7 parameters

P : {r1, r2, r3, r4, t1, t2, t3}, where R is expressed through

a quaternion vector r and T through a translation vec-

tor t. These parameters are bounded by ri ∈ (−1, 1),
ti ∈ (0, 1.). Our assumption of within-mode registra-

tion allows us to limit our choice of M to the most sim-

ple options, namely Mean Absolute Error (MAE), Mean

Squared Error (MSE), and Zero-mean Normalized Cross-

Correlation (ZNCC). To choose the best dissimilarity crite-

rion, we randomly sample a large number (65, 536) of ini-

tializations, evaluate the dissimilarity, and minimize Eq. (4)
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with SLSQP [27] for the initialization with lowest dissimi-

larity. This allows to establish (Tab. 3) MAE as the best per-

forming measure of dissimilarity. Next, we validate classic

local solvers, both gradient-based LBFGS [30] and SLSQP

[27], and derivative-free Subplex [45] and COBYLA [40]

(Tab. 2). We solve Eq. (4) for Nrand randomized initial-

izations in a CPU-parallel way, and reduce for the best so-

lution. Our implementations are based on SciPy [57] and

NLopt [23] solvers. By progressively increasing Nrand

from 1 to 2, 048, we observe that the accuracy of final

solutions increases with diminishing returns in relation to

Nrand, while the solving time depends linearly on Nrand.

We stop at Nrand = 2, 048, since at this level the solv-

ing time reaches impracticable levels, i.e. per registration

task it takes 36s for Subplex, 35s for COBYLA, 116s for

LBFGS and 60s for SLSQP on an average consumer work-

station3. Correspondingly, the total solving time for all

problems in the test set for the best performing method

(SLSQP, Nrand = 2, 048) reaches approx. 141 hours, while

further significant improvements in accuracy demand fur-

ther exponential increase in solving time. Despite these

high computational costs, SLSQP with Nrand = 2, 048 of-

fers just 54.62% mAA @ 20◦, which stands to show that

a significant portion of registration tasks is too challenging

when considering only the local dissimilarity energy land-

scape. Another important observation here is that the same

method achieves 53.05% mAA @ 5◦, which is an indica-

tion that nearly all problems within 20◦ angular error can be

successfully refined with local optimization.

4.2. Registration with learned local features

To the best of our knowledge, there exist no public im-

plementations for end-to-end learned domain-agnostic S2V

registration. Note that implementations from medical S2V

[19, 61, 62] are not compatible with registration of arbitrary

2D slices into arbitrary 3D volumes. Therefore, we derive

and train from scratch our own adaptation of the image-

matching architecture known as LoFTR [54]. Our approach

follows local feature matching with robust registration and

refinement of the predicted pose with local optimization.

S2V registration by local feature matching. Image

matching models usually predict sets of 2D-2D point-wise

correspondences. In S2V registration we aim instead to as-

sociate 2D and 3D data. We propose that a set of point-wise

correspondences M, card(M) = N is estimated, with two

sets of matching 3D key-points CI : {cI0 , cI1 , ..., cIN } and

CV : {cV0
, cV1

, ..., cVN
}, where all points from CI belong

to the XY plane at Z = 0. The solution {R, T} can then

3Intel(R) Core(TM) i9-7920X CPU @ 2.90GHz,

NVIDIA GeForce RTX 2080 Ti

Table 4. Robust registration results (mAA). T for time / task.

@ 5◦ @ 10◦ @ 20◦ ❫ T , s

Least-squares [55] 0.53 % 2.24 % 6.98 % 0.294

MAGSAC [5] 12.79 % 20.92 % 29.62 % 0.392

RANSAC [14] 12.65 % 22.98 % 33.99 % 0.591

GC-RANSAC [4] 13.68 % 24.13 % 35.64 % 0.297

Least-squares [55] + LO 23.64 % 23.90 % 25.47 % 0.549

MAGSAC [5] + LO 43.49 % 43.72 % 44.31 % 0.600

RANSAC [14] + LO 49.96 % 50.32 % 51.56 % 0.786

GC-RANSAC [4] + LO 50.88 % 51.43 % 52.72 % 0.491

be recovered through minimization of

argmin
R,T

1

N

N
∑

i

|cVi
−A(R, T )cIi |

2
, (5)

which can be solved in a closed form [18, 55], as long as

N ≥ 3, and the key-points are non-collinear.

Architecture of LoFTR-S2V. The key contribution of

[54], the eponymous Local Feature Transformer (LoFTR)

module, has enabled efficient use of transformers for im-

age matching with outstanding results. We harness this ap-

proach for S2V registration, which requires a number of

architectural changes to the original model. Our adapta-

tion, which we name LoFTR-S2V, affects implementations

of feature extraction, positional encoding, coarse- and fine-

level matching, supervision and loss. First, we accommo-

date for mixed 2D-3D input by extracting features sepa-

rately with two independent backbones, as opposed to using

a single 2D backbone with shared weights. Then, we de-

rive a definition for 3D positional encoding to be used with

the extracted 3D features. This allows us to flatten both

2D and 3D features into 1D vectors, and perform coarse-

level matching identically to the original model. Finally,

we generalize the refinement of coarse-level matches to 3D

case. We supervise both coarse- and fine-level matching

with ground-truth correspondences produced by transform-

ing points on the slice with R̂ and T̂ . Aside from these

changes, we adhere to the original approach. More details

on architecture, training and raw performance of LoFTR-

S2V are provided in the Supp. Mat., Sec.2.

Robust registration. Since high outlier rate is expected

in the predicted M, we approach Eq. (5) as a robust esti-

mation task. To this end, we evaluate RANSAC [14], GC-

RANSAC [4] and MAGSAC [5] (see Tab. 4), and establish

that GC-RANSAC offers consistent advantage at all accu-

racy thresholds.

Refinement with local optimization. Finally, we al-

low the solutions recovered with Eq. (5) to be refined with

a single pass of SLSQP in the fashion of Eq. (4), which

leads to a significant improvement, in particular at finer ac-

curacy thresholds. After refinement, LoFTR-S2V achieves
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Ground Truth LoFTR-S2V LoFTR-S2V+LO SLSQP LBFGS

e=13.28° e=0.18° e=87.90° e=124.68°

e=107.50° e=97.20° e=2.86° e=2.86°

e=145.34° e=147.11° e=55.37° e=62.31°

(c)

(a)

(b)

Figure 4. Qualitative results. (a) LO allows to refine coarsely-fit results from LoFTR-S2V, optimization-based methods fail; (b) LoFTR-

S2V fails, optimization-based methods converge; (c) all methods fail. µ-CT of sandstone (a) [1], fossils (b) [41] and (c) [24].

Table 5. Test set results (mAA). LO marks 1 pass of SLSQP.

@ 5◦ @ 10◦ @ 20◦❫

SLSQP [27] (2, 048) 50.52 % 51.17 % 52.58 %

LoFTR-S2V 13.51 % 25.13 % 36.99 %

LoFTR-S2V + LO 52.08 % 52.57 % 53.78 %

results comparable in terms of accuracy to the best per-

forming optimization baselines (see Fig. 4 for qualitative

examples). At the same time, LoFTR-S2V takes approx.

0.297s and 0.491s (with LO) per registration task, which

is over 202 and 122 (with LO) times faster than exhaustive

optimization-based search.

4.3. Evaluation results

Having validated our methodologies, we report the re-

sults for the complete test/benchmark set in Tab. 5. De-

spite the significant speed advantage with LoFTR-S2V,

the dataset has demonstrated significant challenge for both

hand-crafted and end-to-end learned methodologies. We

provide additional considerations for limitations of our ap-

proach and representativeness of our benchmark ranking in

Supp. Mat., Sec. 1.5.

5. Conclusions

In this paper, we introduced a novel dataset and bench-

mark for domain-agnostic S2V registration. Designed to

address the challenges of rigid S2V across diverse scientific

domains, the dataset provides 158, 436 unique registration

tasks derived from real-world volumetric data, alongside ac-

curate ground-truth solutions. Complementing this, we de-

veloped an online evaluation platform and strong baseline

methodologies, including an optimization-based approach,

as well as one based on deep learned local feature matching.

Our work highlights the significant challenges of domain-

agnostic S2V, while demonstrating the feasibility and po-

tential for future advancements. Our contributions lower

the barrier of entry into S2V algorithm development, en-

abling training and standardized evaluation of innovative al-

gorithms. Moreover, our findings underscore the potential

of learned local feature matching for efficient and accurate

registration, paving the way for methods that can general-

ize across diverse applications in materials science, medi-

cal imaging, geology, and beyond. While our focus was on

monomodal rigid registration, extending this work to cross-

modal and non-rigid scenarios presents exciting opportuni-

ties. By providing a robust foundation for research and a

clear baseline for future methods, we hope our contributions

will catalyze further breakthroughs in domain-agnostic S2V

registration and related tasks, impacting a wide range of sci-

entific and industrial applications.
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open Soil Structure Library based on X-ray CT data. SOIL,

8(2):507–515, 2022. 1, 4

[60] Mark D Wilkinson, Michel Dumontier, I Jsbrand Jan Aal-

bersberg, Gabrielle Appleton, Myles Axton, Arie Baak,

Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da

Silva Santos, Philip E Bourne, Jildau Bouwman, Anthony J
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