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Abstract

Although object detection models are widely used, their
predictive performance has been shown to deteriorate when
faced with abnormal scenes. Such abnormalities can oc-
cur naturally (by partially occluded or out-of-distribution
objects) or deliberately (in the case of an adversarial at-
tack). Existing uncertainty quantification methods, such as
object detection evaluation metrics and label-uncertainty
quantification techniques, do not consider the abnormal-
ities’ effect on the model’s internal decision-making pro-
cess. Furthermore, practical methods that consider the ef-
fects of abnormalities (such as abnormality detection and
mitigation) are designed to deal with one type of abnormal-
ity. We present distinctive localization (DiL), an unsuper-
vised, practical and explainable metric that quantitatively
interprets any type of abnormality and can be leveraged for
preventive purposes. By utilizing XAI techniques (saliency
maps), DiL maps the objectness of a given scene and cap-
tures the model’s inner uncertainty regarding the identified
(and missed) objects. DiL was evaluated across nine use
cases, including partially occluded and out-of-distribution
objects, as well as adversarial patches, in both physical and
digital spaces, on benchmark datasets, and our newly E-PO
dataset (generated with DALL-E 2). Our results show that
DiL: i) successfully interprets and quantifies an abnormal-
ity’s effect on the model’s decision-making process, regard-
less of the abnormality type; and ii) can be leveraged to
detect and mitigate this effect.

1. Introduction

Object detection (OD) models play a vital role in com-
puter vision and are widely used in numerous industries,
including autonomous driving [19], retail [15], and secu-
rity [18]. Although widely used, the performance of OD
models has been shown to deteriorate when they are faced

with an abnormal scene [29], i.e., a scene that contains con-
ditions unfamiliar to the OD model. Such abnormalities can
stem from a natural event (such as partially occluded [40] or
out-of-distribution (OOD) objects [8]) or a deliberate event
caused by an adversary that changes the OD model’s pre-
dictions (such as an adversarial patch attack [16]).

To fairly measure the effect of these abnormalities, it is
important to consider all abnormality types and their effect
on both the model’s predictions and the model’s decision-
making process (MDM). Furthermore, since the effect of
abnormalities appears in new samples at inference time, a
practical solution would require solely access to the model
and the input sample itself. The existing solutions for mea-
suring the effect of these abnormalities on an OD model
include predictive performance measures [34] and uncer-
tainty quantification methods [10,13,23,44]. None of these
methods upheld all of the above conditions. Furthermore,
practical methods (e.g., abnormality detection [8, 47] and
mitigation methods [8, 20, 21]) that do uphold these condi-
tions address only one abnormality type and do not provide
a quantitative measure.

We present distinctive localization (DiL), an unsuper-
vised, practical and explainable metric that quantitatively
interprets an abnormality’s effect on the MDM process, re-
gardless of the type of abnormality. Given a new scene, DiL
uses explainable AI (XAI) techniques (saliency maps) to
map the objectness level based on the model’s internal com-
ponents and examines any incompatibility with the model’s
output (illustrated in Figure 1). This results in a DiL score
for every scene and allows DiL to interpret the model’s in-
ner uncertainty regarding its identified (and missed) objects.
The DiL score can also be used for preventive purposes: i)
a DiL threshold can be set to detect the occurrence of an ab-
normality, i.e., abnormality detection; and ii) the DiL score
can be used to dynamically adjust the decision threshold for
a given scene, i.e., mitigating the abnormality’s effect.

We empirically evaluated DiL using two clean and seven
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Figure 1. DiL pipeline and components. The input scene (an E-PO dataset image) is used to get (a) the model’s predictions and the XAI
technique’s input to produce (b) a saliency map. Then, (a) and (b) are used to calculate the DiL score.

abnormality use cases in both the physical and digital space;
the use cases varied in terms of the type of abnormality
- partially occluded, OOD, and adversarially attacked ob-
jects. Eight OD algorithms were used in our evaluation,
including one-stage (e.g., YOLOF [5]), two-stage (e.g.,
Faster R-CNN [38]), and multi-stage detectors (e.g., Cas-
cade RPN [42]). In the digital evaluation, the Microsoft
Common Object in Context (COCO) [28] and Occluded-
PASCAL 3D+ [43] datasets were used, along with a sub-
set of the ImageNet [7] dataset, in the clean, partial occlu-
sion, and OOD use cases respectively, and our new E-PO
dataset (created with DALL-E 2). In the physical evalua-
tion, the Superstore [15] dataset was used, and our new PO-
Superstore and OOD-Superstore datasets. For the digital
and physical adversarial use cases, we crafted four adver-
sarial patches and placed them both on images and real ob-
jects. The results of our evaluation demonstrate that DiL: i)
successfully interprets and estimates an abnormality’s effect
on the MDM process, regardless of the type of abnormality;
and ii) can be successfully leveraged to detect and mitigate
the abnormality’s effect on the model’s outputs.

DiL’s novelty lies in the unique integration, use, and
adaptation of techniques from the XAI and OD fields re-
sulting in a practical and effective uncertainty metric. The
main contributions of this paper are as follows:

• To the best of our knowledge, DiL is the first metric
capable of quantitatively interpreting the inner uncer-
tainty of OD models under abnormal scenarios.

• To the best of our knowledge, DiL is the first metric
that addresses all types of abnormalities, i.e., partially
occluded and OOD objects, and adversarial patch at-
tacks.

• DiL is a model-agnostic, unsupervised, and practical
metric. We demonstrate that DiL can be used for ab-
normality analysis with one-, two- and multi-OD algo-
rithms, does not necessitate the ground truth label, and
solely requires access to the model and the input scene.

• The resources developed in this research (the code and

the five new datasets) will be publicly available upon
publication and can be used by the research commu-
nity to further investigate abnormalities.

2. Background and Related Work
Abnormal scenes can be categorized based on their

cause: a natural event and a deliberate event. Examples
of the former include scenes containing: i) an object that is
partially occluded by a another object [22, 39, 51]; or ii) an
object from a class that was not part of the model’s training
set, i.e., an OOD object [8]. Both scenarios lead to the omis-
sion of a bounding box, a critical error in applications such
as autonomous vehicles [8]. In contrast, abnormal scenes
caused by a deliberate event are initiated by an adversary
that aims to hide an object from the model, often via a phys-
ically placed adversarial patch attack [3].

The effect of abnormalities on an OD model is tradi-
tionally measured using existing supervised performance
metrics, such as mean average precision (mAP) and its
variants [33, 45], intersection over union (IoU) [27], and
probability-based detection quality (PDQ) (which is suit-
able only for probabilistic OD) [12]. However, these met-
rics do not consider the abnormalities’ effect on the MDM
process [34]. Additionally, they presume the availability of
ground truth - an impractical assumption at inference time.
Newer uncertainty quantification techniques [10, 23, 44],
such as Bayesian estimation [13], Monte Carlo dropout [9]
and ensemble [24] approaches, provide insights on the
model’s label-uncertainty levels. However, these methods
inherently assume that all objects are detected, which lim-
its their applicability in abnormal scenarios that result in a
not-detected object. Additionally, some of these methods
assume access to the training set, which is not practical.

Existing methods that address the effect of abnormali-
ties include practical methods that aim to detect or mit-
igate the abnormalities’ effect, such as the effect of par-
tial occlusion [35, 43, 50], OOD [8, 14], and adversarial
patches [6, 15, 17, 20, 47, 49]. However, those methods: 1)
deal with one type of abnormality; 2) do not quantify the
inner effect of the abnormality; and 3) lack explainability.
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Figure 2. An illustration of computing the DiL score for a clean scene (left images) and partially occluded scene (right images).

DiL is the first practical and explainable metric to quantify
the internal effect of all types of abnormalities without rely-
ing on non-practical assumptions. A table summarizing the
related works is in the supplementary material.

To successfully interpret the abnormality’s effect on the
MDM process, DiL utilizes XAI techniques to produce
a saliency-map-based interpretation of the model’s deci-
sions [25]. A saliency map is a vector matching the in-
put scene’s dimensions where elements correlating with
more contributive pixels have higher values [1]. During
the saliency map’s creation, the XAI techniques rely on the
model’s activations [32], gradients [4,41], or both [11]. The
quality of a saliency map is evaluated based on its fulfill-
ment of the localization objective [25,26]. A well-localized
explanation discriminates between the object and its back-
ground, showing higher saliency map values for object-
related pixels. DiL is inspired by the localization objective
and utilizes it for a different goal. Instead of using it to eval-
uate the quality of the explanation itself (the saliency map),
DiL uses it to explain and evaluate the model’s behavior.

3. The Method

DiL was designed based on the assumption that the
MDM process will be unstable when faced with an ab-
normal scene. This instability will be reflected in an in-
consistent presence (and absence) of an object through-
out the entire OD pipeline. To capture this inconsistency
for a given scene, DiL measures the relation between two
stages: i) the model’s mid-stage ’perception’ (the object-
ness saliency map); and ii) the final-stage ’perception’ (the
predicted bounding boxes).

In this section, we introduce DiL’s components, their
computation process, and the final calculation of the DiL
score (illustrated in Figures 1 and 2). DiL reflects the differ-
ence between the background localization and the complete
localization, both of which are derived from the objectness
saliency map. The complete localization (CL) implies the
existence of objects in the entire scene, whereas the back-
ground localization (BL) implies the existence of objects in
the areas of a scene that fall outside of any predicted bound-
ing box. The DiL score reflects the compatibility between
BL and CL values, i.e., greater compatibility implies greater
abnormality (i.e., a higher DiL score) and vice versa.

The notation used is as follows: Let M be an OD model

and x be an input scene. Let bi ∈ M(x) be the i’th bound-
ing box in M ’s output for scene x. Let Mo be M ’s in-
ternal component that outputs M ’s objectness. Let MA(x)
and M∇(x) be M ’s activation and gradients respectively
for processing x from M ’s first layer until Mo. Let S be a
saliency map technique.

3.1. Distinctive Localization (DiL)

To compute the DiL score for a given input scene x, one
should first obtain: i) M(x) predictions for input scene x,
i.e., the identified bounding boxes bi ∈ M(x) (denoted as
’a’ in Figure 1); and ii) a saliency map of Mo’s objectness.
Both are used to compute the CL and BL values that corre-
spond specifically to input scene x. The process of obtain-
ing the former is performed identically for all model types
by querying model M . To obtain the latter (the saliency
map of Mo’s objectness), the internal component Mo needs
to be selected.

Since different OD algorithms compute objectness dif-
ferently, Mo is selected according to the type of OD algo-
rithm used by M . In most one-stage OD algorithms (such as
YOLO), objectness is computed simultaneously with other
bounding box attributes, such as the object class and the
associated class confidence. Then the bounding boxes are
refined by the non-maximum suppression (NMS) function
into a list of the final predicted bounding boxes. The ob-
jectness of the bounding boxes produced by the NMS is
more concise than other objectness indications; therefore,
in one-stage models, the last layer before the NMS func-
tion is selected as Mo. In one-stage OD algorithms that
do not explicitly produce objectness scores, such as SSD
and keypoint-based detectors (e.g., CornerNet and Center-
Net) Mo can be set as the layer that produces the class log-
its rather than an objectness score. These logits can effec-
tively serve as a proxy for objectness. In contrast, in two-
and multi-stage OD algorithms (such as Faster R-CNN and
Cascade RPN) the objectness is computed by the region
proposal network (RPN) component. Then the RPN’s out-
put (i.e., the objectness) is processed by additional compo-
nents (such as NMS), which vary depending on the algo-
rithm used. Therefore, in two- and multi-stage models, Mo

is defined as the final layer of the RPN component (e.g.,
before the NMS).

After Mo has been selected, the predefined saliency map
technique S is used to compute the saliency map of Mo’s
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objectness according to S. When S is an activation-based
technique, S receives MA(x) (the activations of M until
Mo) as input, regardless of the type of OD algorithm used
by M . However, when S is a gradient-based technique, S
receives M∇(x) (the gradients of M until Mo) as input,
which is calculated by backpropagating from Mo’s object-
ness to x. Note that an aggregation technique compresses
the objectness scores into a single value to apply back-
propagation. This aggregation’s calculation depends on the
OD algorithm type used by M . When M is a one-stage
model, the objectness scores produced by Mo are summed
into a single value. This aggregation and the calculation of
M∇(x) are detailed in Equation 1:

M∇(x) = ∇x

( ∑
oi∈Mo(x)

oi

)
(1)

where Mo(x) are the outputs of Mo obtained when M is
queried with x. When M is a two- or multi-stage model,
Mo outputs several vectors, each of which indicates a region
of interest that contains several bounding box candidates.
To aggregate Mo outputs into a single scalar value, the most
indicative bounding box of each region is selected (the one
that has the highest objectness score), and then the regions’
objectness scores are summed. This aggregation and the
calculation of M∇(x) are presented in Equation 2:

M∇(x) = ∇x

( ∑
ri∈Mo(x)

max (bb ∈ ri)

)
(2)

where Mo(x) are the outputs of Mo obtained when M is
queried with x and bb ∈ ri is a bounding box in region ri.
The use of summing as the aggregation technique ensures
that no region of interest is overlooked, which results in gra-
dients that are more indicative for S. The resulting saliency
map of Mo’s objectness is the vector SMx, which has the
same dimensions as x and reflects the objectness level of ev-
ery pixel. SMx can be visualized as a map in which higher
values appear in warmer colors (’b’ in Figure 1).

After obtaining M ’s predictions (bi ∈ M(x)) and the
objectness saliency map SMx, the values of DiL’s compo-
nents can be calculated. The DiL score is the division of
the BL by the CL of input scene x. The latter (CL value)
is calculated by summing all values in SMx, indicating the
existence of objects in the entire scene. The calculation of
CL value is presented in Equation 3:

CL(x) =
∑

smi∈SMx

smi (3)

where CL(x) is the CL value of input scene x. The BL
value is computed by summing the SMx values that relate
to pixels that were predicted as ’background’ by M , i.e.,

pixels that are not bounded by any predicted bounding box.
The BL value calculation is presented in Equation 4:

BL(x) =
∑

smi∈SMx

{
smi smi ∈ BG

0 smi /∈ BG
(4)

where BL(x) is the BL value of input scene x and BG are
pixels that are not bounded by any predicted bounding box
bi ∈ M(x), i.e., background pixels. The calculation of the
final DiL score is presented in Equation 5:

DiL(x) =
BackgroundL(x)

CompleteL(x)
(5)

This calculation reflects the relation between the BL value
and the CL value. Since the BL is a subset of the CL, the
BL value is invariably less than the CL value; thus, the DiL
score ranges from (0, 1). When the BL value is far from
the CL value (i.e., a low DiL score), there are more indica-
tions for objects inside the predicted bounding boxes than
in the background. Therefore, model M ’s perception of x
did not change during M ’s pipeline, i.e., there is no change
between the perception gained by Mo and the model’s fi-
nal prediction. However, a close BL and CL values (i.e., a
high DiL score) indicate that the MDM process was irregu-
lar. This irregularity, indicated by a high DiL score, arises
when the values of smi ∈ BG are close to the values of
smi /∈ BG, reflecting a shift between the initial perception
by Mo and the final model’s prediction. Furthermore, DiL’s
behavior reflects the localization objective fulfillment (Sec-
tion 2), i.e., better localization in the objectness saliency
map will result in a lower DiL score and vice versa.

3.2. Practical Applications of DiL

3.2.1 DiL for Model Evaluation

The DiL metric can serve as an evaluation measure that
reflects a model’s nature and robustness. When using tra-
ditional performance metrics to evaluate a model (such as
mAP), the assessment is performed for the model’s final
prediction, ignoring the MDM process. By computing the
average DiL score for abnormal scenes, DiL can serve as
an evaluation metric. It can differentiate between two mod-
els exhibiting the same predictive behavior; e.g., one might
have a better MDM process, which indicates that the model
is more robust to abnormalities. The results of DiL for
model evaluation can be seen at the beginning of Section 5.

3.2.2 DiL for Detection

DiL can be leveraged for detecting abnormal scenes, i.e.,
partially occluded and OOD objects, or an adversarial
patch. Such detection can be done by setting a DiL thresh-
old that distinguishes clean from abnormal scenes. A scene
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with a DiL score above the DiL threshold will be detected
as an abnormal scene. This DiL threshold can be set em-
pirically or based on the context of use [15]. The results of
DiL for detection can be seen in Figure 5 within Section 5.

3.2.3 DiL for Robustness

DiL can be leveraged to improve the model’s robustness
when faced with abnormal scenes. Abnormal scenes can
cause a reduction in the model’s confidence in the predicted
object. Therefore, DiL can be incorporated into the model’s
inference process by changing the fixed decision threshold
(FDT) to a dynamic decision threshold (DDT). The DDT
will be lower than the FDT when the DiL score is higher
and vice versa, i.e., when the model indicates an inconsis-
tency in the MDM process (a high DiL score), the DDT will
be lower. The DDT is calculated by subtracting the product
of the DiL score and a degradation factor from the FDT.
The degradation factor ensures that the decision threshold
remains within a reasonable range to avoid performance
degradation in clean scenes. The DDT calculation is pre-
sented in Equation 6:

DDTx = FDT − (DiL(x) · α) (6)

where DDTx is the adjusted decision threshold for an input
scene x and α is the degradation factor. The results of DiL
for robustness can be seen in Table 3 within Section 5.

4. Evaluation
4.1. Evaluation Use Cases

Table 1 presents the nine use cases used to evaluate DiL
and their corresponding datasets, the evaluated abnormal-
ity, and the evaluation space. The use cases were defined
to include both physical and digital evaluations of all eval-
uated abnormalities. The digital evaluations (use cases 1-5)
were performed on models trained on the COCO dataset.
The physical evaluations (use cases 6-9) were performed on
models trained on the Superstore dataset.

4.2. Datasets

The evaluation was performed using these datasets:
Microsoft Common Object in Context (COCO)
2017 [28] – an OD benchmark dataset containing 80 object
classes and over 120K labeled images.
Superstore [15] – an OD in retail dataset containing 2,200
labeled images of 20 superstore items (classes) presented
from a smart shopping cart perspective.
OccludedPASCAL 3D+ [43] – an OD dataset that
simulates partial occlusion by digitally placing objects
cropped from the COCO dataset on top of objects from the
OccludedPASCAL3D+ dataset [48].
ImageNet [7] – a small subset of the ImageNet dataset that

includes 100 images from 27 classes serves as OOD for the
models trained on the COCO dataset.
Additionally, we created the following datasets:
E-PO – a realistic OD dataset containing 100 images
of occluded objects related to the classes in the COCO
dataset. This dataset was generated with the assistance
of DALL-E 2 [36] and contains real-looking images with
natural-looking partial occlusions.
Adv-COCO – an OD dataset containing 100 images
from the COCO dataset that were attacked. We digitally
placed an adversarial patch, crafted based on the DPatch
attack [30], on objects in the images, deliberately causing
them to be ”hidden” from the model. Due to the patches’
low transferability, we created two versions of the Adv-
COCO dataset using a different adversarial patch. Each
patch was crafted to mislead different models in each
version - either one- or two/multi-stage OD models.
PO-Superstore – an OD dataset with 100 images of
occluded objects related to the classes in the Superstore
dataset. The superstore items were physically placed to oc-
clude one another simulating real-world partial occlusions.
OOD-Superstore Dataset – an OD dataset containing
100 images of superstore items that do not appear in
the Superstore dataset. This dataset can be considered a
real-world OOD scenario in the retail domain.
Adv-Superstore Dataset – an OD dataset containing 100
images of attacked objects related to the classes in the
Superstore dataset. This dataset was created in the same
manner as the Adv-COCO dataset with the exception of
placing the adversarial patches physically on the items.

4.3. Experimental Settings

We used two sets of models according to the evaluated
use case. In both sets, the models had identical parameters
which were set as follows. Each set includes the following
OD models. One-stage models: 1) YOLOv3 [37] with a
Darknet-53 backbone; 2) YOLOv5X with a CSPDarknet53
backbone and a YOLOv3 head; and 3) YOLOF [5] with
a ResNet50 backbone and a dilated encoder that serves as
an FPN. The decision thresholds were set as 0.5 and 0.7
in the one-stage models trained on the COCO and Super-
store datasets respectively. Two-stage models: 1) Faster
R-CNN [38] with a ResNet50 backbone and FPN archi-
tecture; 2) Grid R-CNN [31] with a ResNet50 backbone
and grid guided localization mechanism; and 3) Double
Head R-CNN [46] with a ResNet50 backbone and two-
head structure output. Multi-stage models: 1) Cascade R-
CNN [2] with a ResNet50 backbone and a sequence of de-
tectors trained with increasing IoU thresholds; and 2) Cas-
cade RPN [42] with a ResNet50 backbone and multi-stage
anchoring refinement. The decision thresholds were set as
0.8 and 0.7 in the two-stage and multi-stage models trained
on the COCO and Superstore datasets respectively. The ad-
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No. Use case name Model training set Evaluation space Abnormality type Abnormality sub-type Evaluation set
1 COCO clean

COCO train Digital

None None COCO validation
2 COCO unrealistic PO

Natural Partial occlusion OccludedPASCAL 3D+
3 COCO realistic PO E-PO Dataset
4 COCO OOD OOD Subset of ImageNet
5 COCO Adv. Deliberate Adversarial Adv-COCO
6 Superstore clean

Superstore train Physical

None None Superstore validation
7 Superstore PO

Natural
Partial occlusion PO-Superstore

8 Superstore OOD OOD OOD-Superstore
9 Superstore Adv. Deliberate Adversarial Adv-Superstore

Table 1. Use cases examined.

Model Type Metric Use case
[1] Clean [2] Unrealistic PO [3] Realistic PO [4] OOD [5] Adv. [6] Clean [7] PO [8] OOD [9] Adv.

One-stage
Misclassification Rate – 0.89 ↓ 0.87 ↓ 0.63 ↓ 0.85 ↓ – 0.97 ↓ 0.7 ↓ 1.00 ↓

CL 0.011 ↑ 0.01 ↓ 0.0047 ↓ 0.0033 ↓ 0.016 ↓ 0.017 ↑ 0.0105 ↓ 0.019 ↓ 0.02 ↓
BL 0.0024 ↓ 0.0046 ↑ 0.0025 ↑ 0.003 ↑ 0.008 ↑ 0.0004 ↓ 0.008 ↑ 0.0106 ↑ 0.006 ↑
DiL 0.216 ↓ 0.475 ↑ 0.53 ↑ 0.93 ↑ 0.519 ↑ 0.03 ↓ 0.413 ↑ 0.494 ↑ 0.342 ↑

Two-stage
Misclassification Rate – 0.93 ↓ 0.93 ↓ 0.83 ↓ 0.85 ↓ – 0.77 ↓ 0.9 ↓ 0.72 ↓

CL 0.114 ↑ 0.155 ↓ 0.149 ↓ 0.089 ↓ 0.068 ↓ 0.039 ↑ 0.0223 ↓ 0.061 ↓ 0.014 ↓
BL 0.011 ↓ 0.091 ↑ 0.065 ↑ 0.08 ↑ 0.0318 ↑ 0.004 ↓ 0.009 ↑ 0.046 ↑ 0.002 ↑
DiL 0.122 ↓ 0.59 ↑ 0.449 ↑ 0.908 ↑ 0.617 ↑ 0.11 ↓ 0.396 ↑ 0.756 ↑ 0.793 ↑

Multi-stage
Misclassification Rate – 0.92 ↓ 0.84 ↓ 0.84 ↓ 0.76 ↓ – 0.93 ↓ 0.53 ↓ 0.75 ↓

CL 0.114 ↑ 0.1549 ↓ 0.1493 ↓ 0.087 ↓ 0.066 ↓ 0.0395 ↑ 0.024 ↓ 0.06 ↓ 0.009 ↓
BL 0.014 ↓ 0.0856 ↑ 0.064 ↑ 0.0779 ↑ 0.0269 ↑ 0.00525 ↓ 0.05 ↑ 0.055 ↑ 0.036 ↑
DiL 0.125 ↓ 0.556 ↑ 0.4515 ↑ 0.895 ↑ 0.535 ↑ 0.13 ↓ 0.39 ↑ 0.94 ↑ 0.78 ↑

All types DiL mean 0.154 ↓ 0.54 ↑ 0.497 ↑ 0.911 ↑ 0.557 ↑ 0.09 ↓ 0.39 ↑ 0.73 ↑ 0.63 ↑
All types mAP 0.359 ↑ 0.23* ↓ 0.253 ↓ 0.0 ↓ 0.212 ↓ 0.9 ↑ 0.5 ↓ 0.5 ↓ 0.01 ↓

Table 2. Mean DiL scores for all types of OD models in the digital COCO (1-5) and physical Superstore use cases (6-9).

versarial patches used in use cases 5 and 9 were crafted with
the DPatch attack [30]. More details on the crafting process
are provided in the supplementary material.

The Grad-CAM [41] XAI technique was used to evalu-
ate DiL as a metric and as an abnormality detector. Grad-
CAM++ [4] was employed to assess DiL as a robustness
solution. For more details on the selection of saliency map
techniques and related experiments see supplementary ma-
terial. In the evaluation of DiL as a robustness solution, we
empirically set the degradation factor to 0.2.

5. Experimental Results
Detailed experimental implementations, comprehensive

results, and DiL’s runtime analysis are available in the sup-
plementary materials. The following section provides a
summary of the key findings. Table 2 shows the results ob-
tained by the one-, two-, and multi-stage OD models for all
nine use cases (Section 4.1). Each row lists the mean mis-
classification rate (fraction of incorrectly classified scenes),
CL, BL, DiL scores, and mean average precision (mAP) as
a representative of the existing methods for the evaluated
models. The arrow in each cell indicates whether a high or
low value is the optimal value.

The misclassification rate results presented in the ta-
ble show that the OD models struggle to detect objects
across all types of abnormalities, underscoring their po-
tential threat to OD model performance. Moreover, these
results indicate that multi-stage models are more resilient

to PO and adversarial patches, while one-stage models are
more resilient to OOD scenes. Additionally, the results
show that overall, DiL succeeds in reflecting the difference
in the MDM process when faced with clean and abnormal
scenes, i.e., the DiL scores obtained in the clean scenes are
lower than the scores obtained in the abnormal scenes. The
DiL scores for the first and sixth use cases (clean use cases)
range in [0.122, 0.216] and [0.03, 0.13] respectively. In con-
trast, the DiL scores for use cases 2-5 and 7-9 (abnormal use
cases) range in [0.449, 0.93] and [0.342, 0.94] respectively.
Moreover, the results show that DiL aligns with the super-
vised mAP metric, distinguishing between clean and abnor-
mal scenes in an unsupervised manner without reliance on
ground truth data. In addition, the results show that the DiL
scores are more stable compared to the mAP score with re-
spect to the relations between different abnormalities (see
supplementary material).

Furthermore, we can see that neither the CL nor the BL
metric can be used independently as an abnormality indi-
cator. For example, the CL value of the one-stage mod-
els in the sixth use case (a clean use case) is 0.017, and in
the eighth use case (an abnormal use case) the CL value is
0.019, i.e., very close values like these would not enable
differentiation between clean and abnormal scenes.

Moreover, the results indicate that the type of abnormal-
ity influences the value of the DiL score. In use cases 2-5
(the COCO use cases), the mean DiL score for the PO use
cases is 0.5185, which is the lowest mean score obtained
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Figure 3. Qualitative assessment of DiL (the model’s predictions and the corresponding saliency maps).

Figure 4. The uncertainty techniques outputs when faced with an
abnormality. None of the abnormalities was detected.

in all the use cases; the mean DiL score for the adversar-
ial use case is 0.557; and the mean DiL score for the OOD
use case is 0.911, which is the highest obtained in all the
use cases. The same phenomena can be seen in the Super-
store use cases (7-9). This can be explained by the different
levels of alienation between the examined abnormality and
the distribution of normal scenes. In the PO and adversar-
ial use cases, the non-occluded/attacked objects and back-
grounds presented were taken from the normal scenes’ dis-
tribution (i.e., low alienation), whereas that is not the case
in the OOD use cases (i.e., high alienation). Furthermore,
in the PO use cases, the objects that were used to cover the
occluded object were from the normal scenes’ distribution
(i.e., low alienation), whereas, in the adversarial use cases,
the adversarial patches used were not (i.e., high alienation).
The results also show that DiL scores for realistic PO use-
case are lower compared to unrealistic PO use-case, likely
due to their greater deviation from natural scene distribu-
tions (see supplementary material).

Figure 3 shows a qualitative evaluation of DiL- exam-
ples of model predictions along with their corresponding
saliency maps for each use case. The saliency maps visually
explain the abnormality’s effect on the MDM process. The
examples illustrate the different models’ inner perceptions
of different types of abnormalities. In the PO and OOD use
cases, the saliency map accurately locates the partially oc-
cluded/OOD object, whereas the model’s prediction did not,
resulting in a high DiL score. In adversarial use cases, the
patch disrupts the model’s inner perception by causing one-

stage models to fixate on the patch and diverting attention
in two/multi-stage models. This results in unusual saliency
maps focused only on the patch area, leading to a high
DiL score. Figure 4 shows output examples across various
use cases obtained from three label-uncertainty techniques:
Bayes-OD [13], Monte-Carlo Dropout [9], and Model’s En-
semble [24]. These examples reveal that while existing
techniques quantify uncertainty for detected objects, they
disregard the missed ones. As these techniques are designed
to assess label uncertainty, they are applied at the predic-
tion process’s final stages, such as the ROI pooling layer in
Faster-RCNN. However, the abnormalities impact the out-
puts of earlier stages of the prediction process, causing the
model to fail to ’propose’ an object for further processing,
rendering these techniques ineffective. For more informa-
tion on the uncertainty techniques implementations, along
with a quantitative evaluation, see supplementary material.

Figure 5 presents the mean detection results for all eval-
uated models using DiL as a detector (Section 3.2). The
upper plots present the true positive rate (TPR) and false
negative rate (FNR) for all evaluated abnormalities when
using different DiL percentile cutoffs (PCs) as the detection
threshold. A scene with a DiL score above the PC would
be detected as an abnormality. The lower plots display the
true negative rate (TNR) and false positive rate (FPR) for
clean use cases using varying DiL PCs. Figure 5 shows that
overall, DiL effectively differentiates between clean and ab-
normal scenes. In the TPR and FNR plots, we can see that
a lower PC threshold increases TPR and decreases FNR,
i.e., a lower PC threshold improves the detection of abnor-
malities. However, in the TNR and FPR plots, we see the
opposite phenomenon - a lower PC threshold decreases the
ability to identify normal scenes. Notably, DiL’s most ef-
fective detection is observed in OOD use cases, consistent
with the high DiL scores for OOD cases shown in Table 2.

Table 3 presents the results obtained when DiL was used
as a robustness method, showing average DDT results for
all model types across all nine use cases (detailed results
in the supplementary material). Each cell presents the re-
call, precision, F1 score, and TPR improvement for each
model when using DDT. Since an abnormality’s effect on
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Figure 5. DiL’s performance as an abnormality detector. The TPR and FNR (spider plots) and the TNR and FPR (bar plots).

Metric Use case and abnormality
[1] Clean [2] Unrealistic PO [3] Realistic PO [4] OOD [5] Adv. [6] Clean [7] PO [8] OOD [9] Adv.

Recall 0.671 (+6.6%) 0.712 (+39.6%) 0.615 (+30%) 0.36 (+50%) 0.571 (+17.6%) 0.908 (0.3%) 0.622 (+6.6%) 0.43 (+260%) 0.67 (+9.6%)
Precision 0.943 (+0.0%) 0.919 (+3.4%) 0.946 (+1.6%) 0.515 (+3.2%) 0.918 (+1.3%) 0.987 (+0.007%) 0.993 (+0.16%) 0.95 (+0.6%) 0.958 (+0.8%)
F1 Score 0.782 (+0.0%) 0.787 (+15%) 0.737 (+10%) 0.419 (+4.1%) 0.703 (+6.8%) 0.946 (+0.5%) 0.748 (+7.3%) 0.554 (+5.1%) 0.785 (+5.7%)

TPR improvement 7.6% 38% 25% 14.6% 12.3% 4% 20% 13.3% 9.6%

Table 3. Original and DDT performance for all OD model types and use cases.

the model’s output is to ”hide” an object, we expect to see
the highest improvement in the recall metric (the mean per-
centage of objects localized by the model). The results pre-
sented in Table 3 show DDT generally mitigates the ab-
normalities’ effect without harming and even improving the
model’s performance (F1 score). In COCO abnormality use
cases (2-5), the model recall improvement ranged from 15%
to 68%; TPR improvement from 3% to 52%; and F1 score
improvement in [4.1%, 15%]. Similarly, in Superstore ab-
normality use cases (7-9), recall improvement ranged from
2% to 260%; TPR improvement from 5% to 31%, and F1
score improvement in [0.5%, 7.3%].

6. Discussion
The effectiveness of DiL in uncertainty quantification re-

lies on selecting a particularly informative layer within the
object detection model: the layer responsible for generating
the objectness score. This layer captures the model’s ear-
liest assessments of object presence and influences initial
bounding box predictions. To support our layer choice, we
conducted a qualitative experiment using saliency map visu-
alizations across various layers (see Figure 6 (A)) showing
that the selected layer provides a clear understanding of the
MDM process in different scenarios.

While DiL has been consistent across many scenarios, its
performance may vary when dealing with extremely small
objects. Since DiL relies on a saliency map technique,
the quality of the DiL scores depends on the sensitivity
of the saliency map technique used. In our experiments,
we benchmarked numerous saliency map techniques and
empirically showed that the Grad-CAM technique had the
most balanced sensitivity. However, for scenarios requiring
greater sensitivity, such as detecting small objects, Grad-

Figure 6. (A) Saliency map visualization across layers. (B) exam-
ple saliency maps for small and regular objects.

CAM++ is recommended due to its use of second-order gra-
dients, which yield more detailed saliency maps (see Fig-
ure 6 (B)). Further details and robustness analysis of the
objectness saliency map are in the supplementary material.

7. Conclusions and Future Work
In this paper, we presented distinctive localization (DiL),

an unsupervised explainable metric that captures the in-
ner uncertainty of an OD model when faced with abnor-
mal scenes. In our experiments on various types of abnor-
malities, we showed that, in contrast to existing methods,
DiL requires practical assumptions and can: i) reflect the
model’s inner uncertainty, both quantitatively and visually;
ii) explain the DiL score produced; and iii) be leveraged
for preventive actions. Future work may include DiL eval-
uation on other algorithms (e.g., transformers), tasks (e.g.,
object segmentation), and attacks (adversarial perturbations
and backdoors). Additional future work may include en-
hancing the abnormality mitigation using DiL by setting a
smart degradation factor. This can be done by analyzing the
evidence for missing objects in the objectness saliency map.
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