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Abstract

This paper introduces the dynamic robust adaptive
graph-based tracker (DragonTrack), as a novel end-to-
end framework for multi-person tracking (MPT) by inte-
grating a detection transformer model for object detection
and feature extraction with a graph convolutional network
for re-identification. DragonTrack leverages encoded fea-
tures from the transformer for precise subject matching
and track maintenance, while the graphical component pro-
cesses these features alongside geometric data to predict
subsequent positions of tracked people. This methodology
aims to enhance tracking accuracy and reliability, as evi-
denced by improvements in key metrics such as higher or-
der tracking accuracy (HOTA) and multiple object track-
ing accuracy (MOTA). We quantitatively compare Drag-
onTrack with state-of-the-art methods on MOT17, MOT20,
and DanceTrack datasets, in which DragonTrack outper-
forms other methods. In challenging scenarios such as
DanceTrack, DragonTrack achieves an impressive MOTA
score of 93.4, significantly higher than the second-best
SOTA method, ByteTrack, which achieves only 89.6. Sim-
ilarly, on MOT17, DragonTrack scores 82.0 in MOTA, sur-
passing the closest competitor with a score of 80.3. On
MOT20, DragonTrack attains a HOTA score of 63.2, out-
performing the next best method scoring 62.61.

1. Introduction
Multi-person tracking (MPT), a pivotal component of

computer vision, plays a crucial role in identifying and
tracking individuals across video streams with distinct iden-
tifiers for each subject [2, 25]. Operating within the ex-
pansive domain of multiple object tracking (MOT), MPT

1The DragonTrack code is available at https://github.com/
ostadabbas/DragonTrack.
Supported by NSF-CAREER Grant #2143882.

finds extensive applications in areas such as surveillance,
robotics, and autonomous vehicles [1, 2, 12, 25, 34], en-
abling the concurrent tracking of several entities. The es-
sential processes of MOT—detection, localization, and as-
sociation—work in tandem to ensure the accurate identifi-
cation, positioning, and consistent tagging of objects across
a video feed [20].

With the considerable progress in MOT techniques over
the last decade [10,29,32,36], significant challenges remain,
particularly in preserving temporal connections during fre-
quent occlusions and periods of diminished visibility, as il-
lustrated in Figure 1. This scenario, depicted through the
output of the ByteTrack algorithm [36], highlights the piv-
otal challenge of sustaining consistent identity tracking over
successive frames when direct line-of-sight to subjects is
obstructed. The complexity increases when attempting to
track individuals with similar features, requiring the devel-
opment of more sophisticated methods for effective distinc-
tion [31].

Addressing these challenges, our paper presents the dy-
namic robust adaptive graph-based tracker named Drag-
onTrack, as an innovative end-to-end approach. While
graph neural networks have been previously integrated into
MOT systems, such as MPNTrack [6] for 2D offline track-
ing and online graph representations for 3D multi-object
tracking (OGR3MOT) [33], our approach uniquely com-
bines the detection transformer (DETR) [8] with graphical
convolutional networks (GCN) [7,30], enhanced by a multi-
edge attribute graph and an attention mechanism. The con-
tributions of our research are as follows:

• Introducing DragonTrack, an end-to-end tracking
framework designed to enhance precision in multi-
person scenarios. Unlike previous approaches, it lever-
ages the detection transformer alongside a multi-edge
attribute graph with an integrated attention mecha-
nism, enabling granular analysis of individual contexts
and interactions.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6373

https://github.com/ostadabbas/DragonTrack
https://github.com/ostadabbas/DragonTrack


Frame1 Frame 2 Frame 3

1352

62 62 62

93
93

105 99

15 13 3939 53 39 53 15 13
ByteTrack DragonTrack Error

Figure 1. Illustration of occlusion-induced identity challenges in multiple person tracking across three frames: This sequence highlights a
common issue in multi-object tracking, where occlusions can cause identity switching or generate new false identities for the same person.
In Frame 1, multiple people are correctly identified by their respective IDs (e.g., person 52, 13, 15). As the sequence progresses to Frame
2, persons 52 and 13 are completely occluded by person 62, causing ByteTrack [36] to assign new IDs in the subsequent frame. In Frame
3, due to the occlusion, ByteTrack mistakenly assigns two new IDs (105 and 99) for persons 52 and 13, resulting in a tracking error.
Our DragonTrack approach (shown with green IDs) successfully maintains the correct identities throughout the sequence, demonstrating
superior tracking performance, particularly under occlusions. ByteTrack [36], while a top-performing method (ranked second in terms
of MOTA according to Table 1), struggles in this scenario, whereas DragonTrack excels by mitigating identity switches even during
challenging conditions.

• Incorporating a novel graph attention mechanism that
dynamically prioritizes critical attributes within the
multi-edge graph structure. This synergy between
graph representation and attention enhances the adapt-
ability of the tracking approach across diverse scenar-
ios, going beyond the static graph structures used in
previous works.

• Integrating a combined loss function, utilizing
weighted binary cross-entropy and contrastive loss, to
address class imbalances and promote the learning of
discriminative features between subjects, thereby im-
proving tracking accuracy.

• Merging geometric features with appearance and posi-
tional data through a graphical network to accurately
predict object positions based on spatial relationships
and interactions. This leads to improved tracking ac-
curacy and closes the gap between MOTA and HOTA
performances, especially in high occlusion scenarios.

• Presenting a learnable Sinkhorn algorithm that rep-
resents a differentiable approach to optimizing track-
detection assignments, leading to enhanced overall
tracking performance. This is a novel application in
the context of multi-person tracking.

These enhancements not only improve the effectiveness
of multi-person tracking systems but also provide a foun-
dation for future advancements in the field. Our approach
addresses the limitations of previous methods, particularly
in handling complex scenarios with high occlusion rates and
similar-appearing subjects, as highlighted by the challenges
illustrated in Figure 1.

2. Related Works
2.1. CNN-based Methods: Tracking by Detection

Most traditional multi-object tracking methodologies
adopt the tracking-by-detection paradigm, where convolu-
tional neural network (CNN) object detectors first local-
ize objects in each frame. Subsequent track association
across frames is then executed to generate tracking out-
comes. For example, SORT [5] combines Kalman Fil-
ter and Hungarian algorithm for efficient track association,
whereas DeepSORT [29] and Tracktor [3] introduce co-
sine distance to enhance appearance similarity measures in
track association. ByteTrack [36] introduces a versatile data
association strategy, BYTE, addressing missing detections
through the inclusion of low-score candidates, such as oc-
cluded objects. Recently, StrongSORT [10] has advanced
DeepSORT by improving object detection, feature embed-
ding, and trajectory association, leveraging both motion
and appearance-based similarity metrics. Generally, CNN-
based MOT methods, with the paradigm of tracking by de-
tection, are well-established and widely used. However,
they may suffer from limitations such as scalability, depen-
dency on accurate detection, and difficulties in handling oc-
clusions and complex interactions. In these methods, the
reliance on post-processing for association limits the full
exploitation of temporal dynamics in video sequences.

2.2. End-to-End and Transformer-based Frame-
works

A shift towards end-to-end MOT frameworks allows for
the implicit learning of appearance and positional variances.
These frameworks conceptualize MOT as sequential predic-
tion tasks, integrating detection, localization, and identifica-
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tion (association) in a cohesive process. Some approaches,
such as MPNTrack [6], introduce neural message-passing
for 2D offline tracking, enabling end-to-end optimization
without relying on transformers.

Transformer-based methods like MOTR [35] employ
deep learning to simultaneously optimize detection, track-
ing, and reidentification, thus eliminating the dependency
on handcrafted features. Extending DETR [8], MOTR in-
troduces a ”track query” mechanism, evolving from ”image
query” in transformers, to model tracked instances across
a video sequence, facilitating frame-by-frame iterative pre-
diction. MOTRv2 [38] further refines this approach, em-
ploying a bootstrapping technique with pretrained detectors
to improve tracking accuracy. In the 3D tracking domain,
OGR3MOT [33] extend the concept to online scenarios us-
ing learnable graph representations.

Despite these advancements, MOT remains challenged
by scenarios with high occlusion rates, as shown in Fig-
ure 1, affecting key accuracy metrics like HOTA and
MOTA and limiting real-world applicability. This pa-
per introduces DragonTrack, a novel framework that com-
bines transformer-based detection with graph neural net-
works, designed for robust tracking in complex scenarios,
including subjects’ re-entries or occlusions. Notably, Drag-
onTrack significantly enhances tracking accuracy, partic-
ularly in HOTA, outperforming contemporary MOT solu-
tions.

3. Introducing DragonTrack Algorithm
Our end-to-end MPT method, DragonTrack, synergies

the capabilities of graphical convolutional networks with
an attention mechanism to adeptly handle complex data
structures. DragonTrack is tailored to address the intrica-
cies of integrating dynamic features from various dimen-
sions—geometric, positional, and appearance—and ensur-
ing temporal consistency in sequential data analysis. Our
model employs a detection transformer for the initial ex-
traction of features, which are further refined by specialized
affinity networks, and then integrated and analyzed using a
graphical network.

Figure 2 shows the block diagram of DragonTrack de-
tailing its process flow from inputting past and current
frames into the transformer for object detection, extract-
ing geometric, appearance, and positional features of each
detected subject, to integrating these features through in-
dividual multi-layer perceptrons (MLPs) and a graph con-
volutional attention network. This network dynamically
weighs the importance of different attributes for robust
tracking. The process culminates in the application of a
learnable Sinkhorn algorithm and Hungarian matching to
assign unique IDs to subjects and re-identify them accu-
rately across frames. This addresses the challenges of oc-
clusions, exit/enter events, and maintaining temporal asso-

ciations, significantly improving multi-person tracking ac-
curacy and robustness.

3.1. Overview of the Proposed Algorithm

Given Ft the current frame of the video at time t, and
a window of previous frames up to Ft−Ni

, where Ni is a
variable which is subsequently refined by specialized affin-
ity networks, our model employs a detection transformer
(DETR) for the initial extraction of features from all frames
in the window. For each detection, the DETR outputs a
bounding box directly in the text as B = (x, y, h, w), where
(x, y) is the top-left coordinates of the detected object, and
(h,w) denotes its height and width. The positional embed-
ding eposij , capturing the spatial relation between objects i
and j, is computed as:

eposij =

 xi − xj

yi − yj√
(xi − xj)2 + (yi − yj)2

 . (1)

These features are integrated and analyzed using a graph
convolutional network (GCN), as depicted in Figure 2. The
process involves feeding past and current frame data into
the transformer for object detection, extracting geometric,
appearance, and positional features, and integrating these
through individual multi-layer perceptrons (MLPs) and the
GCN. Post feature concatenation (hcat), we construct a
graph where nodes represent detected objects and edges are
formed based on the affinity between positive and nega-
tive contrastive pairs. This graph structure underpins the
interaction embeddings hint = GCN(hcat), which en-
code the complex interactions among different objects in
the scene. The process culminates in the application of a
learnable Sinkhorn algorithm and Hungarian matching to
assign unique IDs to subjects and re-identify them accu-
rately across frames. The entire network is trained end-to-
end with a combined loss function balancing the weighted
binary cross-entropy loss LWBCE and the contrastive loss
LCONT. This loss combination optimizes tracking perfor-
mance, ensuring temporal coherence and effectively han-
dling challenges such as occlusions and entry/exit events.

3.2. Feature Extraction and Affinity Networks

Transformer-Based Encoder The adoption of a
transformer-based encoder for initial feature extraction
is grounded in the transformer’s demonstrated efficacy
in extracting rich, contextual information from visual
data. The transformer-based architecture of the detection
transformer processes images in their entirety, extracting
comprehensive and context-aware features that serve as a
robust basis for subsequent processing.

Affinity Networks After initial feature extraction, affin-
ity networks refine features related to geometric, positional,
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Figure 2. Schematic of the DragonTrack framework: (a) Input processing: The current frame (Ft) and a variable number of previous
frames (Ft−1, . . . , Ft−Ni ) are processed by DETR to generate bounding boxes and feature embeddings. DETR extracts both spatial
and appearance information. (b) Feature refinement: MLPs derive geometric (hgeo), positional (hpos), and appearance (happ) embeddings
from the DETR output. These embeddings capture different aspects of object relationships. (c) Graph-based learning: A GCN further
refines these features using supervised contrastive learning, enabling the model to capture complex inter-object relationships. (d) Track
management: Cosine similarity is computed between object embeddings, followed by learnable Sinkhorn normalization. The Hungarian
method is then applied for optimal track-to-detection assignment. The model’s loss function combines weighted BCE with contrastive loss,
optimizing for discriminative feature learning given the variable frame history Ni. This multi-stage process enables robust tracking across
varying temporal contexts.

and appearance attributes. This multi-faceted approach ad-
dresses the unique contributions of each attribute type. Ge-
ometric and positional attributes help decode spatial rela-
tionships and dynamics within scenes. Incorporating posi-
tional encoding alongside geometric features enhances the
model’s performance by providing explicit spatial context,
which is crucial for predicting object trajectories and rela-
tionships. Positional encodings also capture temporal dy-
namics, aiding in object tracking over time.

Refining appearance features is key for distinguishing
entities, important for object recognition and classification.
Combining positional encodings with appearance features
adds a spatial dimension, improving predictions of object
identities and movements. This integration is especially
useful in scenes with multiple similar-looking objects, as
positional encodings serve as disambiguation cues, enhanc-
ing the model’s discriminative power.

The inclusion of positional encodings enriches the fea-
ture set, enabling the model to make more nuanced deci-
sions based on a comprehensive understanding of the scene.
This leads to improved tracking performance, highlighting
the importance of integrating positional encodings with ge-
ometric and appearance features.

3.3. Graphical Tracking with Attention Mechanism

In the GCN layer, as shown in Figure 2, each node’s fea-
ture update is computed based on the features of its neigh-
boring nodes, weighted by an attention mechanism. The
attention weights are calculated based on the similarity be-
tween the edge features and the node features.

The updated feature for node i, denoted by h′
i, is com-

puted as follows:

h′
i = σ

 1

|N (i)|
∑

j∈N (i)

αij ·W · hj

 , (2)

where N (i) is the set of neighbors of node i, and αij rep-
resents the attention weight between nodes i and j. The
weight αij depends on the edge features eij and the node
features hi and hj . The matrix W is a learnable weight
matrix, and σ(·) denotes a non-linear activation function
(ReLU), which is applied to the sum of the weighted fea-
tures.

Network Architecture The network backbone consists
of a feature extractor for initial feature extraction, followed
by affinity networks to process specific edge attributes, in-
cluding appearance, geometric, and positional information.
Each node in the graph represents a detected object in the
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video frame, and these nodes are characterized by the fea-
tures extracted via the feature extractor.

Edges between nodes capture the relationships between
objects, including geometric proximity, appearance similar-
ity, and positional dynamics. The affinity networks help
evaluate and prioritize these attributes to facilitate accurate
object association.

Attention Mechanism The core of our GCN layer is the
attention mechanism, which updates the node features by
weighting the neighboring nodes’ features based on their
relevance. The attention weights αij are derived from the
similarity between the nodes and the attributes of the edges
connecting them. These attention weights are normalized
using a softmax function to ensure that they sum to 1 across
all neighbors of node i:

αij =
exp(fij)∑

k∈N (i) exp(fik)
. (3)

where the similarity score fij is computed as:

fij = LeakyReLU(aT · [Whi∥Whj∥eij ]). (4)

Here, aT is a learnable weight vector, and the concate-
nation operation ∥ combines the transformed feature vectors
W · hi, W · hj , and the edge features eij . The LeakyReLU
function introduces non-linearity, ensuring that the atten-
tion coefficients are computed effectively. This formulation
allows the GCN to dynamically adjust the importance of
neighboring nodes based on the edge and node features, im-
proving the model’s ability to focus on relevant information
and enhance prediction accuracy.

3.4. Learnable Sinkhorn Algorithm

We introduce a learnable Sinkhorn algorithm for matrix
normalization during object matching. Given input matrix
X , the algorithm iteratively normalizes rows and columns:

Ri =
Xi∑m

j=1 Xij · θr + σ
, (5)

Cj =
Rij∑n

i=1 Rij · θc + λ
. (6)

Here, θr and θc are learnable scaling factors for row and
column normalization, respectively, allowing the algorithm
to adapt to different tracking scenarios.

3.5. Construction of Positive and Negative Subject
Pairs

An essential step in our training process involves the
strategic construction of positive and negative subject pairs,
which are crucial for the effective application of contrastive
loss. This construction, as shown in Figure 2, is designed
to ensure that the model learns to accurately differentiate
between subjects by closely analyzing their features.

Positive Subject Pairs Positive subject pairs are formed
by selecting two different instances of the same subject.
These instances can be either from the same frame (in the
case of multiple detections of the same subject within a
frame) or across consecutive frames, where the subject’s
appearance may slightly vary due to motion or changes in
viewpoint. The key criterion for a pair being considered
positive is that both instances must belong to the same sub-
ject identity. This is represented as:

P = {(i, j)|subjecti = subjectj , i ̸= j}, (7)

where i and j are instance indices that belong to the same
subject.

Negative Subject Pairs Negative subject pairs are gener-
ated by pairing instances of different subjects. This pairing
is crucial for teaching the model the critical task of distin-
guishing between different subjects’ features. Unlike pos-
itive pairs, these instances do not share the same identity
and can be selected from the same frame or across frames.
The selection process aims to include a diverse set of pairs
to encapsulate various scenarios and differences in appear-
ances. The criterion for a pair being considered negative is
formulated as N = {(i, k)|subjecti ̸= subjectk}, where i
and j are instance indices that belong to different subjects.

Balancing and Sampling Strategy Given the potentially
vast number of possible negative pairs compared to posi-
tive pairs, a balanced sampling strategy is employed. This
strategy ensures that the model is not biased towards learn-
ing to only distinguish negative pairs, which are more abun-
dant. We employ techniques such as random sampling, hard
negative mining, or other heuristic-based approaches to se-
lect a representative and balanced set of positive and nega-
tive pairs for training. This careful construction and selec-
tion of subject pairs are instrumental in the effective appli-
cation of the contrastive loss component of our loss func-
tion, ultimately enhancing the model’s ability to discern be-
tween different subjects and contributing to its overall per-
formance.

3.6. Loss Functions

The total loss function combines Weighted Binary
Cross-Entropy (WBCE) to address class imbalance, and
contrastive loss to enhance discriminative features. The
WBCE loss is defined as:

LWBCE = −
N∑
i=1

wi [yi log(ŷi) + (1− yi) log(1− ŷi)] ,

(8)
where wi is the weight for the i-th sample, yi is the true
label, and ŷi is the predicted probability. The contrastive
loss for positive and negative pairs is given by:
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LCONT =
∑

(i,j)∈P

d(hi, hj)
2+

∑
(i,k)∈N

max(0,m−d(hi, hk))
2,

(9)
where m is the margin, a hyperparameter that defines the

minimum distance between embeddings of different sub-
jects. where d(hi, hj) represents the distance between the
embeddings of positive pairs (i, j), m is the margin for neg-
ative pairs (i, k), and P and N are the sets of positive and
negative pairs, respectively.

The total loss function is a weighted combination of both
losses:

Ltotal = αLWBCE + (1− α)LCONT, (10)

where α controls the trade-off between the WBCE and con-
trastive loss.

3.7. Track Handling and Occlusion Management

DragonTrack employs a sophisticated track handling
mechanism to address challenges such as occlusions, re-
entries, and exit/enter events. This process is crucial for
maintaining temporal consistency and robust tracking per-
formance in complex scenarios.

Temporal Window Our algorithm utilizes a sliding tem-
poral window of 30 previous frames. This window allows
DragonTrack to consider historical information when mak-
ing association decisions, which is crucial for handling oc-
clusions and re-entries.

Distance-Based Association DragonTrack uses a spatial
constraint for potential associations. Objects within 200
pixels can be associated, helping to reduce false associa-
tions between distant objects.

Track Continuation and Termination DragonTrack
maintains tracks even when objects are temporarily oc-
cluded or leave the scene. The algorithm continues to pre-
dict the position of occluded objects for a certain number of
frames, allowing for re-association if the object reappears.

By integrating these mechanisms, DragonTrack effec-
tively manages the challenges of occlusions, re-entries, and
false positives. The combination of temporal windowing,
distance-based association, confidence thresholding, and
track continuation contributes to DragonTrack’s robust per-
formance across varied and complex tracking scenarios, as
demonstrated by our results on challenging datasets like
MOT20 and DanceTrack.

The affinity network uses a simple MLP structure with
one hidden layer (input size 2, output size 1) and ReLU
activation. The GCN layers use 512 and 128 units respec-
tively. The learning rate is set to 1e-4 with Adam optimizer.
Training is performed for 20 epochs with a batch size of 2.

4. Experimental Results
4.1. Implementation Details

Setting The results have been obtained on a setup with
an Intel Xeon CPU E5 2.40GHz, T4 GPU, and 15 GB
of RAM. These hardware specifications provided the nec-
essary computational power and memory capacity to sup-
port the intensive training process of our machine learning
model. The model was trained for a total of 20 epochs,
which spanned over a duration of 2 days. This training pe-
riod was essential to achieve convergence and to ensure that
the model adequately learned from the training data across
all the loss functions being compared.

Hyperparameters The affinity network uses a simple
MLP structure with one hidden layer (input size 2, output
size 1) and ReLU activation. The GCN layers use 512 and
128 units respectively. The learning rate is set to 1e-4 with
Adam optimizer. Training is performed for 20 epochs with
a batch size of 2.

Dataset We conduct experiments on MOT17 [18],
MOT20 [9], and DanceTrack [23]. MOT17 consists of
7 training and 7 testing sequences, primarily featuring
crowded street scenes. MOT20 includes 4 training and 4
testing sequences with more crowded scenes and higher oc-
clusions. DanceTrack contains 100 sequences, focusing on
tracking in scenarios with high inter-object similarity and
complex motions.

Metrics We follow the standard evaluation protocols
to evaluate our method. The common metrics include
higher order tracking accuracy (HOTA) [16] to evaluate our
method and analyze the contribution decomposed into as-
sociation accuracy (AssA) and detection accuracy (DetA).
We also list the iterative and discriminative frame- work1
(IDF1) [21], multiple object tracking accuracy(MOTA) [4],
and identity switches (IDS) metrics.

4.2. State-of-the-Art Comparison on Benchmarks

We evaluate DragonTrack against CNN-based methods
[3,10,19,22,26–28,36,37,39] and transformer-based meth-
ods [17, 24, 35, 38]. As shown in Table 1, DragonTrack
achieves superior accuracy scores (HOTA, AssA, DetA,
IDF1, MOTA) and fewer identity switches (IDS) compared
to both categories. DragonTrack outperforms StrongSORT
[10] in HOTA by 1.8 (65.3 vs 63.5) and ByteTrack [36] in
MOTA by 1.7 (82.0 vs 80.3). Although MPNTrack [6] has
fewer IDS errors than our method, it struggles with over-
all tracking accuracy, whereas our method excels in metrics
such as HOTA, MOTA, and IDF1, providing more accurate
tracking.

We also compared DragonTrack with the top-ranked
methods (from Table 1) on MOT20 and DanceTrack
datasets. As shown in Table 2, on MOT20, DragonTrack
achieves the highest HOTA (63.2), and IDF1 (78.6) scores,
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Table 1. Performance comparison on the MOT17 [18] dataset. The table is partitioned into two sections: CNN-based and transformer-
based methods. The best results for each metric are highlighted in bold, while the second-best performing metrics are indicated in blue.
DragonTrack has demonstrated superior performance compared to other MOT methods in both categories.

Methods HOTA↑ AssA↑ DetA↑ IDF1↑ MOTA↑ IDS↓

CNN-based:

Tracktor++ [3] 44.8 45.1 44.9 52.3 53.5 2072
MPNTrack [6] 49.0 51.1 47.3 61.7 58.8 1185
CenterTrack [39] 52.2 51.0 53.8 64.7 67.8 3039
TraDeS [19] 52.7 50.8 55.2 63.9 69.1 3555
QDTrack [19] 53.9 52.7 55.6 66.3 68.7 3378
GSDT [28] 55.5 54.8 56.4 68.7 66.2 3318
FairMOT [37] 59.3 58.0 60.9 72.3 73.7 3303
CorrTracker [26] 60.7 58.9 62.9 73.6 76.5 3369
GRTU [27] 62.0 62.1 62.1 75.0 74.9 1812
MAATrack [22] 62.0 60.2 64.2 75.9 79.4 1452
StrongSORT [10] 63.5 63.7 63.6 78.5 78.3 1446
ByteTrack [36] 63.1 62.0 64.5 77.3 80.3 2196

Transformer-based:

TrackFormer [17] - - - 63.9 65.0 3528
TransTrack [24] 54.1 47.9 61.6 63.9 74.5 3663
MOTR [35] 57.8 55.7 60.3 68.6 73.4 2439
MOTRv2 [38] 62.0 60.6 63.8 75.0 78.6 -
DragonTrack (Ours) 65.3 66.2 65.8 79.2 82.0 1313

Table 2. Performance metrics of the DragonTrack on MOT20 [9]
and DanceTrack [23] datasets.

Method MOT20 DanceTrack
HOTA MOTA IDF1 HOTA MOTA IDF1

MPNTrack [6] 46.8 57.6 59.1 - - -
ByteTrack [36] 61.3 77.8 75.2 47.7 89.6 53.9
StrongSORT [10] 62.6 73.8 77.0 -
MOTRv2 [38] 61.0 76.2 73.1 69.9 91.9 71.7
DragonTrack (Ours) 63.2 77.2 78.6 72.5 93.4 74.9

outperforming MPNTrack [6], ByteTrack [36], Strong-
SORT [10], and MOTRv2 [38]. On DanceTrack, Drag-
onTrack also leads with the highest HOTA (72.5), MOTA
(93.4), and IDF1 (74.9) scores, surpassing MOTRv2 [38]
and ByteTrack [36] by significant margins in all metrics.

We chose challenging datasets such as MOT20 and
DanceTrack to further demonstrate DragonTrack’s robust-
ness in handling complex scenarios. The MOT20 dataset,
known for its crowded scenes, contains 87,786 occlusion
events, 4,303 exit events, and 22,365 entering events across
its sequences [9]. Similarly, the DanceTrack dataset fea-
tures 105,000 frames annotated for occlusion and motion
events [23]. Based on these high scores across challenging
datasets, we conclude that DragonTrack has a robust frame-
work for handling occlusions and other complex tracking
scenarios.

To further evaluate DragonTrack’s performance, we
compared several state-of-the-art algorithms in terms of

their speed(FPS), accuracy (HOTA), and model complexity
(number of parameters). These analyses are summarized in
Section A.1 of the Supplementary Materials.

Furthermore, to evaluate our method in challenging real-
world scenarios, we compared DragonTrack and ByteTrack
[36] using an in-the-wild example of identical triplet tod-
dlers found on YouTube in Section A.2 in the Supplemen-
tary Materials.

4.3. Ablation Study

Our ablation studies focus on evaluating the impact of
various components and design choices in DragonTrack.
We investigate the effects of different loss functions, the
learnable Sinkhorn algorithm, the choice of detection back-
bone, and the use of the attention layer on the model’s per-
formance.

Table 3. The ablation study on the effect of different loss func-
tions on DragonTrack performance. The symbols LWBCE, LCONT,
T. A, O. A, and Z. A represent weighted binary cross-entropy loss,
contrastive loss, total accuracy, ones accuracy, and zeros accuracy,
respectively.

LWBCE LCONT T. A(%) O. A(%) Z. A(%) HOTA (%) MOTA (%) IDF1 (%)

✓ ✗ 87.0 85.0 90.0 53.0 64.3 59.3
✗ ✓ 90.0 88.0 93.0 58.2 66.4 62.1
✓ ✓ 95.0 93.0 97.5 65.3 82.0 79.2

We begin by exploring the impact of different loss func-
tion combinations. Table 3 illustrates the effect of weighted
binary cross-entropy (WBCE) and contrastive loss on the
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model’s performance. WBCE helps handle class imbalance
by assigning different weights to classes, while contrastive
loss aids in learning discriminative embeddings. The results
clearly show that the combination of WBCE and contrastive
loss yields superior outcomes across all metrics, demon-
strating the synergistic effect of addressing both class im-
balance and feature discrimination.

Next, we evaluate the impact of the learnable Sinkhorn
algorithm, as described in Section 3.4. Table 4 demonstrates
that incorporating the learnable Sinkhorn algorithm signif-
icantly improves the model’s performance, particularly in
terms of MOTA score. This improvement can be attributed
to the algorithm’s contribution to enhanced matching and
association capabilities within the model.

Table 4. Ablation study on the effect of the learnable Sinkhorn
algorithm on DragonTrack.

Ablation HOTA MOTA IDF1

DragonTrack w/o Sinkhorn 62.2 78.7 75.4

DragonTrack w/ Sinkhorn 65.3 82.0 79.2

Table 5. Comparison of DETR, YOLOv8n, and Fast R-CNN back-
bones in DragonTrack on MOT17 dataset.

Backbone HOTA↑ AssA↑ DetA↑ IDF1↑ MOTA↑ IDS↓ FPS↑ Params↓

Fast R-CNN [11] 52.1 53.3 52.8 65.7 68.2 2345 6 25 M
YOLOv8n [14] 63.8 64.5 64.2 77.6 80.5 1425 45 3.2 M
DETR [8] 65.3 66.2 65.8 79.2 82.0 1313 12 41 M

To assess the effectiveness of our DETR-based feature
extractor, we compare it with YOLOv8n [14], a state-of-
the-art object detector known for its efficiency, and Fast
R-CNN [11], a traditional object detection model. Ta-
ble 5 presents the results of this comparison on the MOT17
dataset. The results reveal an interesting trade-off between
tracking accuracy and computational efficiency. DETR [8]
demonstrates superior performance across all tracking met-
rics, achieving a 1.5% improvement in HOTA and a 1.5%
increase in MOTA compared to YOLOv8n, and a substan-
tial 13.2% improvement in HOTA and 13.8% increase in
MOTA compared to Fast R-CNN [11]. It also shows bet-
ter performance in terms of identity switches (IDS). How-
ever, YOLOv8n offers significant advantages in terms of
inference speed and model size. The YOLOv8n-based
model operates at approximately 3.75 times the speed of
the DETR-based model (45 FPS vs. 12 FPS) and has a
substantially smaller model size (3.2M vs. 41M parame-
ters). Fast R-CNN [11], despite its historical significance,
underperforms both DETR and YOLOv8n across all met-
rics. Furthermore, when comparing these results to Table 3,
it is evident that our method with YOLOv8n still outper-
forms the second-best methods in terms of HOTA (63.8 vs
63.5), ASSA (64.5 vs 63.7), MOTA (80.5 vs 80.3) and IDS
(1425 vs 1446), establishing it as a more accurate approach
despite the computational trade-offs.

Table 6. Ablation study on the effect of the attention layer in Drag-
onTrack.

Model Variant HOTA↑ AssA↑ DetA↑ IDF1↑ MOTA↑ IDS↓

Without Attention 62.8 63.5 63.1 76.4 79.1 1542
With Attention 65.3 66.2 65.8 79.2 82.0 1313

Finally, we examine the impact of the attention layer
in our approach. Table 6 compares the performance of
DragonTrack with and without the attention mechanism.
The results demonstrate that incorporating the attention
layer leads to substantial improvements across all metrics.
Specifically, we observe a 2.5% increase in HOTA, a 2.7%
improvement in AssA, and a 2.9% boost in MOTA when
using the attention layer. Additionally, the number of iden-
tity switches (IDS) is reduced by 229, highlighting the at-
tention mechanism’s role in improving identity consistency
throughout the tracking process. These improvements un-
derscore the importance of the attention layer not only in
focusing on the most relevant features and relationships but
also in effectively combining geometric, positional, and ap-
pearance features. By dynamically weighting these fea-
tures, the attention mechanism enhances DragonTrack’s
ability to maintain accurate and robust multi-object track-
ing performance.

5. Discussion, Conclusion, and Future Work
This paper presented DragonTrack, a transformer-

enhanced graphical method for multi-person tracking in
complex scenarios. By utilizing multiple affinity networks
for edge attribute processing, DragonTrack significantly en-
hances tracking accuracy, particularly in challenging sce-
narios with high occlusion or similar-appearing subjects.
The integration of a learnable Sinkhorn algorithm intro-
duces a differentiable technique for tackling the assignment
problem, improving tracking continuity and precision.

The ablation studies collectively demonstrate the effec-
tiveness of DragonTrack’s design choices, including the
combination of loss functions, the incorporation of the
learnable Sinkhorn algorithm, the use of DETR as the de-
tection backbone, and the integration of the attention layer.
These findings suggest that while DragonTrack achieves
state-of-the-art performance, future work can focus on im-
proving computational efficiency and further enhancing ac-
curacy, especially in models using YOLOv8n as a detec-
tion backbone. Balancing accuracy and efficiency in multi-
person tracking systems is a promising direction for future
research.

While DragonTrack represents a considerable advance-
ment in tracking, several areas for future work emerge. The
sophisticated architecture, including the detection trans-
former and graph convolutional networks, is computation-
ally intensive, presenting opportunities for optimization
in real-time applications. Current evaluations focus on
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MOT17, MOT20, and DanceTrack datasets, and extend-
ing validation to more diverse datasets will confirm Drag-
onTrack’s broad applicability. Additionally, enhancing the
model’s capability to accurately track and match features of
distant subjects will expand its utility across a wider range
of scenarios.

These considerations underscore DragonTrack’s innova-
tive contributions to MOT and outline clear paths for future
research. By addressing computational efficiency, broader
dataset validation, and long-distance tracking capabilities,
DragonTrack can further solidify its position as a lead-
ing solution in multi-person tracking, adapting to an even
broader range of real-world scenarios and applications.
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