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Abstract

Graphic designs are an effective medium for visual com-
munication. They range from greeting cards to corporate
flyers and beyond. Off-late, machine learning techniques
are able to generate such designs, which accelerates the
rate of content production. An automated way of evaluating
their quality becomes critical. Towards this end, we intro-
duce Design-o-meter, a data-driven methodology to quan-
tify the goodness of graphic designs. Further, our approach
can suggest modifications to these designs to improve its
visual appeal. To the best of our knowledge, Design-
o-meter is the first approach that scores and refines de-
signs in a unified framework despite the inherent subjectiv-
ity and ambiguity of the setting. Our exhaustive quantitative
and qualitative analysis of our approach against baselines
adapted for the task (including recent Multimodal LLM-
based approaches) brings out the efficacy of our method-
ology. We hope our work will usher more interest in this
important and pragmatic problem setting. Project Page:
sahilg06.github.io/Design-o-meter.

1. Introduction
Graphic designs are becoming increasingly ubiquitous:

advertisement content, menu cards at restaurants, campaign
flyers, and so on. It is a composite of text, images, and
shapes that harmoniously intermingle in an aesthetically
pleasing way to convey the intended message effectively.
A typical workflow of a graphic designer involves ideation,
creation, and refinement stages. Each of these stages has its
unique characteristics: ideation involves planning the de-
sign, creation involves aggregating the design elements and
creating the first version, and refinement involves improv-
ing the design iteratively. The refinement stage is particu-
larly prone to redundancy, as it involves fine-tuning details,
adjusting layouts, and sometimes reworking significant por-
tions of the design to meet the desired standards. Design-
ers often undergo numerous feedback and revision cycles,
which can be labor-intensive and time-consuming. Genera-
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Figure 1. The figure presents an overview of Design-o-meter.
It takes a design as input. The scorer evaluates the design and
provides a unified design score. The refiner refines the design with
the help of the design score to improve its aesthetic appeal.

tive AI technologies can work hand-in-hand with designers
to supplement them in all phases of their creative workflow.

Off-late, such generative models [7, 8, 20, 22, 57] has
been used for creating designs and layouts from user in-
tents. Some of these methods can take in design assets from
a user and generate designs by composing them [20,21,51],
while some others can generate the entire graphic design
from a text prompt [23, 27, 60]. These can generate large
number of designs with very low latency. Coupled with the
increasing online and offline consumption of designs, there
is a strong demand for automatic tools to evaluate them.

The metrics currently used to evaluate graphic designs,
like Fréchet Inception Distance (FID) [19], mean IOU and
max IOU are often insufficient to capture the nuanced as-
pects of design quality. Further, these metrics strongly de-
pend on having a high-quality reference design for com-
parison. Such evaluations might even penalize the creative
freedom of the model (a new design might have a com-
pletely different location for the constituent elements but
still might look good). Reference-free evaluation metrics
like alignment and overlap [34] have also been proposed to
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evaluate the generated layouts. These metrics fail to pro-
vide a holistic assessment of overall design quality. These
limitations highlight the need for more comprehensive and
robust evaluation methods that can assess the effectiveness,
usability, and visual appeal of generated designs such that it
corroborates with human perception and its use cases.

Towards this end, we propose Design-o-meter. As
shown in Fig. 1, it contains a scorer, which quantitatively
evaluates how good a design is, and a refiner, which takes
in the score from the scorer and refines the design to im-
prove the score. A design is a composite of components
like text, images, shapes, and icons. Each component has
its properties like color, location, size, content, opacity,
shadow, and so on. A visually appealing design has an
optimal value for each property and component. Hence,
the search space for good designs is indeed combinatori-
ally large. Further, the design trends also change with time.
To effectively model such a complex design space, we pro-
pose a data-driven approach for the scorer and a novel meta-
heuristic methodology for the refiner. Concretely, the scorer
is modeled as a metric learning model that scores good-
designs over bad-designs (Sec. 3.1), and the refiner is a ge-
netic algorithm with a novel design-specific crossover oper-
ation called SWAN: Design Specific Crossover with Smart
Snapping (Sec. 3.2).

We conduct thorough experimental analysis to test the
mettle of both our scorer and refiner modules. Our experi-
ments reveal that our scorer is able to capture small nuances
in design documents that recent Multimodal LLMs fail to
capture, while our newly proposed SWAN is able to effi-
ciently navigate the complex design space to refine existing
designs, comfortably outperforming recent state-of-the-art
approaches. Further, we clearly ablate the different compo-
nents of the method, and provide sensitivity analysis of the
various design choices of our framework.
Our key contributions are summarized below:
• We develop a novel holistic framework, Design-o-meter,

that can provide a comprehensive design score and further
refine the designs to improve the score.

• We propose a metric learning model that learns to disam-
biguate between good designs and bad designs.

• Our novel smart snapping crossover methodology
SWAN, refines designs to improve its aesthetic appeal.

• Our exhaustive quantitative and qualitative evaluation
brings out the efficacy of our proposed Design-o-meter.

2. Related Work
In the following subsections, we first discuss related

methodologies that evaluate designs and then talk about ap-
proaches that refine them. Finally, we provide a brief sum-
mary of generic algorithms, which is the basis of our pro-
posed refiner module.

2.1. Design Evaluation

Design evaluations strategies can be grouped into
heuristic-based approaches and data-driven approaches:

Design Heuristics based Approaches: Design heuristics
are cognitive tools that designers and engineers use to mea-
sure different design aesthetics. Prior works [4,18,36,37,43,
50,62] use heuristics as a fixed set of formulas, each formula
measuring a particular aspect of the design. Such methods
do not consider the overlap between design elements, which
is common in graphic designs. Despite the valuable insights
provided by the heuristic rules, they don’t offer a compre-
hensive view of the overall design. Also, heuristics are often
subjective, and their concrete meaning can deviate, which
might lead to inconsistencies.

Data-driven Approaches: Most of the data-driven ap-
proaches [14, 49, 56] formulate the problem as a regression
or classification task, i.e., mapping images to aesthetic rat-
ings given by human annotators. Dou et al. [14] train a
convolution network to predict the aesthetic ratings of web-
pages. They use a dataset [48] of webpage screenshots with
human-annotated aesthetic ratings. Wan et al. [56] obtain
global, local, and aesthetic features from the webpage lay-
out to predict the aesthetics. The above-mentioned tech-
niques rely on human-annotated aesthetic ratings, which
have several drawbacks. Creating a high-quality human-
annotated dataset is time-consuming and expensive. It may
also introduce subjectivity and bias.

An interesting approach that requires minimal or no hu-
man interference is the use of Siamese Networks [5]. Ever
since they emerged, Siamese Networks have found appli-
cation in various diverse fields such as self-supervised rep-
resentation learning [1, 3, 6, 61], audio-visual synchroniza-
tion [10, 16, 45], and measuring aesthetics [29, 30, 53, 63],
etc. Their popularity is due to several reasons, such as the
sharing of parameters among its twin networks, the abil-
ity to navigate the search space, and the extraction of dis-
tinctive features for downstream tasks. They allow learning
in unsupervised settings. They compare the data instances
in pairs instead of directly using labels and are robust to
data imbalance. Zhao et al. [63] propose a Siamese-based
deep learning framework to estimate personality scores of a
graphic design. Aesthetics++ [30] train a Siamese-based
network to estimate the aesthetics of a design. Kong et
al. [29] and Aesthetics++ [30] use comparatively less hu-
man annotation to create training pairs but still introduce
bias and may not be accurate. Tabata et al. [53] arbitrarily
moves the layout elements without any guidance to gener-
ate negative examples for training. However, designs gen-
erated randomly are not necessarily bad and can sometimes
exhibit creative and unique layouts. We follow the suc-
cessful practice of existing works [30,63] utilizing Siamese
networks. Instead of human annotation and random per-
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turbations without guidance, we use intelligent transforma-
tions to create design pairs for training. Moreover, unlike
the methods mentioned above, our approach incorporates
layout-information-rich color encodings alongside the de-
sign renderings, providing a more comprehensive represen-
tation of the design elements and additional guidance to the
scoring model.

Recently, there are some efforts [9, 26] that tries to eval-
uate a graphic design using large multi-modal LLMs like
GPT-4o [40] and LLaVA [35]. As there models are trained
on huge amounts of data which includes design data too,
they are able to analyse graphic designs well. We compare
with LLaVA-NeXT and GPT-4o in Sec. 4.1.

2.2. Refining Layouts

Prior works like [38, 43] minimize energy functions for
typical design principles like white space, symmetry, and
alignment using simulated annealing. This approach is not
scalable and requires significant computational time (up to
40 minutes to generate one optimized layout), making it im-
practical for real-time or large-scale applications. Pang et
al. [44] generate a set of candidate designs by randomly
perturbing the existing design and then selecting the best
out of the perturbed designs using heuristic rules. How-
ever, such an approach is highly inefficient as the design
space is vast and complex. Also, relying on a fixed set of
heuristic formulas is not a good approach, as discussed in
the section Sec. 2.1. Aesthetics++ [30] generates the can-
didate designs from the input design by traversing a seg-
mentation tree (created using hierarchical segmentation of
the graphic design) and leveraging design principles. The
candidate designs with the highest aesthetic score is taken
as the refinement suggestion. They use a human-annotated
dataset for a data-driven approach. However, the dataset
used may not represent all user preferences, leading to bi-
ased or skewed results. Also, generating multiple candidate
designs through tree traversal is computationally intensive
and time-consuming.

RUITE [47] models the refinement as a denoising task
and trains a transformer [55] model to denoise the lay-
outs. RUITE only focuses on aligning UI elements; it ne-
glects content and other critical aspects of design, like color
schemes and interactive elements. Moreover, reliance on
transformer architectures introduces significant latency in
the training and inference phases. FlexDM [22] employs
multitask learning in a single transformer-based model to
solve various design tasks by predicting masked fields in
incomplete vector-graphic documents. While this approach
allows for flexible design refinement, it requires significant
computational resources, making implementation and scal-
ing challenging.

In contrast to the above approaches, our method is com-
putationally efficient, providing a more practical solution

for design refinement tasks. Our genetic algorithm-based
refinement module takes approximately 30 sec to generate
a refined design. We also avoid human intervention in our
approach to get unbiased results.

2.3. Genetic Algorithms

Metaheuristic algorithms are applied to address complex
real-world problems across domains like engineering, eco-
nomics, management, etc. A genetic algorithm [28] (GA)
is a metaheuristic algorithm inspired by natural selection. It
is a population-based search algorithm used for optimiza-
tion. Classical GA has an objective function (fitness func-
tion), chromosome representation of the population, and op-
erators inspired by biology (selection, crossover, and muta-
tion). Population is improved iteratively using the genetic
operators and selecting the fittest.

Multiobjective Genetic Algorithms (MOGAs) differ pri-
marily from standard GAs in how they assign fitness func-
tions, while the remaining steps follow the same procedure
as in GAs. They focus mainly on convergence and diversity.
NSGA [52] (Non-dominated sorting genetic algorithm) is a
multiobjective genetic algorithm that finds multiple pareto-
optimal solutions in a single run. It lacks elitism, needs to
specify the sharing parameter (σshare), and has high com-
putation complexity. To solve these, Deb et al. [12] intro-
duce a fast, elitist, non-dominated sorting genetic algorithm,
NSGA-II. It has been applied in various real-world applica-
tions, demonstrating its versatility and effectiveness.

We remove the dependency on multiple objectives as we
represent our model score as our unified objective function.
We introduce a novel crossover method for designs SWAN:
Design Specific Crossover with Smart Snapping, and refine
the mutation functions for our task. With a unified objective
function, we bypass the need to filter the pareto-front, which
is essential for real user-based scenarios.

3. Methodology
Our proposed approach Design-o-meter, takes an input

a design, and proposes a quantitative score from a scorer
module, and in-turn uses this score to refine the design using
a refiner module. A design is a composite of a set of ele-
ments, which are put together in an aesthetic way. Hence,
a design D, can be represented as its metadata Dmeta.
For instance, a design with a background image and fore-
ground text saying ‘Hi!’, can be represented as Dmeta =
[{x1, y1, w1, h1, image location}, {x2, y2, w2, h2, ‘Hi!′}],
where xi, yi, wi, hi refers to the location and dimension
information, in its most simplistic form. The image and
text can have more attributes like opacity, overlay, shadow,
font details, emphasis and so on. Using Dmeta, we
can render its rendition image I(Dmeta) ∈ RH×W×3

and a color encoded layout L(Dmeta) ∈ RH×W×3, as
illustrated in Fig. 3. Our scorer S(I(Dmeta),L(Dmeta))
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learns to measure the goodness and global aesthetics
of the input design. The refinement module R(dmeta),
takes as input dmeta ⊂ Dmeta, which is a set of
actionable layout attributes that we are interested
in optimizing. It refines these attributes to generate
d∗
meta, by maximizing the corresponding design score

from the scorer: d∗
meta | S(I(d∗

meta), L(d
∗
meta) >

S(I(dmeta), L(dmeta))∀dmeta. d∗
meta can be rendered

to obtain the refined design. We detail about our scorer and
refiner in the next few sub-sections.

3.1. Design Scorer

We propose to use a data-driven, self-supervised ap-
proach towards learning the scorer module. Different from
other works which tries to regress a scalar score from the
input design [14, 49, 56], we learn a Siamese model in a
contrastive setup, to differentiate between good designs and
bad designs.

Model Architecture: The scorer function S is a compo-
sition of a feature extractor network F , and a final scoring
block Sblock. We use a four layer convolutional network as
the feature extractor, and a three layer fully connected net-
work for the scoring block. Given the input design Dmeta,
its design score is computed as:

S(I(Dmeta),L(Dmeta)) = Sblock(F(I(Dmeta),L(Dmeta)))
(1)

We train our entire model from scratch. Experimentally,
we find that using pretrained feature extractors like DINO-
V2 [42], CLIP [46], BLIP [33] and ViT [55] gives inferior
results. This is because these models are trained on natu-
ral images, which are distinctly different from the design
data, and thus struggle in gauging and extracting important
features specific to quantify design aesthetics.

Our light-weight convolutional network with group-
normalization accepts the rendition image I(Dmeta) and
the colour-coded layout map L(Dmeta) concatenated
across the channel dimension as follows:

{N,C,H,W}+ {N,C,H,W} ≡ {N, 2 ∗ C,H,W}

where N , C, H , and W are batch size, num-
ber of channels, height, and width, respectively.
The layout map L(Dmeta) effectively warps the
multi-layer information of a design into the scorer.

Table 1. Color codes for layout encoding.
Element type Color (R, G, B)

Image (0, 100, 0)
Text (0, 0, 100)
Text and Text overlap (0, 0, 0)
Text and Image Overlap (100, 0, 0)
Image and Text Overlap (100, 100, 0)
Image and Image Overlap (0, 100, 100)

This informa-
tion helps the
model to give
attention to
the constituent
components
of the design,
and its relative
positions while proposing a design score. Tab. 1 summarize

the color coding and Fig. 3 shows layout map and its
corresponding designs rendition.

Training Details: Similar to the traditional Siamese train-
ing setup, the weights of S is shared. We curate good
designs Dgood

meta and bad designs Dbad
meta (explained in the

next sub-section) to train the model using the following loss
function:

Lscorer = αLrank + βLsim; (2)

where Lrank is hinge loss:

Lrank = max(0, m− (S(Dgood
meta)− S(Dbad

meta)) (3)

and Lsim is a similarity loss, formulated as below:

Lsim = ln(e2∗Psim(S(Dgood
meta), S(Dbad

meta) + 1); (4)

Psim is an embedding similarity computed as the dot prod-
uct between the tanh-activations of the “good” and “bad”
design pairs as follows:

Psim =
F(Dgood

meta).F(Dbad
meta)

max(
∥∥∥F(Dgood

meta)
∥∥∥
2
.
∥∥F(Dbad

meta)
∥∥
2
, ϵ)

; ϵ > 0

(5)

Dataset Creation: Given a set of designs from any design
dataset [59], we first filter them on two criteria: 1) total
number of elements should be at most 10, 2) text should
not overlap with images; to create a list of good designs
Dgood

meta. Next, we surgically modify these designs to make
them bad by altering the location and scale of its constituent
elements. We employ 22 such types of transformations to
create Dbad

meta. The location based perturbations are:
Noise addition: In order to simulate imperfect designs,
noise from standard normal distribution with mean 0 is
added to the center coordinates of the design elements. By
varying the standard deviation across 0.05, 0.1, 0.2, and .5,
we control the degree of perturbation, and thus the degree
of badness in the graphic design.
Moving specific type and group of elements differently: Not
all elements of a bad-design will have equal amount of lay-
out shift. In-order to accommodate this aspect, we arbitrar-
ily move specific elements in the graphic design such as the
largest element, smallest element, two largest elements, and
two smallest elements.
Clutter: Another aspect of designs that makes them natu-
rally bad is clutter, and hence, we clutter all the elements of
a graphic design at different positions such as center, top-
left, top-right, bottom-left, and bottom-right.

Scale-based transformations are similar to the position-
based transformations. The height and width of the design
elements are modified instead of the coordinates of the cen-
ter. Further, the position-based and scale-based transforma-
tions are combined to cover more cases. A critical aspect of
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these augmentations is that they are agnostic to the dataset
and are modeled on how humans consider a design good
and bad. We can improve these augmentations further to in-
corporate any newer cognitive constraints, which we leave
for future explorations. Though the model is trained only on
location and scale perturbations, we see in our experiments
that the model is able to learn design principles beyond just
layout principles. We attribute this to the contrastive learn-
ing objective in which the model is trained.

3.2. Design Refiner

As a design is a composite of multiple components,
search space that constitutes all the designs is vast. Travers-
ing this space of designs in a meaningful way would enable
us to find better aesthetically pleasing designs, which im-
proves over the initial design. Here, we propose an efficient
approach based on a meta-heuristic algorithm, equipped
with our novel SWAN: Design Specific Crossover with
Smart Snapping. Our scorer (Sec. 3.1), guides SWAN, to
refine its design aesthetics by acting as the objective func-
tion being optimized. Our approach expedites convergence
and makes the complex algorithm more deterministic.

Revisiting Genetic Algorithms: Genetic algorithms are
a type of meta-heuristic algorithms used to solve non-linear
optimization problems. In our case, we want to optimise
the vector d∗

meta on the non-linear objective S, such that
the score S(d∗

meta) is maximised. All genetic algorithms
follow a three-step framework: 1) Initialisation: where ran-
dom vectors in the search space (dmeta) are sampled, 2) Ex-
ploitation: where the “fitness” of the samples is carried out
using the scorer and only the “fittest” samples are retained,
and 3) Exploration: where new samples are created with the
knowledge of the fittest samples to explore a diverse search
space, through crossover and mutation steps.

These steps are carried on until a specified number of
iterations or stopping criteria is met. NSGA-II [13] intro-
duces a faster filtering operation for selecting the “fittest”
samples. Deb et al. [11] was an augmentation of the pre-
vious work and it tailor makes an algorithm specifically
for multi-objective optimization. However, many works
[25, 32] argue that this is at the cost of appropriate search
space exploration, which is detrimental to overall perfor-
mance. Since we are explicitly working on single-objective
optimization, we use its predecessor. We adapt NSGA-II to
our setup by replacing its crossover mechanism with a novel
design-specific crossover approach, explained next.

SWAN: Design Specific Crossover with Smart Snapping
An overview of the approach is presented in Algorithm 1
and Fig. 2. In line 1, two parents (vectors in the search
space, dP1

meta, dP2
meta ∈ dmeta) are randomly chosen from

the set of “fit” samples (samples remaining after the ex-
ploitation step). The objective of crossover function is to

Algorithm 1 Design Specific Crossover

Input: Design attributes of Parent 1: dP1
meta; Design attributes of

Parent 2: dP2
meta;

Output: Design attributes of Child: dchild
meta

1: V ← Sample(dP1
meta,d

P2
meta) ▷ Initialise Parent mapping

2: L1← dP1
meta(V == 0) ▷ Parent1 elements mapping

3: L2← dP2
meta(V == 1) ▷ Parent2 elements mapping

4: C = L1 ▷ Initialise Current Canvas
5: for Element ∈ L2 do
6: if Type(Element) == Image or SVG then
7: G← GridGeneration(C) ▷ Grid Line Generation
8: Slot← FindSlot(G) ▷ Find Appropriate Slot
9: Elem∗ ← Snap(Element,Slot) ▷ Refinement

10: else if Type(Element) == Text then
11: E ← EulerDistances(Element,C)
12: Elemin ←MapElement(C,min(E))
13: Elem∗ ←MinAlign(Element,Elemin)

14: C ← C.append(Elem∗) ▷ Update Canvas
15: dchild

meta = C

fuse the knowledge of both the parents to create a “smarter”
offspring, which becomes a new sample in the population.
In regular crossover, there is blind copy-pasting of parent
data, and we find that to be unfit for our task at hand, which
motivates us to propose SWAN: Design Specific Crossover
with Smart Snapping. The first step is to initialize a ran-
dom mask, V , which assigns what parent is responsible for
the percolation of which element in the new Child vector
(dchild

meta). Next, we copy element attributes from the first
parent L1 using the mask V and build our current canvas
C in Line 4 and the third column in Fig. 2. For the re-
maining image elements from the second parent, we build
grid lines from the edges of the design elements inside the
current canvas and find all the boxes thus made after the in-
tersection of the lines. We then find the box with the most
similar size and proximity to the element from Parent2, and
then ‘Snap’ it inside it and update the Canvas as shown in
Fig. 2. For text elements, we find the Euler distances from
the center of the text and all the other centers of elements
from the current canvas. We find the element with least dis-
tance and find out what the cost (distance moved) is of either
x-aligning or y-aligning with the element. We choose the
minimum of it and update the current canvas to continue.

The mutation step in NSGA-II can also be improved.
Standard mutation operation, which adds Gaussian noise to
elements, might result in partial overflow in the design ele-
ments of their canvas size. We identify such cases and add
noise only if it is within the canvas area. This allows our
method to skip over degenerate cases.
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Parent 1 Parent 2

Regular CrossoverSWAN: Design Specific Crossover with Smart Snapping

Current Canvas GridGeneration and 
FindSlot Operation

Final Canvas with 
Snapped Content

Input: Parents for Crossover

Final Canvas

Figure 2. A visual illustration of SWAN: Design Specific Crossover with Smart Snapping. Given two parents, SWAN first randomly
decides which element to pick from either of the parents to generate the child. Then, it copies over the content from the first parent to the
current canvas. Next, it identifies potential area within the canvas to host elements from the second parent, guided by grid-lines. Finally,
the content from the second parent is ‘snapped’ into the identified areas by changing its attributes. This allows SWAN to generate better
results when compared with regular crossover.

Figure 3. Samples from Crello dataset and their layout encodings.

4. Experiments and Results

Datasets: We utilize the widely-used Crello [59] dataset
for our evaluation. It contains 23182 design templates. The
data is divided into 18768 / 2315 / 2278 examples for train,
validation, and test splits. We use multiple guided pertur-
bations techniques to make the design pairs as discussed
in Sec. 3.1. If the evaluation dataset includes the same or
similar transformations used in training, we call it a biased
setting; otherwise, it is called unbiased. We employ two un-
biased setups: color and cross-match. In the color dataset,
the transformation used makes the design’s color scheme
bad by recoloring certain elements of it. We traverse the
design, find overlapping elements (say, SVG preceding a
Text), we extract the colors: CSVG, Ctext and randomly choose
one of the elements(say, the SVG) and recolor it such that
the CIELAB Distance(Ctext, C∗

SVG) ∈ (2, 3). This ensures
that there are distinct colours but it makes the design unaes-
thetic. In the cross-match dataset, we randomly pair a good
version of a design x with the bad version of a design y,
where x ̸=y.

Baselines: We compare our scorer with recent Multi-
modal LLM-based design scorers. Specifically, we com-

pare against GPT-4o [40] and LLaVA-NeXT [35]. We
compare the refiner against leading design refinement ap-
proaches. Specifically, we compare against SmartText++
[31], FlexDM [22], and COLE [27] for text box placement
(refine-text setting); and against CanvasVAE [59], FLexDM
[22], DocLap [64], GPT-4 [41], and GPT-4V [39] for full
design refinement (refine-all setting).

Implementation Details: We employ a learning rate of
1e−4, the Adam optimizer [15] with gradient coefficients of
[0.5, 0.99], L2 regularization with weight decay as 0.005
and every 5 epochs, we schedule the learning rate to divide
by half. We set a hard margin, m = 0.2, and loss param-
eters α = 0.8 and β = 0.2 (see Eq. (2)). We add sensi-
tivity analysis on these hyper-parameters in Sec. 5.4. All
the convolution layers in the scorer model are as follows
(representing the number of filters, kernel size, and stride,
respectively): (64, 3, 1). We use group-normalization [58]
(ngroup=2) in our scoring module. For SWAN, we find
that population size = 100, n trials = 1500, p = 0.3 gives
good performance.

Evaluation Metrics. We introduce Rank Accuracy
(RAcc) to evaluate the design scoring methods. The higher
the RAcc, the better the scorer. We define the Rank Accu-
racy as follows:

RAcc =
1

N

N∑
i=1

I{S(gi) > S(bi)}; (6)

If the score given by a scorer S to a good design (gi) is more
than that of a bad design (bi) in a (gi,bi) pair, we consider it
as correctly classified.

Following FlexDM [22], we use mean Intersection over
Union (mIOU) and mean boundary displacement error [31]
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(mBDE) to evaluate our refinement module for refine-text
experiment. Following CanvasVAE [59], we use Type-
wise mIoU (T-mIoU) to evaluate our refinement module for
refine-all settings. In T-mIoU, first we calculate the over-
all IoU for each type of design element (text, image, SVG).
Then we take the average of IoU of all the types.

T-mIoU =
1

N

N∑
i=1

∑ni

j=1 xij ∩ yij∑ni

j=1 xij ∪ yij
; (7)

where element xij belongs to type i and is jth element of
the ground truth design. yij belongs to type i and is the jth
element of refined design. ni is total number of elements of
type i and N is total number of types.

4.1. Evaluating the Scorer

We use three settings (biased, unbiased color, and un-
biased cross-match) for evaluation. Each data instance in
these datasets is a pair of designs, where the task of the
model is to provide a better score to the good design.

Table 2. Comparison with LMM
evaluators in biased, unbiased
color (UC) and unbiased cross-
match (UCM) setting.

Setting Model RAcc (↑) Params

Biased
LLaVA-NeXT 34.17 7B
GPT-4o 68.84 -
Design-o-meter 94.97 ∼410k

UC
LLaVA-NeXT 44.22 7B
GPT-4o 72.86 -
Design-o-meter 90.45 ∼410k

UCM
LLaVA-NeXT 31.00 7B
GPT-4o 63.50 -
Design-o-meter 87.50 ∼410k

We use the fol-
lowing prompt for
the LLM-based eval-
uators: ”I will show
you two designs,
and you should give
each design a design
score between 1-100,
which follows design
principles and reason,
and justify your score
briefly and succinctly
and then output which design has the higher score”. See
Tab. 2 for results. Despite having only ∼410k parameters
compared to the billions in multi-modal LLMs, our model
achieves the highest RAcc across all three datasets. This
shows that multi-modal LLM-based evaluation of graphic
design [9, 26] is not good at gauging micro-aesthetic
differences between designs [17].

4.2. Evaluating the Refiner

Following earlier works [22, 27], we consider two set-
tings: refining a single text box and refining whole design.

Table 4. When compared to state-of-the-art approached that re-
fines placement of text on a design, Design-o-meter outperforms
them in SingleText and MultipleText settings. Further, we ablate
SWAN to find that it significantly helps to improve performance.

SingleText MultipleText

mIoU (↑) mBDE (↓) mIoU (↑) mBDE (↓)

SmartText++ 0.047 0.262 0.023 0.300
FlexDM 0.357 0.098 0.110 0.141
COLE 0.402 - 0.172 -

Ours w/o SWAN 0.376 ± 0.01 0.116 ± 0.01 0.311 ± 0.05 0.128 ± 0.01
Design-o-meter 0.42 ± 0.01 0.08 ± 0.01 0.38 ± 0.05 0.06 ± 0.01

Text Box Refinement (Refine-Text): We divide the ex-
periment into two settings: SingleText and MultiText. Sin-
gleText refers to the evaluation of designs containing only
one text element, whereas MultiText refers to the evalua-
tion of designs containing multiple text elements. The task
is to predict the correct position and size of the target text
element, keeping the aspect ratio of the element fixed. Our
settings for the experiment are as follows: We choose a ran-
dom text element as the target element. We randomly ini-
tialize the values of the center coordinates and scale of the
target. We optimize these values using our refinement mod-
ule. We summarize the quantitative results in table Tab. 4.
In the second-last row, we selectively turn-off SWAN from
Design-o-meter. The experiment reveals that our approach
outperforms state-of-the-art approaches, and showcases the
efficacy of SWAN. We add qualitative results in Fig. 4 (b).

Full Refinement (Refine-All): In this experiment we ran-
domly initialize the values of the center coordinates and
scale of all elements except the background element. Tab. 3
showcases comparison with 7 baseline approaches, and
Design-o-meter comfortably outperforms all of them. We
add qualitative results in Fig. 4 (b).

5. Discussion and Analysis

5.1 Visualizing the scorer: We conduct a simple occlu-
sion based sensitivity analysis to measure the contribution
of each region of a design towards the design score. We
slide a 60 px × 60 px occluding window across the design,
replacing the pixels within the window with the design’s
mean pixel value at each location. This modified design is
then evaluated to generate a new score. The difference be-
tween the new score and the original score is used as the
pixel value for the window’s center in the sensitivity map.
This process creates a pixel-wise sensitivity map highlight-
ing areas of the design that most positively or negatively
impact the design score. The visualization in Fig. 5 shows
that the scorer is indeed paying attention to the key areas of
the design while making its decision.
5.2 On the Efficacy of Layout Encoding: Including lay-
out color encoding in the input to the scorer model makes
it easy for the model to capture the basic design princi-
ples such as overlap and alignment. We experiment with
three configurations to verify this hypothesis: only render-
ing, only layout, rendering + layout; and train the model on
Crello dataset. We notice that using rendering + layout as
input performs the best with RAcc of 94.97 while the other
two configurations give 86.65 and 86.99 RAcc.
5.3 Effect of Normalization Layers: Every graphic design
is unique and complex. Assuming that designs belong to a
common distribution and using normalization methods like
BatchNorm [24] degrades the performance of the model.
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Table 3. Comparison with state-of-the-art approaches when all elements of a design are refined (Refine-All setting).

CanvasVAE FlexDM DocLap GPT-4 0-shot GPT-4 1-shot GPT-4V 0-shot GPT-4V 1-shot Design-o-meter

T-mIOU (↑) 42.39 50.08 43.75 30.75 29.97 28.81 35.17 54.44

(a) Results of refining all elements.

(b) Results of refining only one text element.

Figure 4. Qualitative results of Design-o-meter refining graphic designs. The top sub-figure refines all elements of a design (Refine-All
setting), while the bottom one refines a single text box (Refine-Text setting). We see that our approach is able to automatically improve the
position and scale parameters of design elements, making them more visually appealing.

0.73

0.47

0.69

0.23

Figure 5. These occlusion-based sensitivity maps show the loca-
tions of the design with positive (red) or negative (blue) impacts
on a design score prediction. The numbers correspond to scores.

Table 5. We find that Group-
Norm gives the best results with
the scorer.

Method RAcc (↑)

CNN + BatchNorm 68.10
CNN + LayerNorm 82.36
CNN + InstanceNorm 85.18
CNN + GroupNorm 94.97

We experiment with
BatchNorm [24],
InstanceNorm [54],
LayerNorm [2], and
GroupNorm [58].
Table Tab. 5 shows
the results. We ob-

serve that GroupNorm performs best along with the
rendering+layout as input.

5.4 Sensitivity Analysis: We experiment
with different types of margins in Eq. (3).

Table 6. Varying
α and β.
α β RAcc↑
1.0 0.0 91.50
0.9 0.1 93.90
0.8 0.2 94.97

Hard margin (H-Margin),
transformation-based margin (TB-
Margin), and adaptive margin
(Ada-Margin) gave 94.97, 94.10
and 93.65 RAcc values. We use
H-Margin for the results. Next, we
analyze the contribution of α and β parameters in Eq. (2).
Decreasing α and increasing β, seems to have a positive
effect, and hence we use α = 0.8 and β = 0.2 for all
experiments.

6. Conclusion

In this paper, we propose Design-o-meter, a novel
framework which can evaluate and refine graphic designs.
It takes an existing user design as input, and provide a uni-
fied design score. Further, it refines the input design to im-
prove the design score. Our exhaustive experimental anal-
ysis brings out the efficacy of Design-o-meter. It would
be interesting to see how our scorer can aid other layout
and design generation frameworks as an off-the-shelf dis-
criminator. We leave this for future exploration. We hope
Design-o-meter will kindle interest in this practical and rel-
evant setting of evaluating and refining graphic designs.
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