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Abstract

Human experts demonstrate proficiency not only in dis-
entangling anatomical structures from disease conditions
but also in intertwining anatomical and disease informa-
tion to accurately diagnose a variety of disorders. How-
ever, deep learning models, despite their prowess in ac-
quiring intricate representation, often struggle to learn rep-
resentation where distinct semantic aspects of the data
(both anatomy and pathology) are entangled, particu-
larly in medical images, which present a rich array of
anatomical structures and potential pathological condi-
tions. We envision that a deep model, when trained to
comprehend medical images akin to human perception,
would offer powerful representation with higher general-
izability, robustness, and interpretability. To realize this
vision, we have developed LeADER, a framework for
learning anatomy-disease entangled representation from
medical images. As a proof of concept, we have trained
LeADER on ≈1M chest radiographs gathered from 10 pub-
lic datasets. Experimental results across 11 medical tasks,
compared to 8 baselines in zero-shot, linear probing, lim-
ited data regimes, and full fine-tuning settings, demon-
strate LeADER’s superior performance over the Google
CXR Foundation Model, large-scale medical models, and
fully/self-supervised baselines across diverse downstream
tasks. This enhanced performance is attributed to the
significance of entangling anatomy-specific and disease-
specific representations via our framework, which enables
the simultaneous acquisition of both anatomical and dis-
ease knowledge, yet overlooked in existing supervised/self-
supervised learning methods. All code and models are
available at GitHub.com/JLiangLab/LeADER.

1. Introduction
Medical images contain diverse anatomical structures

and potential pathological conditions. Human experts excel
not only in separating (disentangling) anatomical structures
from disease conditions but also in combining (entangling)
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Figure 1. Human experts demonstrate proficiency in intertwin-
ing anatomical and disease information to accurately diagnose a
variety of disorders. However, current representation learning ap-
proaches either focus on disease-related learning through utiliza-
tion of expert disease labels, or focus on learning anatomy-specific
features, disregarding disease-related features due to lack of ap-
propriate supervision in their learning objectives. To emulate hu-
mans’ ability to intertwine anatomical and disease information, we
introduce a framework that explicitly learns to encode both patho-
logical and anatomical information from medical images, leading
to the the development of a powerful model (LeADER) that yields
not only discriminative disease features but also semantically rich
anatomical features.

anatomical and disease information for diagnosing various
disorders. However, current deep learning models fall short
of effectively learning representation where distinct seman-
tic aspects of the data (both anatomy and pathology) are
entangled [59, 62, 79]. We hypothesize that if deep neu-
ral networks can comprehend medical images akin to hu-
man perception—entangling anatomy-specific and disease-
specific visual information—their learned representation
would exhibit increased generalizability, robustness, and in-
terpretability. To test this hypothesis, we have chosen chest
radiography (CXR) because chest radiograph is the most
widely used imaging modality worldwide, and there is a
pressing need to develop robust CXR models [34, 64, 65].
Therefore, this paper seeks to address a critical question:
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How to learn entangled representations of diseases and
anatomy from medical images, yielding more powerful mod-
els for a broad range of applications?

In answering this question, we have developed a frame-
work, called LeADER, for its ability of learning anatomy-
disease entangled representation from medical images, as
depicted in Fig. 2 and illustrated in Algorithm 1. Our exten-
sive experiments on across 11 medical tasks, compared with
8 baselines in (i) zero-shot (Figs. 3 and 4), (ii) linear prob-
ing (Fig. 5), (iii) limited data transfer learning (Tab. 3), and
(iv) full fine-tuning settings (Tab. 2), showcase LeADER’s
superior performance over Google’s proprietary Foundation
Model (CXR-FM) [65], large-scale medical models, and ex-
isting SSL methods across diverse downstream tasks.

LeADER’s superior performance is attributed to the en-
tanglement of anatomy-specific and disease-specific rep-
resentations, which enables the simultaneous learning of
both anatomical and disease knowledge; thereby, offering
superior performance for both disease identification and
anatomy understanding. LeADER differs fundamentally
from existing representation learning methods, including
supervised learning [54, 55, 65] which focus solely on dis-
ease features through the utilization of disease labels, and
self-supervised learning [3, 26, 31, 60, 83, 94, 95] which are
limited in capturing discriminative disease-relevant repre-
sentation [45]. In contrast to both, LeADER exploits both
pathological and anatomical cues as supervisory signals for
learning more comprehensive representation from medical
images.

In summary, we have made the following contributions:

• A framework that learns entangled representations of
diseases and anatomy, yielding discriminative repre-
sentations enriched with the semantics of anatomical
and pathological knowledge.

• A set of empirical analyses in zero-shot settings that
highlights the effectiveness of LeADER ’s represen-
tations for both disease identification and anatomy
understanding compared with existing disease expert
foundation models, including Google CXR-FM.

• A comprehensive set of experiments that demonstrates
the generalizability and robustness of LeADER ’s rep-
resentations across diverse tasks compared with fully-
supervised and self-supervised learning baselines.

2. Related works
2.1. Supervised representation learning

Supervised representation learning focuses on pretrain-
ing deep models using expert-provided labels. In this
paradigm, deep models are trained by minimizing the ob-
jective to align the model’s predictions with expert la-

bels [6, 42, 91]. In the context of medical image anal-
ysis, a substantial body of work has developed super-
vised pretrained models generalizable to various medi-
cal applications by assembling large-scale labeled medical
datasets [34, 39, 41, 48, 54, 55, 58, 65]. Notably, the RadIm-
ageNet [55] model was developed using a large corpus of
1.35 million radiology images in a fully supervised manner,
demonstrating the significance of pretraining with millions
of radiology images compared to the ImageNet dataset.
Additionally, Google’s proprietary CXR Foundation Model
(CXR-FM) [65] was trained on 821,544 labeled chest X-ray
scans, demonstrating generalizability to a range of medical
tasks. Despite the success of these models, they tend to
retain more disease-specific information due to the use of
disease labels as their supervisory signals, while overlook-
ing anatomy-related features. By contrast, our LeADER not
only leverages the power of existing disease expert mod-
els to learn discriminative disease features but also con-
currently learns anatomy-related features, leading to more
comprehensive representation for a diverse range of medi-
cal tasks.

2.2. Self-supervised representation learning

Self-supervised learning (SSL) focuses on pretraining
deep models without expert-provided labels. Instance dis-
crimination SSL [5, 7, 8, 14–18, 21, 29, 44, 75, 82, 85, 88,
90, 93] has emerged as a prominent approach for visual
representation learning, where the pivotal idea is to con-
sider each image as a unique class and train a model
to align the representations of the augmented views from
the same image. On the other hand, reconstruction-based
pretext tasks, particularly masked image modeling meth-
ods [4, 12, 19, 28, 38, 43, 47, 57, 73, 76, 77, 86, 87], mask
or perturb random parts of the input image and reconstruct
the missing parts at the pixel level. In the context of med-
ical imaging, both instance discrimination and masked im-
age modeling have been widely studied [2, 3, 13, 24, 26, 33,
40, 60, 72, 94, 95], while recent SSL methods seek to learn
consistent anatomical representations through carefully de-
signed pretext tasks [9, 25, 27, 31, 37, 71]. Among them,
Adam [31, 71] has recently shown potential in learning
anatomy-specific representations by exploiting the hierar-
chical nature of anatomical structures in its learning objec-
tive. Despite their success, SSL methods are limited in cap-
turing discriminative disease-relevant representations due
to the lack of explicit disease learning supervision in their
training objectives. Our LeADER addresses this limitation
by incorporating disease learning, enforcing the model to
capture both anatomy and disease features.

2.3. Knowledge distillation

Knowledge distillation (KD) methods focus on training
a student network to mimic the output of a teacher network,
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Figure 2. LeADER learns entangled representation of diseases and anatomy by distilling anatomical and pathological information from
two expert teachers via two branches: disease learning and anatomy learning. Given input image/patch I , we pass it to student Sθ to get
its representation EDA. The disease learning branch extracts disease-specific representation E′

D from EDA via disease head hθD and
maximizes the consistency between E′

D and embedding ED of I generated by a disease expert teacher, such as Google CXR-FM [65],
known for its proficiency in generating disease-related features. The anatomy branch extracts anatomy-specific representation E′

A from
EDA via anatomy head hθA and maximizes the alignment between E′

A and embedding EA of I generated by an anatomy expert teacher,
such as Adam [31], which excels in generating anatomy-related features. By joint training of the disease and anatomy branches, student
Sθ is compelled to capture entangled representation, while the disease/anatomy heads encode distilled disease/anatomy representation. We
ablate LeADER in zero-shot, linear-probing, and fine-tuning settings and show its superiority for both anatomy understanding (Fig. 3) and
disease identification (Figs. 4 to 6, Tab. 2, and Tab. 3).

aiming to transfer the knowledge of the teacher model to
the student model [30]. KD has been widely explored in
a supervised manner. Numerous works [10, 11, 23, 30, 36,
56, 63, 96] minimize the difference between the outputs of
teacher and student networks at different stages via different
similarity objectives, in addition to utilizing class label su-
pervision. Moreover, recent works [8, 15, 20, 69, 74, 81, 84]
have extended KD to the self-supervised paradigm by de-
signing various pretext tasks to align the outputs of stu-
dent and teacher networks without relying on human su-
pervision, demonstrating promising outcomes for a range
of vision tasks. Additionally, a line of work has adopted
multiple teachers to enhance KD with more robust fea-
tures [22, 50, 68, 92]. In contrast to all existing KD meth-
ods, our LeADER simultaneously learns pathological and
anatomical information by distilling knowledge from both
disease and anatomy expert teachers, leading to entangled
representations of diseases and anatomy.

3. Method

Our framework, depicted in Fig. 2, aims to learn entan-
gled representations of diseases and anatomy. To do so,
our framework employs a student network (Sθ) that si-
multaneously learns anatomical and diseases information
from two teacher models—one specializing in diseases
and the other in anatomy—via two key learning branches:
(1) anatomy learning, aiming to encode semantically rich
anatomical features, and (2) disease learning, aiming to

acquire discriminative disease-related features. By inte-
grating these learning branches into a unified framework,
our method captures comprehensive anatomy-related and
disease-related information, providing more powerful rep-
resentations for various downstream tasks. In the follow-
ing, we first introduce each branch and then describe the
joint training loss.

3.1. Anatomy learning

Anatomy learning branch aims to empower the student
Sθ with semantics-rich anatomical features by distilling
knowledge from an anatomy expert teacher TξA , which is
proficient in understanding anatomy. This branch takes the
input I and generate its latent embedding EDA with the stu-
dent Sθ network. The embedding EDA is then processed
by the anatomy head hθA , which extracts anatomy-related
features from the entangled features EDA and outputs the
distilled anatomy embedding E′A = hθA(EDA). The input
I is also fed to the anatomy expert model TξA to generate
anatomy embedding EA = TξA(I), serving as targets for
training the anatomy branch. The objective of the anatomy
branch is to maximize the consistency between the anatomy
expert’s embeddings and those generated by the anatomy
head:

LA = ℓs(EA, E
′
A) (1)

where ℓs(.) is a function that measures the similarity be-
tween EA and E′A, and can be any suitable function such as
cross-entropy, etc.
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Code D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Dataset PadChest [1] ChestX-ray14 [80] CheXpert [34] Shenzhen [35] RSNA Pneumonia [70] MIMIC-CXR [39] VinDR-CXR [61] ChestX-Det [46] Node21 [67] TBX-11K [49]

#Samples 160,828 75,312 223,414 463 21,295 368,879 36,096 15,810 2,952 2,422

Table 1. Pretraining datasets: LeADER is trained on around 900K samples collected from the training sets of 10 public datasets.
Alongside the images in D1-D10, disease bounding box labels from D7-D10 are utilized to extract diseased patches for training, enriching
LeADER with nuanced disease/anatomy features. Specifically, for D7-D10, the provided bounding box labels are employed to extract
diseased patches from diseased images, while random normal patches are sampled from healthy images.

Algorithm 1: A round of training LeADER
Data: Image DatasetsDI = {D1, D2, D3, D4, D5, D6, D7}

Images with Bounding Boxes Datasets
DIB = {D7, D8, D9, D10}

Trainable Parameters: Student Sθ , Disease/Anatomy heads hθD
, hθA

Frozen Parameters: Disease expert TξD
, Anatomy expert TξA

1 DIP = {}
2 // Extract patches from datasets with disease bounding box labels
3 for Dib ∈ DIB do
4 Extract diseased patches using the provided bounding box labels for

diseased images
5 Extract random healthy patches from normal images
6 Create a new dataset Dip with pairs (I, P ) of patches and their

corresponding images
7 DIP ← Dip

8 // Train disease branch with images as input
9 for Di ∈ DI do

10 for I ∈ Di do
11 ED, E′

D = TξD
(I), hθD

(Sθ(I))

12 Loss = LD(ED, E′
D)

13 // Optimize trainable parameters with back-propagation
14 Update({Sθ, hθD

}, Loss)
15 // Train disease and anatomy branches jointly with images/patches as input
16 for Dip ∈ DIP do
17 // (I,P): pair of image/patch
18 for (I, P ) ∈ Dip do
19 EDAI

, EDAP
= Sθ(I), Sθ(P )

20 EDI
, EDP

= TξD
(I), TξD

(P )

21 E′
DI

, E′
DP

= hθD
(EDAI

), hθD
(EDAP

)

22 EAI
, EAP

= TξA
(I), TξA

(P )

23 E′
AI

, E′
AP

= hθA
(EDAI

), hθA
(EDAP

)

24 LossDisease = LD(EDI
, E′

DI
) + LD(EDP

, E′
DP

)

25 LossAnatomy = LA(EAI
, E′

AI
) + LA(EAP

, E′
AP

)

26 Loss = LossDisease + LossAnatomy

27 Update({Sθ, hθD
, hθA

}, Loss)

3.2. Disease learning

Disease learning branch aims to equip the student Sθ

with discriminative disease-related features by distilling
knowledge from a disease expert teacher TξD , which spe-
cializes in generating disease-related features. This branch
takes the input I , which can be a healthy/diseased image or
patch, and process it with the student Sθ to generate its la-
tent embedding EDA. The embedding EDA is then passed
to the disease head hθD , which extracts disease-related fea-
tures from the entangled features EDA and outputs the dis-
tilled disease embedding E′D = hθD (EDA). The input I is
also passed to the disease expert teacher TξD , which gen-
erates disease embedding ED = TξD (I), serving as the
ground truth for the disease learning branch. The disease
branch’s objective is to maximize the alignment between

the disease expert’s embeddings and those generated by the
disease head using the following general loss function:

LD = ℓs(ED, E′D) (2)

where ℓs(.) is a function that measures similarity be-
tween ED and E′D, and can be cross-entropy, mean squared
error (MSE), or any other sophisticated measures.

3.3. Training pipeline

LeADER is a general framework that allows for vari-
ous choices of disease and anatomy expert models without
any constraints. Moreover, LeADER works with different
types of inputs, including whole images as well as patches.
Thus, if a dataset includes disease bounding boxes, patches
can be optionally extracted and used alongside images to
distill local disease and anatomy features for specific re-
gions, thereby enriching representation learning. To enable
end-to-end representation learning from both disease and
anatomy experts, LeADER integrates disease and anatomy
branches and jointly train them with one single objective:

LLeADER = LD + LA (3)

Through our unified training scheme, our framework yields
both entangled and distilled representations of diseases and
anatomy. In particular, the joint optimization of LA and LD

enforces the student Sθ to simultaneously encode anatomy-
and disease-related information from the input, resulting
in entangled anatomy-disease representations, denoted as
EDA. Moreover, the anatomy and disease heads (hθA

and hθD ) extract exclusive anatomy-specific and disease-
specific factors from the entangled representation EDA,
mapping the input into distilled anatomy and disease rep-
resentations E′A and E′D , respectively.

4. Implementation details
Pretraining settings. We use Swin transformer base (Swin-
B) [51] as the backbone of student Sθ, and two-layers MLP
heads for hθD and hθA . For the disease expert TξD , we
employ Google CXR-FM [65], known for its proficiency in
generating disease-related features. For the anatomy expert
TξA , we employ Adam [31, 71], which excels in generating
anatomy-related features. Other suitable disease/anatomy
expert models can also be integrated into our framework
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Figure 3. Zero-shot anatomy understanding: Compared with CXR-FM and RadImageNet models, which solely focus on disease learn-
ing, LeADER excels in anatomy understanding, demonstrating a strong capability in discriminating different anatomical landmarks in its
embedding space.

Query Top-most similar images to the disease query 

LeADER (ours)

Google CXR-FM

Figure 4. Samples of top retrieved images: LeADER outperforms CXR-FM in zero-shot disease retrieval, showcasing the efficacy of its
entangled representation of anatomy and diseases. While CXR-FM exhibits errors in its top similar images (red boxes) to a sample disease
query (yellow box), LeADER accurately identifies diseased images (green boxes) that share the same abnormality with the query.

without constraint. During training, we optimize Sθ, hθD ,
and hθA using the AdamW optimizer with a learning rate
of 2e − 4, while keeping the TξD and TξA frozen. MSE is
used as LD and LA. Random affine transformation, hori-
zontal flip, and color jitter are used as data augmentation.
Detailed information of LeADER’s training data and proce-
dure is provided in Tab. 1 and Algorithm 1 and Appendix.
Evaluations. We extensively evaluate LeADER in (1)
Zero-shot anatomy understanding, (2) disease retrieval,
(3) linear probing, and (4) full transfer settings. We
consider 11 downstream tasks on nine publicly available
datasets, including ChestX-ray14 [80], CheXpert [34],
ChestX-Det [46], VinDr-CXR [61], NIH Shenzhen [35],
RSNA Pneumonia [70], SIIM-ACR [89], COVIDx [78],
and JSRT [66]. These tasks rigorously examine the gen-
eralizability of our LeADER across a diverse range of ap-
plications. Dataset details are provided in Appendix.
Baselines. We compare LeADER with recent SOTA fully
supervised and self-supervised pretrained models. Partic-
ularly, we consider models pretrained on large-scale la-
beled medical datasets, including RadImageNet and Google
CXR-FM. Moreover, we compare LeADER with a repre-
sentative set of SOTA publicly-available SSL baselines tai-
lored for medical imaging tasks, encompassing PCRL [94],
Adam [31], DiRA [26], DINO [8], Medical-MAE [83], and
LVM-Med [60]. Among the baselines, DiRA and PCRL are
multi-task learning methods, while DINO and LVM-Med

are knowledge distillation methods. Notably, LVM-Med is
pretrained on a large corpus of 1.3 million medical images.

Fine-tuning settings. Following the standard transfer
learning protocol [32], we fine-tune the student network of
LeADER (Sθ) for diverse classification and segmentation
tasks. For transfer learning to classification tasks, we at-
tach a classification head to the pretrained backbone, and
for segmentation tasks, we use a UperNet network, where
the encoder is initialized with the pretrained weights. We
perform end-to-end training by fine-tuning all the parame-
ters of the downstream models. Details of the fine-tuning
hyperparameters are provided in the Appendix.

5. Results
5.1. LeADER elevates anatomy understanding

To assess LeADER’s proficiency in understanding
anatomy, we investigate its ability to discriminate various
anatomical structures in a zero-shot setting (with no fine-
tuning). To do so, we (1) leverage a dataset of 1,000 images
(from ChestX-ray14 dataset [80]) with ten distinct anatom-
ical landmarks manually annotated by human experts in
each image, (2) extract 2242 patches around each landmark
across images, (3) generate embeddings of landmark in-
stances using each model under study, and (4) visualize the
embeddings with t-SNE plot. We compare LeADER with
Google CXR-FM [65] and RadImageNet [55], two recently
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Figure 5. Disease classification at lesion level: LeADER provides significantly better performance (p < 0.05) compared with Google
CXR-FM in disease classification at lesion level across datasets and diverse diseases, showcasing its effectiveness in enhancing represen-
tation learning by capturing entangled anatomy and disease information.
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Figure 6. Disease classification at image level: LeADER signif-
icantly (p < 0.05) outperforms Google CXR-FM in disease clas-
sification at image level across tasks, highlighting the significance
of our framework in integrating anatomy and disease learning.

developed medical models pretrained on large-scale medi-
cal datasets with disease labels. As seen in Fig. 3, RadIm-
ageNet and CXR-FM fail to distinguish between different
anatomical structures. By contrast, LeADER effectively
discriminates between various anatomical landmarks, re-
sulting in well-separated clusters in its embedding space.
This highlights LeADER’s ability to learn semantics-rich
anatomical embeddings, a desired property that is absent in
existing disease expert foundation models, thus facilitating
the more effective capture of disease-related information.

5.2. LeADER excels in zero-shot disease retrieval

To showcase the significance of LeADER’s learned en-
tangled representations, we examine LeADER’s capability
in identifying diseased patterns across images compared
with Google CXR-FM and RadImageNet model by con-
ducting zero-shot disease retrieval experiments (no train-
ing or tuning). To do so, we focus on Pneumonia dis-
ease in the RSNA Pneumonia dataset [70], where we: (1)
select a random diseased image and then extract a dis-
eased patch (disease query) based on the provided bound-
ing box label for the image; (2) extract embeddings of the
disease query as well as images in the RSNA Pneumo-
nia dataset using each model under the study; (3) com-
pute cosine similarity between the embedding of disease

query and embeddings of each image; (4) rank the top-
K most similar images to the disease query and calculate
the precision score for the retrieved images. We set K
to 100 and replicated the experiment using multiple ran-
dom query images, wherein LeADER exhibits 15.3% and
3.7% higher disease retrieval performance compared to
RadImageNet and Google CXR-FM, respectively (RadIm-
ageNet: 71.67±6.66, CXR-FM: 83.33±7.02 vs. LeADER:
87.00±7.21). In addition to our reported quantitative re-
sults, we also provide qualitative findings in Fig. 4, which
presents a sample disease query and its top eight most sim-
ilar images retrieved by both LeADER and CXR-FM. As
seen, contrary to CXR-FM, which exhibits errors in its top
similar samples (red boxes), LeADER accurately identifies
diseased images. These findings underscore the effective-
ness of our framework in capturing both complementary
disease- and anatomy-related visual information from med-
ical images, in contrast to CXR-FM, which solely focuses
on capturing disease-related information.

5.3. LeADER provides superior representations for
disease identification

To further scrutinize the effectiveness of our learned en-
tangled representations, we conduct a comparative analysis
against CXR-FM in thoracic diseases classification using
linear probing across four downstream tasks. These tasks
encompass image-level classification on ChestX-ray14 and
CheXpert [34] with 10% labeled data, as well as lesion-level
classification on ChestX-Det [46] and VinDR-CXR [61].
As seen in Fig. 6, in both the ChestX-ray14 and CheXpert
datasets, each comprising labels for 14 and 5 thoracic dis-
eases at the image level, LeADER demonstrates superior
performance compared to the CXR-FM, achieving an aver-
age performance improvement of 1.6% and 1.9%, respec-
tively. To delve deeper into the effectiveness of LeADER’s
representations compared to CXR-FM, we employ linear
probing with embeddings extracted from the CXR-FM API
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Method
Classification Segmentation

14 Thoracic diseases Tuberculosis COVID-19 Lung nodule Pneumothorax 13 Thoracic diseases
(ChestX-ray14) (Shenzhen) (COVIDx) (JSRT) (SIIM-ACR) (ChestX-Det)

ImageNet 81.74±0.13 93.35±0.77 95.90±0.65 51.73±0.81 70.22±0.57 74.89±0.16
RadImageNet 79.96±0.11 93.77±0.58 95.90±1.19 54.74±3.27 70.31±0.52 73.75±0.79
PCRL 80.56±0.08 93.18±1.38 95.50±1.95 60.69±4.10 68.01±1.28 71.45±0.59
DiRA 81.12±0.17 92.94±0.98 94.95±3.76 61.05±2.91 69.24±0.41 71.90±0.96
DINO 79.01±0.08 92.11±0.22 93.20±0.48 56.32±0.42 68.18±2.28 73.97±0.21
Medical-MAE 82.24±0.03 95.77±0.33 95.10±0.38 52.08±1.80 70.13±0.62 75.49±0.40
Adam 81.72±0.44 94.60±0.90 95.20±0.65 57.43±5.45 69.59±0.55 74.17±0.57
LVM-Med 81.76±0.09 95.11±1.02 96.45±0.48 50.79±5.43 69.06±1.26 74.79±0.03
LeADER (Ours) 82.52±0.06 98.28±0.21 96.60±0.29 61.65±4.84 70.93±0.54 76.72±0.27

Table 2. Full transfer learning results: LeADER demonstrates superior transfer performance compared to both fully- and self-supervised
baselines across all tasks, showcasing the significance of our framework in capturing transferable features. ± denotes standard deviation.
For each task, we conducted the independent two-sample t-test between the best (bolded) vs. others. Highlighted boxes in blue indicate
statistical significance at the p = 0.05 level.

and the pretrained LeADER model on the ChestX-Det and
VinDR-CXR datasets, which include the evaluation of diag-
nosing 13 and 14 common thoracic diseases, respectively,
at the lesion level. As seen in Fig. 5, LeADER outperforms
CXR-FM in 13 and 10 diseases within the VinDR-CXR and
ChestX-Det datasets, leading to an average performance en-
hancement of 3.5% and 2.6%, respectively, demonstrating
LeADER’s capability in providing superior representations
for the identification of a broad range of thoracic diseases.
Our attribution of LeADER’s superior representations over
Google CXR-FM, evidenced in both zero-shot disease re-
trieval and disease identification, is grounded in the signif-
icance of our anatomy learning in conjunction with disease
learning, which is neglected in existing disease learning ap-
proaches, including Google CXR-FM.

5.4. LeADER provides transferable representations
for a variety of tasks

To highlight the importance of leveraging both disease
and anatomical cues as supervisory signals for representa-
tion learning, we evaluate the transferability of LeADER’s
representations across six target tasks, including classifica-
tion on the ChestX-ray14, NIH Shenzhen, COVIDx, and
JSRT datasets, as well as segmentation on the SIIM-ACR
and ChestX-Set datasets. We compare LeADER against a
representative set of eight publicly available supervised and
self-supervised baselines, including fully-supervised Ima-
geNet and RadImageNet, as well as self-supervised models
PCRL [94], Adam [31], DiRA [26], DINO [8], Medical-
MAE [83], and LVM-Med [60]. As shown in Tab. 2,
LeADER consistently demonstrates significantly superior
transfer performance (p < 0.05) compared to both fully-
and self-supervised baselines across all downstream tasks.
Notably, our LeADER shows a significant performance im-
provement over Adam, its anatomical expert teacher, under-
scoring LeADER’s efficacy in capturing more discrimina-
tive features for disease detection through its integrated dis-

Method SIIM-ACR ChestX-Det
5% 10% 5% 10%

RadImageNet 54.56 61.48 64.22 67.10
PCRL 47.12 54.48 60.36 63.49
DiRA 42.44 48.27 61.63 64.86
DINO 47.85 52.08 46.84 52.64
Medical-MAE 60.54 61.05 66.86 67.31
Adam 52.47 65.82 64.30 65.80
LVM-Med 54.13 62.31 65.11 67.14
LeADER (Ours) 62.23 (↑1.69) 68.80 (↑2.98) 68.81 (↑1.95) 70.24 (↑2.93)

Table 3. Transfer learning in limited data regimes: LeADER
excels in limited labeled data regimes, highlighting its significance
for medical applications with scarce labeled data.

ease learning branch. Additionally, LeADER outperforms
multi-task learning (i.e. PCRL & DiRA) and knowledge
distillation (DINO & LVM-Med) baselines across all tasks.
These results suggest that LeADER serves as a comprehen-
sive representation learning framework adept at capturing
intricate pathological and anatomical information from im-
ages, thereby enriching visual representations to generalize
more effectively across various medical tasks.

5.5. LeADER enhances robustness in limited data
regimes

To demonstrate the robustness of representations learned
via LeADER in small data regimes, we examine transfer
learning using partially labeled data. We randomly sam-
ple different fractions (5% and 10%) of training data from
the SIIM-ACR and ChestX-Det datasets and fine-tune the
pretrained models under study on these training data sub-
sets. As shown in Tab. 3, LeADER provides superior per-
formance across all label fractions and downstream tasks.
Specifically, LeADER yields performance boosts of 1.69
and 2.98 in SIIM-ACR, and 1.95 and 2.93 in ChestX-Det
when using 5% and 10% of the training data, respectively.
These results underscore the superiority of our framework
in capturing more robust and generalizable representations,
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Figure 7. Ablation study on LeADER’s learning objectives:
integrating disease and anatomy branches significantly enhances
performance compared to using each individual branch.
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Figure 8. Ablation study on impact of anatomy branch on
anatomy understanding: anatomy branch plays a crucial role in
learning more discriminative anatomical representations.

paving the way for the development of more accurate mod-
els for medical tasks with a dearth of labeled data.

6. Ablation studies

Impact of LeADER’s learning branches. We investigate
the impact of each learning branch in LeADER by com-
paring the performance of individual branches with the uni-
fied model that incorporates both branches. We evaluate the
models via linear probing on the ChestX-Det and VinDR-
CXR datasets. As illustrated in Fig. 7, integrating both
branches significantly enhances performance across tasks
compared to the individual branches. Moreover, Fig. 8
demonstrates the impact of anatomy learning on enhanc-
ing LeADER’s anatomy understanding capabilities. These
results demonstrate the significance of anatomy learning in
conjunction with disease learning, which not only boosts
disease identification but also equips the model with dis-
criminative anatomical representation.
Comparison with ensemble methods. To demonstrate
the efficacy of our training strategy for learning entangled
anatomy-disease representation, we compare LeADER with
two baselines that ensemble the anatomy and disease ex-
pert models: (1) concatenation, which concatenates the rep-
resentations of expert teachers and uses them as input for
downstream tasks, and (2) averaging ensemble, which uses
each teacher individually for downstream tasks, followed
by averaging their outputs for a final prediction. Fig. 9
shows superiority of LeADER, highlighting the limitations
of these ensemble methods in generating entangled repre-
sentations essential for diagnosing various disorders.

14 thoracic diseases classification
[NIH ChestX-Ray14] 

COVID-19 classification
[COVIDx] 

AUC / % AUC / %

LeADER

Averaging Ensemble

Concatenation 

Figure 9. Comparison with ensemble methods: LeADER out-
performs simple ensemble of disease and anatomy teachers.

13 thoracic diseases segmentation
[ChestX-Det] 

Tuberculosis classification
[NIH Shenzhen] 

AUC / % IoU / %

MSE

Cross Entropy

Swin-B

ConvNeXt-B

AUC / % IoU / %

p-value= 2.2e-2 p-value= 1.9e-1

p-value= 3.4e-2 p-value= 1.5e-1

Figure 10. Ablation studies on (a) loss function (top-row) and (b)
architecture choice for LeADER’s backbone (bottom-row).

Impact of training loss function. We examine the impact
of the knowledge distillation loss function (ℓs) on down-
stream performance by comparing different distance met-
rics, specifically MSE and Cross Entropy. For compu-
tational efficiency, we train the models with LD on the
ChestX-ray14 dataset for 100 epochs. We evaluate the mod-
els via fine-tuning on two downstream tasks. As illustrated
in Fig. 10 (top-row), MSE loss yields superior performance
than Cross Entropy across downstream tasks.
Impact of architecture. We investigate the impact of ar-
chitecture choices on downstream performance by evaluat-
ing SOTA ConvNet and vision transformer backbones for
the student model, specifically Swin-B [52] and ConvNeXt-
B [53]. We use the same settings as the loss function abla-
tion study. Fig. 10 (bottom-row) shows the superiority of
Swin-B backbone over ConvNeXt-B.

7. Conclusion

We present LeADER, a framework that aims to offer
powerful representation with higher generalizability, ro-
bustness, and interpretability by training deep models to
comprehend medical images akin to human perception. The
major novelty of LeADER is learning entangled disease-
anatomy representation by distilling anatomical and patho-
logical information from two expert models via disease and
anatomy learning branches, enabling the collaborative and
simultaneous learning of anatomical and disease knowl-
edge, yet overlooked in existing supervised/self-supervised
learning methods. Our experiments demonstrate the effi-
cacy of LeADER in zero-shot, linear probing, and full fine-
tuning settings.
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