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Abstract

Pose estimation has promised to impact healthcare by
enabling more practical methods to quantify nuances of hu-
man movement and biomechanics. However, despite the
inherent connection between pose estimation and biome-
chanics, these disciplines have largely remained disparate.
For example, most current pose estimation benchmarks use
metrics such as Mean Per Joint Position Error, Percentage
of Correct Keypoints, or mean Average Precision to assess
performance, without quantifying kinematic and physiolog-
ical correctness - key aspects for biomechanics. To alle-
viate this challenge, we develop OpenCapBench to offer
an easy-to-use unified benchmark to assess common tasks
in human pose estimation, evaluated under physiological
constraints. OpenCapBench computes consistent kinematic
metrics through joints angles provided by an open-source
musculoskeletal modeling software (OpenSim). Through
OpenCapBench, we demonstrate that current pose estima-
tion models use keypoints that are too sparse for accurate
biomechanics analysis. To mitigate this challenge, we intro-
duce SynthPose, a new approach that enables finetuning of
pre-trained 2D human pose models to predict an arbitrar-
ily denser set of keypoints for accurate kinematic analysis
through the use of synthetic data. Incorporating such fine-
tuning on synthetic data of prior models leads to twofold re-
duced joint angle errors. Moreover, OpenCapBench allows
users to benchmark their own developed models on our clin-
ically relevant cohort. Overall, OpenCapBench bridges the
computer vision and biomechanics communities, aiming to
drive simultaneous advances in both areas.

1. Introduction

Figure 1. OpenCapBench pipeline. SynthPose, our method to fine-
tune 2D pose estimation models to predict any set of body key-
points (designated by a star here) is detailed in Figure 4.

A major part of kinematic biomechanical analysis is
the study of joint angles that are critical for understand-
ing the interplay between body segments for use in appli-
cations ranging from diagnostics [2, 10, 36] and interven-
tion strategies [37] to optimizing athletic performance [25].
Traditionally, acquiring high-quality kinematic data for re-
search and clinical studies requires a dedicated gait labo-
ratory with synchronized high-speed cameras, application
of multiple optical motion markers, and expert personnel
trained in biomechanics. These cumbersome requirements
make clinical assessment and large-scale clinical trials cost-
prohibitive. Meanwhile, in the domain of computer vision,
pose estimation models strive to capture and predict human
movement from single or multiple videos. Yet, despite the
clear intersections in the objectives of the biomechanics and
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pose estimation domains, there remains a disconnect in their
methodologies and evaluations. Importantly, biomechan-
ical models for estimating kinematics constrain joints to
move in physiologically realistic ways. For example, while
biomechanics researchers constrain movement of the knee
to only have one degree-of-freedom joint [13], computer
vision approaches use physiologically implausible uncon-
strained three degree-of-freedom motion [33].

Evaluating kinematic metrics is not only important in
clinical and sports biomechanics, but can also improve ma-
chine learning approaches to pose estimation [11]. Us-
ing more physiologic joints may serve as a form of regu-
larization, thus improving estimated poses. Furthermore,
kinematic metrics provide a richer, temporally consistent,
and functionally relevant evaluation compared to traditional
pose estimation metrics like Mean Per Joint Position Er-
ror (MPJPE) [17], Percentage of Correct Keypoints (PCK)
or mean Average Precision (mAP) [51]. Kinematic met-
rics such as Root Mean Squared Error (RMSE) of joint an-
gle better encapsulate the complexities and constraints of
human motion, and by emphasizing these metrics, models
might generalize more effectively across diverse and out-of-
distribution poses, view angles, and occlusions [18, 20].

Biomechanical studies [43] show that popular computer
vision-based pose estimation models and datasets with
sparse keypoint annotations only on joint centers [8, 27]
result in large errors in joint angles. These errors are
likely owing to the fact that only estimating joint centers
leaves identifying specific joint angle contributions from the
three anatomical axes unconstrained. Therefore, while typ-
ical computer vision metrics focused on keypoints accuracy
might be satisfactory, specific joint kinematics can still have
large errors, illustrating the need for improved benchmarks
and metrics of pose estimation.

Connecting the realms of biomechanical kinematic anal-
ysis and pose estimation with computer vision can bene-
fit both fields. Tighter integration can provide real-world
benchmarks for computer vision researchers, while translat-
ing promising pose estimation models into clinical practice
can benefit biomechanics researchers. Against this back-
drop, our work aims to bridge the current separation be-
tween these disciplines. Our contributions are as follows:

– We introduce OpenCapBench, a benchmark to align
the fields of biomechanics and pose estimation. Open-
CapBench includes a fully automated pipeline to
streamline the transfer from pose estimation results to
the widely-used musculoskeletal modeling and simu-
lation software OpenSim [40]. This integration allows
computer vision experts to seamlessly generate kine-
matic analyses, without requiring expertise in muscu-
loskeletal biomechanical modeling.

– We introduce SynthPose, a novel method that uses

synthetic data to allow efficient finetuning of pre-
trained pose estimation models to predict a denser
set of keypoints and improve biomechanical analysis.

– Using our new kinematic benchmark, we show that
compared to sparse keypoints, our Synthpose method
twofold reduces average joint angle RMSE and up
to fourfold for certain biomechanically-relevant body
joints.

The benchmarking pipeline and the different components of
SynthPose will be available ¡future github link¿

In uniting the strengths of biomechanics and computer
vision, we envision a future where pose estimation models
are not just technically proficient, but can also help improve
human movement analysis and human health outcomes.

2. Related Work
2D Pose Estimation: Datasets like COCO [27] and

MPII [4] include extensive annotated human keypoints for
solving monocular pose estimation tasks across a wide
array of static images, with annotations for 17 and 16
2D body joint centers, respectively. However, 2D pose
estimation datasets do not offer depth information which
is crucial for understanding realistic 3D movement patterns.

Video-Based Pose Estimation: Temporal datasets
such as JHMDB [19] and PoseTrack [3] have introduced
the challenge of maintaining consistency across frames,
a step towards measuring continuous motion pertinent
to biomechanical research. However, current computer
vision benchmarks primarily focus on visual consistency
rather than biomechanical accuracy, indicating a gap for
new benchmarks, metrics, and datasets that also evaluate
temporal kinematic consistency.

3D Pose Estimation: Datasets such as Human3.6M [17]
and CMU Panoptic [22] have enabled 3D monocular
and multi-view pose estimation methods. However, even
translating monocular 3D poses into biomechanically valid
models remains a complex task [6]. Current pose estima-
tion metrics primarily focus on joint position accuracy and
fail to assess biomechanical factors such as joint angle
limits. This leads to the generation of physiologically
implausible movement solutions that are inadequate for
comprehensive biomechanical analysis. Multi-view 3D
pose estimation allows for more precise 3D reconstructions,
especially in datasets with occlusions, which often hinder
monocular estimations. Yet, there exists no rigorous bench-
mark specifically designed to evaluate the biomechanical
plausibility of these estimations.

Motion Capture Datasets: Conventional motion capture
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(MoCap) technology is a specialized and costly resource
that requires multiple hours for data collection per subject.
Yet, it is indispensable for producing high-fidelity human
movement data. MoCap has given rise to datasets such
as OpenCap [43], MoVi [15] or PSU-TMM100 [38],
which offer detailed continuous kinematic human motion
data. While MoCap provides unparalleled accuracy, its
reliance on elaborate equipment and controlled environ-
ments limits its accessibility and scalability. Despite these
limitations, MoCap datasets enable validating and testing
pose estimation models, to ensure that the models trained
on more generalized data can be benchmarked against
the ”gold standard” of human movement data, as well as
providing the necessary ground truth for benchmarking
biomechanically grounded kinematic metrics such as joint
angles [41].

Biomechanical Validity and Parametric Models:
The development of the SMPL model [29] and its suc-
cessor SMPL-X [33] has been instrumental in introducing
the notion of parametric body shape. These models have
facilitated the creation of datasets used for 3D body shape
and pose estimation [16, 45] with annotations based on the
SMPL framework. Although useful, even such data often
lack precision necessary for biomechanically accurate pose
estimation. The pursuit of biomechanical validity has thus
seen the adoption of models from biomechanical research
like the Rajagopal et al. model [34], which is implemented
in the OpenSim musculoskeletal modeling platform [40].
The recent introduction of the SKEL model [23], a SMPL-
like model with more biomechanically-realistic degrees of
freedom represents another step towards biomechanically
accurate modeling of human movement.

Synthetic Data for Pose Estimation: Synthetic data
has recently found applications in a wide range of fields,
including image classification [5], natural language pro-
cessing [46], healthcare [9] and more. The field of pose
estimation is no exception: synthetic datasets using SMPL
to model and animate their subjects [7, 32, 44, 47] seek to
overcome the lack of labeled multi-view 3D data. Synthetic
data enables sampling a wide array of human poses and
shapes in diverse environments, and provides rich annota-
tions of different types such as 2D/3D keypoints, SMPL
meshes, segmentation masks etc. However, synthetic data
still faces the same challenge as real data; they require
better evaluation metrics to assess biomechanical outcomes.

Computer Vision for Biomechanical Metrics Es-
timation: Recent efforts have been channeled into
leveraging computer vision techniques to estimate biome-
chanical metrics directly [24]. The OpenCap [43] platform
uses pose estimation outputs for accurate biomechanical

analysis in two stages - first by predicting sparse keypoints
using pose estimation models followed by lifting from a
sparser to denser set of keypoints using MoCap data and
recurrent networks. Bittner et al explore the challenge
of reconstructing 3D kinematics from monocular video
data [6]. BioPose-3D [39] aims to predict 3D biome-
chanical joint corrections for video-based joint detection
methods. These methodologies underscore a growing
trend in leveraging computer vision for biomechanical
assessment. Our OpenCapBench framework seeks to ex-
tend these efforts by providing a holistic, easily accessible
evaluation that benchmarks pose estimation models against
biomechanically relevant metrics.

3. OpenCapBench Pipeline
OpenCapBench introduces a comprehensive benchmark-

ing pipeline, designed to evaluate the efficacy of pose esti-
mation models in the context of biomechanics.

3.1. Dataset Integration

The foundation of our benchmark is the OpenCap [43]
dataset, a biomechanically-focused MoCap and multi-view
data collection. This dataset includes exercises commonly
used in biomechanical studies, such as squats, sit-to-stand,
drop jumps and walking, performed by 10 different sub-
jects. There are 16 movements per person, with durations
between 2 to 8 seconds. Each movement is recorded by 5
synchronized and calibrated cameras; we include two cam-
eras in our experiments following results from Uhlrich et
al that suggest that two cameras provide comparable accu-
racy to more cameras [43]. OpenCap includes 3D marker
data obtained with an eight-camera MoCap system (Mo-
tion Analysis Corp., Santa Rosa, CA, USA) that tracked
the positions (100 Hz) of 31 retroreflective markers placed
on established anatomical landmarks and 20 tracking mark-
ers [43]. The joint angles we use as ground-truth were ob-
tained from the MoCap markers using OpenSim’s Inverse
Kinematics tool [40] and the Rajagopal model [34]. We
also added bounding boxes obtained with high-performing
human detection model [28] to the OpenCap videos for sub-
ject cropping, in order to provide a fair basis to benchmark
all pose estimation models on.

3.2. Benchmarking Pipeline

Our benchmark is characterized by its versatility and
modular design, capable of evaluating a wide range of pose
estimation tasks. For the purpose of this paper, we focus
on evaluation of 2D single-frame pose estimation models
and single-frame SMPL pose and shape estimation models.
We apply these models on the video sequences from Open-
Cap Cam1 and Cam3, adopting a common pipeline to go
from 2D single frame pose estimation to 3D joints kinemat-
ics detailed below. The goal of this common pipeline is to
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provide an automated and fair baseline to evaluate the most
basic tasks in pose estimation while losing as little informa-
tion as possible in the process. However, we note that the
way OpenCapBench is designed allows adapting to addi-
tional tasks, such as 3D multi-view , 3D monocular, 2D/3D
temporal pose estimation or even direct kinematics estima-
tion, by selectively bypassing or modifying components in
our modular pipeline.

3.2.1 2D keypoints extraction

The first stage of the OpenCapBench pipeline (Figure 1) in-
volves extracting a set of 2D body keypoints for each frame
of the two different camera feeds. This is where users
wanting to test their single frame 2D pose or SMPL
shape estimation models can easily integrate their mod-
els. 2D keypoint extraction can be performed in one of two
ways:

– Using a 2D pose estimation model predicting any
set of 2D body keypoints (as long as the Inverse Kine-
matics setup has been defined for this set). The only
post-processing done to the outputted predictions is
temporal denoising prior to multi-view triangulation
using a dual pass low-pass smoothing with a Butter-
worth filter with a cut-off frequency of 30Hz. We have
integrated the MMPose framework [12] 2D pose in-
ference pipeline to OpenCapBench, thus if a model
is available on MMPose, it can directly be bench-
marked on OpenCapBench without further modifica-
tion needed. Otherwise, the user can plug-in their
model inference function to the pipeline as described
in our Github repository.

– Using a SMPL shape estimation model. Users can
plug-in their SMPL shape estimation model inference
function to the pipeline as described in our Github
repository. This time, the post-processing consists
in projecting a subset of vertices from the predicted
SMPL shape onto the image, as illustrated in Fig-
ure 3. By default, the projected set of vertices cor-
responds to a subset of anatomical markers used in
MoCap setups [43] and illustrated in Figure 2. This
set of marker was manually chosen by experienced
biomechanics researchers using SMPL Blender add-
on, by selecting the anatomically closest SMPL vertex
for each anatomical marker. The anatomical markers
are derived specifically to create biomechanically rel-
evant 3D joint coordinate systems per segment, based
on the recommendations of the International Society
for Biomechanics [48] .The same post-processing step
as for 2D pose estimation is applied to the extracted
keypoints. Of course, due to the modular nature of
OpenCapBench, other marker sets can be used. We in-
clude a SKEL tool [23] to either use the default set of

Figure 2. Chosen subset of 35 vertices
from SMPL mesh.

Figure 3. Extracting 2D keypoints from SMPL mesh.

markers suggested by SKEL or alternatively, users can
define a personalized set and regress the corresponding
OpenSim musculoskeletal model markers using the vi-
sualization tool.

3.2.2 3D Triangulation

Following 2D estimation, the framework employs a de-
terministic triangulation algorithm to combine multi-view
2D keypoints into 3D keypoints with real-world absolute
distances, using viewpoints from two calibrated cameras
(Cam1 and Cam3 as defined in OpenCap [43]).

3.2.3 Inverse Kinematics (IK)

The IK step uses the Rajagopal [34] musculoskeletal model
to estimate joint kinematics from a sequence of 3D key-
points. This step is performed through OpenSim’s python
API. Our framework is versatile, providing IK configura-
tion files for common landmark sets (such as COCO, Open-
Pose, COCO whole body) as well as for the subset of Mo-
Cap markers described in Figure 2. Again, we include a
SKEL tool [23] which allows the use of a personalized set
of SMPL markers and regress the corresponding markers on
the OpenSim model.

3.3. Evaluation Metrics

From the outputted joint kinematics, we use a subset of
joint angles to be compared with the ground truth joint an-
gles obtained with the MoCap setup of OpenCap [43]. We
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use joint angles for Pelvic Tilt, Pelvic List, Pelvic Rotation,
Hip Flexion, Hip Adduction, Hip Rotation, Knee Flexion,
Ankle Flexion, Subtalar Inversion/Eversion, Lumbar Exten-
sion, Lumbar Bending, and Lumbar Rotation, which cor-
respond to lower-body kinematics as they are the focus of
OpenCap and guaranteed to have accurate ground-truths.
Following the literature [14, 35, 43], we use RMSE for the
entire waveform for each joint and each trial as metrics.

3.4. Leaderboard

OpenCapBench will feature different leaderboards for
individual tasks alongside a global leaderboard encompass-
ing all tasks. This initiative aims to cultivate competition,
motivating the computer vision community to develop kine-
matically accurate pose estimation models, and serve as a
resource for biomechanists seeking optimal camera-based
kinematics prediction methods. The leaderboard will in-
clude all joint angles metrics specified above separately, as
well as an average of those to establish a ranking.

4. Arbitrary 2D keypoints estimation using
synthetic data

4.1. Motivation

Previous biomechanics studies [31, 43] show the short-
comings of typical pose estimation models which predict
sparse sets of keypoints in format such as COCO, OpenPose
or MPII. Not only are these models trained and evaluated
on manually annotated data, which do not guarantee pre-
cise annotations., but the sparse number of keypoints they
predict (17-22 keypoints) do not fully characterize the trans-
lations and rotations of all body segments. This inadequacy
is accentuated between the hips and the shoulders due to
the lack of keypoints in this area [43]. Using this limited
marker set for inverse kinematics is thus susceptible to re-
sult in large angular joint errors.

OpenCap findings [43] show that kinematic metrics can
be drastically improved using an LSTM augmenter trained
to predict a time series of anatomical markers (correspond-
ing to a subset of MoCap markers) from a time series of
sparse keypoints (in COCO-like format). However, this ap-
proach is based on MoCap data limited in diversity and cap-
tured in controlled environments, and may be prone to over-
fitting and imprecision since the original image priors are
lost in this process. Thus we hypothesize that predicting
a denser set of anatomically meaningful keypoints directly
from images, akin to MoCap setups, will improve joint an-
gle metrics after inverse kinematics.

To obtain such a model, we can leverage the character-
istics of the SMPL model that maintain a fixed mesh topol-
ogy, meaning that the number of vertices and their connec-
tivity (i.e., the mesh structure) remains unchanged indepen-
dent of the body shape and pose parameters. This allows

for the identification of vertices corresponding to specific
anatomical features on the SMPL mesh, such as subsets of
MoCap landmarks.

Thus, one potential solution to automatically predict
new keypoints involves utilizing an existing model capa-
ble of predicting SMPL parameters (or mesh directly [30])
from an image, generating a SMPL mesh from these pa-
rameters, extracting a pre-defined subset of SMPL ver-
tices, and projecting them onto the original images, as de-
scribed in the previous section and in Figure 3. How-
ever, this approach presents computational challenges as
predicting SMPL parameters and generating meshes are
resource-intensive tasks. Moreover, the current state-of-the-
art SMPL prediction models do not offer the desired level
of accuracy compared to landmark estimation models.

4.2. Leveraging synthetic data to finetune pose esti-
mation models

To address these challenges, we introduce SynthPose,
a novel approach for training pose estimation models to
predict an arbitrary subset of body keypoints derived from
SMPL mesh vertices.

In this work, we focus on predicting bony anatomical
keypoints to maximize kinematic accuracy. However, this
method can be adapted to specialize models for predicting
any sets of body keypoints, such as hands, feet, or head
keypoints.

Figure 4. SynthPose: a new method leveraging finetuning of pose
estimation models on synthetic data to predict an arbitrary set of
2D keypoints.

Labelling pipeline. As illustrated in Figure 4, a major
component of our new method is an automated labelling
pipeline, which can create 2D keypoints annotations of a
chosen subset of SMPL vertices on any synthetic dataset
that uses SMPL to model its subjects. To do so, we generate
the SMPL meshes corresponding to the subjects in the
synthetic data using the SMPL pose and shape parameters
given in the dataset annotations, project them onto the
images and extract the specified subset of vertices to be
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used as 2D keypoints annotations. The projected keypoints
P2D depend on the given camera’s intrinsic and extrinsic
matrices K and E respectively, and are computed as
P2D = K × E × Vsmpl Wwere Vspml denotes the subset
of vertices of the SMPL model.

Finetuning. The second major component of Synth-
Pose is a finetuning process, where we take a pretrained 2D
pose estimation models predicting typical set of keypoints
(COCO, MPII etc.), swap the last layer for a layer adapted
to the new set of keypoints we want to predict, and finetune
this model on our synthetic labelled dataset.

Leveraging synthetic datasets offers several advan-
tages. Besides the benefits of the SMPL model detailed
above, these synthetic datasets offer exact annotations,
as the mesh of the 3D models depicted in the different
images of the datasets are precisely the SMPL meshes.
This contrasts with datasets derived from real-world data
subsequently annotated with SMPL models, which often
exhibit shortcomings in annotation precision, because of
the difficulty in precisely manually aligning a SMPL mesh
on a 2D image.

By design, SynthPose can leverage learned features from
traditional pose estimation training, by using weigths from
models trained on datasets like COCO or MPII as initial
weights for the new models backbone and prediction head.
This transfer learning approach not only significantly re-
duces training time but also enhances model performance.

In our study, we carefully selected datasets for fine-
tuning our models designed to predict arbitrary keypoints.
Each dataset was chosen with specific considerations in
mind:

BEDLAM Dataset [7]: This extensive synthetic dataset
provides a large-scale foundation for training our models.

Infinity VisionFit [1,47]: This synthetic dataset, generated
using the Infinity VisionFit API (Infinity AI), includes
out-of-distribution samples featuring individuals engaged
in various exercise routines. This movement diversity is
beneficial in enabling our models to generalize effectively
across different scenarios.

3DPW Dataset [45]: To address the limitations of
our training set which lacks real data and subjects wearing
shoes, we incorporate the 3DPW dataset. This dataset
contains in-the-wild data of 18 subjects in 60 different
scenes. Despite imperfections in annotations, this dataset
supplements our training data with valuable real-world
examples to help close the sim-to-real gap.

COCO Dataset [27]: In addition to the selected SMPL

vertices, our models are designed to also output keypoints
in the COCO format. Therefore, we integrate the COCO
dataset into our aggregated training dataset. This inclusion
also helps mitigate the sim-to-real distribution shift and
thus, prevent catastrophic forgetting.

In the next section, we demonstrate that our proposed
method significantly outperforms the approach of using
state-of-the-art SMPL shape and pose estimation models,
followed by projecting a subset of the predicted mesh
vertices to predict arbitrary keypoints.

5. Experiments
5.1. New arbitrary 2D keypoints prediction method

In this section, we present experiments which showcase
the benefit of using our new method to predict arbitrary
2D keypoints compared to state-of-the-art SMPL estima-
tion models. We will first compare our results on a con-
ventional 2D keypoints estimation benchmark using Per-
centage of Correct Keypoints (PCK) normalized by bound-
ing boxes at different levels of precision, and then use
OpenCapBench for comparison. For this experiment, we
choose a subset of 35 SMPL vertices corresponding to a
subset of anatomical markers typically used in MoCap se-
tups [34, 43], detailed in Figure 2. We study several state-
of-the-art models for each task, namely two SMPL estima-
tion models, CLIFF [26] and VirtualMarkers [30], and two
2D pose estimation models, HRNet-W48+DARK [50] (re-
ferred as HRNet-W48 in the tables) and VitPose (Base and
Huge) [49]. We choose these 2D pose estimation models
to represent diverse SOTA model types (CNN and ViT) and
determine potential architecture-based biases. We evaluated
two ViT sizes to show that results are coherent with expec-
tations (i.e., Huge outperforms Base).

5.1.1 Results on RICH

PCK Precision(↑)
@0.05 @0.10 @0.20

SMPL (MoCap markers extracted)
CLIFF [26] 0.640 0.802 0.905
Virtual Markers [30] 0.707 0.844 0.926
SynthPose (predicting MoCap markers)

HRNet-W48 [50] 0.892 0.958 0.982
ViTPose-B [49] 0.859 0.941 0.971
ViTPose-H [49] 0.903 0.966 0.985

Table 1. Comparison with SOTA SMPL Models on the RICH [16]
test set. SynthPose significantly outperforms SMPL estimation
based methods. Note that CLIFF, VirtualMarkers and HRNet-
W48+DARK share the same HRNet backbone architecture, show-
ing the advantage of Synthpose with similarly-sized models.

We first benchmark different models on the RICH
dataset [16]. The RICH dataset captures multi-view out-
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Joint angle RMSE (↓) Pelvis Hip Knee Ankle Subtalar Lumbar
Tilt Rotation List Flex Add Rot Ext Bend Rot

2D pose methods (COCO-wholebody keypoints)
HRNet-W48 24.8 3.7 4 23.4 5.1 9.9 9.4 8.2 14.2 39.1 5.6 6
RTMW-X [21] 14.4 3.5 4.5 15 5.2 7.9 9.3 7.8 11.4 20.3 5.6 5.9

SMPL-based models (MoCap landmarks)
CLIFF 6.1 4.7 4.7 10.5 6.7 7.4 11.9 11.8 13.2 6.5 6.3 13.3
Virtual Markers 6.0 4.2 4.9 8.7 5.5 8.1 9.5 11.9 10.9 8.5 6.3 9.7

Our work: SynthPose (MoCap landmarks)
HRNet-W48 5.9 2.9 3.5 8.9 4.9 7.3 8.9 8.7 9.5 7.5 4.7 8.3
ViTPose-B 5.2 3.3 3.6 8.3 5.3 8 8.6 8.7 9.3 6.6 5.1 10
ViTPose-H 5.1 2.8 3.4 8.3 4.9 7.3 8.3 7.6 9.1 6.2 4.6 8.7

OpenCap method (using LSTM augmenter trained on 108 hours of MoCap data) [43]
HRNet-W48 7.4 2.4 3.5 6.8 3.2 4.7 4.3 6.2 6.7 9.2 3.4 5

Table 2. Cross-Comparison of Results. SynthPose significantly improves over computing kinematics from only COCO keypoints, and
outperforms SMPL estimation based 2D MoCap landmarks predictions on all joint angles metrics. We emphasize in green results improving
over the method used in OpenCap [43], which uses an LSTM augmenter trained on 108 hours of MoCap data.

door and indoor video sequences of diverse subjects per-
forming different physical activities. Although not reach-
ing the same level of precision as synthetic data annota-
tions, the SMPL annotations provided that we use to ex-
tract ground-truth 2D keypoints (as in Figure 3) represent
the current best achievable quality in datasets containing
real-world data. These high-quality data are the result of
the fitting of SMPL meshes to 3D human bodies captured by
markerless motion capture and 3D body scans. RICH also
includes high-resolution 3D scene scans, which allow for
accurate vertex-level contact labels on the body. Therefore,
we have deemed this dataset the ideal choice for evaluating
our novel arbitrary keypoint prediction technique.

We outperform SOTA SMPL mesh prediction-based
models by 26% in PCK at 0.05, showing the clear advan-
tage of our method for this particular task.

5.1.2 Results on OpenCapBench

In addition to traditional computer vision benchmarking,
we benchmark our method on OpenCapBench using RMSE
of kinematic joint angles obtained from OpenSim for each
individual trial. We also add 2D pose estimation models
which predict COCO-wholebody subset of keypoints (from
which we do not use the hands or the face landmarks) to the
comparison.
The results are summarized in Table 2.

The results illustrate the advantage of our method. In-
deed, we observe that keypoint-based methods obtain better
joint angles prediction overall compared to models predict-
ing SMPL meshes. We also show that predicting a MoCap
subset of landmarks over COCO keypoints enables clear
improvement on all metrics except Lumbar Rotation, with
3-5x reduced RMSEs for Pelvis Tilt, Hip Flexion, and Lum-
bar Extension metrics.

We underline the fact that we are using the same set of
keypoints (described in Figure 2) to compute inverse kine-
matics in OpenSim for both the SMPL-based method and

our newly introduced method in these specific experiments.
However, tools such as the one introduced with SKEL [23]
allow users to specify any set of SMPL vertices they want
to use for inverse kinematics, and visually regress the cor-
responding markers on the OpenSim model. The set of
anatomical keypoints we use is much sparser than the one
used by default in SKEL to perform inverse kinematics,
which may provide an unfair edge to our method. We sim-
ply illustrate here that, with the same set of predicted SMPL
vertices, our method performs better than the SMPL-based
method. However, we encourage the community to test the
denser keypoints suggested by SKEL to determine their ef-
fect on performance in the SMPL leaderboard of OpenCap-
Bench.

Our proposed synthetic data approach challenges the
method used in OpenCap on several metrics, namely Pelvis
Tilt, Pelvis Rotation, and Lumbar Extension. Importantly,
we only low pass filter raw pose prediction results for our
inverse kinematics input. In contrast, OpenCap performs
post-processing on the predicted keypoints based on the
predictions’ confidence and use an LSTM keypoints aug-
menter model which was trained on 108 hours of motion
capture data [43]. This augmenter converts the predicted
3D keypoints from COCO or OpenPose format to MoCap
keypoints, leveraging temporal priors in marker prediction.

5.2. Benefits of OpenCapBench

Here, we aim to illustrate how OpenCapBench can offer
insights on models that current benchmarks and metrics
cannot. To show this, we propose an ablation study on
the aggregated dataset on which we finetune the arbitrary
keypoints prediction models, by removing one of the
dataset for each finetuning run.

We perform this ablation study on both RICH dataset and
OpenCapBench. The results are summarized in Tables 3
and 4.
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Joint angles RMSE (↓) Pelvis Hip Knee Ankle Subtalar Lumbar
Tilt Rotation List Flex Add Rot Ext Bend Rot

Full agg. dataset
HRNet-W48 5.9 2.9 3.5 8.9 4.9 7.3 8.9 8.7 9.5 7.5 4.7 8.3
ViTPose-B 5.2 3.3 3.6 8.3 5.3 8 8.6 8.7 9.3 6.6 5.1 10
ViTPose-H 5.1 2.8 3.4 8.3 4.9 7.3 8.3 7.6 9.1 6.2 4.6 8.7

Without COCO dataset
HRNet-W48 -0.1 +0.1 +0.1 +0.2 +0.1 +0.2 +1.1 +0.3 +0.3 -0.1 +0.1 -0.1
ViTPose-B +0.4 0.0 +0.2 +1.2 +0.2 -0.1 +0.6 +0.7 +0.4 +0.3 +0.1 0.0
ViTPose-H -0.1 0.0 0.0 +0.1 0.0 -0.4 +0.3 0.0 0.0 -0.1 0.0 -0.2

Without BEDLAM Dataset
HRNet-W48 -0.4 +0.1 +0.3 +0.4 +0.1 +0.3 +0.4 0.0 -0.1 +0.6 +0.2 +0.3
ViTPose-B 0.0 0.0 +0.2 +0.6 +0.1 +0.4 +0.4 +0.8 +0.4 +0.8 +0.1 -0.5
ViTPose-H -0.5 +0.1 +0.1 -0.1 +0.0 -0.3 +0.1 +0.3 0.0 +0.1 +0.1 +0.1

Without Infinity Data
HRNet-W48 +0.4 +0.1 +0.1 +0.7 +0.3 +0.8 +0.6 +1.0 +0.6 +1.1 +0.0 +0.2
ViTPose-B +2.9 +0.2 0.0 +2.8 +0.4 +0.8 -0.1 +0.4 +0.5 +2.3 +0.1 -0.1
ViTPose-H +2.2 +0.2 -0.1 +2.2 +0.3 +0.5 +0.0 +0.6 +0.3 +2.3 0.0 +0.2

Without 3DPW Dataset
HRNet-W48 -0.6 -0.1 +0.2 +0.1 +0.0 +0.6 +0.2 -0.1 +1.1 -1.1 +0.1 -0.5
ViTPose-B 0.0 0.0 +0.2 +0.4 +0.1 +0.1 +0.5 -0.2 +0.5 +0.7 +0.1 -0.2
ViTPose-H +0.3 0.0 +0.2 +1.0 +0.0 +0.2 +0.8 -0.2 +1.0 +0.6 +0.0 -0.7

Table 3. Ablation study on OpenCapBench using SynthPose. Significant (≥ 1.0) decrease/increase in performance over baseline are
highlighted in red/green. The study shows the importance of Infinity data when it comes to prediciting accurate kinematics.

PCK Precision(↑)

@0.05 @0.1 @0.2

Full agg. dataset
HRNet-W48 0.89 0.96 0.98
ViTPose-B 0.86 0.94 0.97
ViTPose-H 0.90 0.97 0.99
Without COCO Dataset
HRNet-W48 0.87 (-0.02) 0.94 (-0.02) 0.96 (-0.02)
ViTPose-B 0.83 (-0.03) 0.91 (-0.03) 0.95 (-0.02)
ViTPose-H 0.90 (0.00) 0.96 (-0.01) 0.98 (-0.01)
Without BEDLAM Dataset
HRNet-W48 0.87 (-0.02) 0.95 (-0.01) 0.97 (-0.01)
ViTPose-B 0.85 (-0.01) 0.93 (-0.01) 0.97 (0.00)
ViTPose-H 0.89 (-0.01) 0.96 (-0.01) 0.98 (-0.01)
Without Infinity Data
HRNet-W48 0.89 (0.00) 0.96 (0.00) 0.98 (0.00)
ViTPose-B+DARK 0.86 (0.00) 0.94 (0.00) 0.97 (0.00)
ViTPose-H+DARK 0.90 (0.00) 0.97 (0.00) 0.99 (0.00)
Without 3DPW Dataset
HRNet-W48 0.90 (+0.01) 0.97 (+0.01) 0.98 (0.00)
ViTPose-B 0.88 (+0.2) 0.95 (+0.01) 0.97 (0.00)
ViTPose-H 0.91 (+0.01) 0.97 (0.00) 0.99 (0.00)

Table 4. Ablation Study results on RICH [16] test set using Syn-
thPose. Decrease/increase in performance over baseline are in-
dicated in red/green. The study indicates slight negative impact
when removing COCO and BEDLAM, and slight positive impact
when removing 3DPW from the training set.

In comparing the effects of various datasets on model
performance, OpenCapBench offers detailed insights that
are not as evident in the RICH ablation study.

The RICH ablation study, using PCK metric at different
precision levels, shows no or very slight decrease in per-
formance with the exclusion of each dataset, except without
3DPW, which appears to increase the models’ performance.

OpenCapBench, on the other hand, provides a more de-
tailed perspective, particularly highlighting the importance
of the Infinity dataset for enhancing predictions on specific
anatomical features such as Pelvis Tilt, Hip Flexion, and
Lumbar Extension, potentially due to its focus on exercise-
related data. It also reveals that while 3DPW may nega-
tively impact some metrics, it is crucial for improving the

Subtalar metric, which we hypothesize is due to the fact
that 3DPW addresses the lack of subjects wearing shoes
in the other datasets of the aggregated training set. This
demonstrates OpenCapBench’s ability to offer nuanced in-
sights that traditional pose estimation benchmarks cannot
provide, into how different datasets uniquely contribute to
model performance on biomechanical relevant metrics.

6. Discussions

OpenCapBench represents a step towards integrating
kinematics and pose estimation, while introducing Synth-
Pose, a method for estimating arbitrary keypoints which
benefits both fields. This approach yields detailed insights
into the performance of pose estimation models and the im-
portance of diverse and comprehensive training data in re-
fining these models.

Despite the benefits of OpenCapBench, the dataset diver-
sity within OpenCapBench currently lacks breadth in terms
of subject variety, environmental settings, and the range of
activities covered, which will be a focus of future work. In-
tegrating additional datasets which use MoCap as ground
truth such as MoYo [42] or PSU-TMM100 [38] may extend
the benchmark’s applicability and relevance across broader
kinematic studies.

At present, OpenCapBench primarily focuses on lower
body kinematics. Adding upper body kinematics and in-
cluding upper limb assessments could help characterize
more holistic view of human motion.

Finally, the open-source aspect and the versatility of
OpenCapBench presents an opportunity for the commu-
nity to engage with it through other pose estimation tasks
such as 3D keypoint estimation and temporal predictions, or
through experimenting with different subsets of keypoints
and new setups for inverse kinematics.
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