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Abstract

Neural networks are prone to be vulnerable to adversar-
ial attacks and domain shifts. Adversarial-driven methods
including adversarial training and adversarial augmenta-
tion, have been frequently proposed to improve the model’s
robustness against adversarial attacks and distribution-
shifted samples. Nonetheless, recent research on adver-
sarial attacks has cast a spotlight on the robustness lacuna
against attacks targeted at deep semantic layers. Our anal-
ysis reveals that previous adversarial-driven methods tend
to generate overpowering perturbations in deep semantic
layers, leading to distortion of the training for these lay-
ers. This can be primarily attributed to the exclusive uti-
lization of loss functions on the output layer for adversarial
gradient generation. This inherent practice projects an ex-
cessive adversarial impact on the deep semantic layers, ele-
vating the difficulty of training such layers. Therefore, from
the standing point of relaxing the excessive perturbations
in the deep semantic layer and diversifying the adversarial
gradients to ensure robust training for deep semantic lay-
ers, this paper proposes a novel Stochastic Loss Integration
Method (SLIM), which can be instantiated into the exist-
ing adversarial-driven methods in a plug-and-play manner.
Experimental results across diverse tasks, including classi-
fication and segmentation, as well as various areas such as
adversarial robustness and domain generalization, validate
the effectiveness of our proposed method. Furthermore, we
provide an in-depth analysis to offer a comprehensive un-
derstanding of layer-wise training involving various loss
terms.

1. Introduction

Recent advances in convolutional neural networks
(CNN) have enabled remarkable success in various com-
puter vision tasks, including classification, segmentation
and object detection [11,25,28]. Yet CNNs are prone to

be vulnerable against adversarial attacks [10,24] and out-
of-distribution (OOD) samples [12], which constrains the
broader application of deep learning. Consequently, ex-
tensive studies have been dedicated to improving models’
robustness against diverse input perturbations. Various de-
fense strategies, including loss regularization [16, 19, 22],
adversarial training (AT) [24, 30, 33], and data augmenta-
tion [13—15], have been proposed to defend against adver-
sarial attacks and OOD samples.

Among the aforementioned strategies, adversarial tech-
niques have consistently demonstrated their effectiveness.
These techniques encompass adversarial training [24, 30]
for countering adversarial attacks and adversarial augmen-
tation [29,35] to improve domain generalization. Adversar-
ial techniques tackle a min-max optimization problem in-
volving the loss function. In this process, they maximize the
targeted loss function by introducing perturbed gradients
into specific components, such as input images or feature
statistics. Subsequently, they minimize this targeted opti-
mization loss function by updating the model’s parameters
using gradient descent methods, which involve iteratively
adjusting model parameters to approach the loss function’s
minimum. The majority of these methods utilize the cross-
entropy (CE) loss or its variants for adversarial sample gen-
eration in training. However, recent research in adversarial
attack [31] has uncovered a vulnerability in models trained
using the aforementioned strategies. These models, while
being effective against certain adversarial attacks, struggle
to maintain robustness when confronted with attacks target-
ing the deep semantic layers of the network [17,31].

To uncover the underlying reasons behind this vulner-
ability, we conduct a detailed comparison of module-wise
traces of the Hessian matrix between a benign model and
the one that has undergone adversarial training. In most
cases, a lower trace of the Hessian matrix corresponds to a
flatter loss landscape. A trained model with a smooth loss
landscape often exhibits greater robustness and generaliza-
tion capabilities [0, | 8,37]. Based on the analysis presented
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Figure 1. Illustration of (a) vulnerabilities in models trained using traditional adversarial training (PGD-AT [24]) and (b) our proposed
solution towards addressing these vulnerabilities. (a) Module-wise trace of the Hessian matrix [6] computed as the second-order derivative
of the loss function w.r.t. the module parameters. The trace of the Hessian matrix serves as a sensitivity measurement reflecting the
module-wise flatness of the loss landscape [18,37]. (b) Comparison between adversarial gradients backpropagated from the output layer

and adversarial gradients obtained through our SLIM approach.

in Fig. 1(a), it is evident that adversarial training (i.e., PGD-
AT) leads to higher traces in the deep modules of the net-
work compared to those in a benign model. Paradoxically,
while adversarial training uses output layer losses to drive
the robust training, they create a robustness lacuna in the
deep semantic layers. This observation could potentially
serve as evidence for why adversarial learning ceases to be
effective in resisting semantic layer attacks (SLA) [23,31].

On the other hand, previous adversarial augmentation
methods [29,35,36] mainly leverage the cross-entropy loss
as the adversarial loss term to generate gradients in an aug-
mented feature or image space that is generalized to unseen
domains. However, OOD samples may result in various
shifted distributions within the feature space of the deep se-
mantic layer. Consequently, previous works have encoun-
tered limitations in achieving a comprehensive search space
for adversarial augmentation to encompass various types of
OOD samples.

In this paper, we undertake a comprehensive analysis
of limitations observed in prior adversarial-driven methods
that primarily rely on loss functions operating at the output
layer. The analysis uncovers the overpowering disruptions
in the deep semantic layer by adversarial training distort its
training. Subsequently, in the pursuit of relaxing the over-
powering noises in the deep semantic layer to ensure suffi-
cient training for deep semantic layers, we introduce an ap-
proach aimed at diversifying the generated adversarial gra-
dients, termed Stochastic Loss Integration Method (SLIM),
as illustrated in Fig. 1(b), which can seamlessly integrate
into various adversarial-driven methods in a plug-and-play
manner to further boost the performances.

Experimental results show that despite our SLIM being
simple, it records state-of-the-art performances when in-
stantiated in adversarial training and adversarial augmen-
tation methods. Investigations of the models’ clustering ef-
fect [17] and the trace of the layer-wise Hessian matrix [6]
provide further insights into how each layer of models is
affected in the training process. Our contributions can be
summarized as:

e We unveil that the invalidity of adversarial-driven
methods against semantic layer attacks stems from the
excessive distortion in the deep layers during adversar-
ial training.

* We introduce the Stochastic Loss Integration Method
(SLIM), which can be seamlessly integrated into ex-
isting adversarial-driven methods to further boost the
robustness performances. SLIM acts as a relaxation
mechanism for overpowering noise in deep layers, im-
proving the overall robustness of these layers.

» Experimental results demonstrate the effectiveness of
SLIM across diverse tasks and research domains.
Moreover, we provide interesting insights into layer-
wise training under adversarial-driven methods.

2. Related Work
2.1. Adversarial-driven Methods

Since the vulnerability of deep learning models against
adversarial attacks and OOD samples has been reported
[14,24], many works studied the robustness of the models
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and proposed several defense strategies. Among the vari-
ous strategies proposed, one of the most effective is known
as the adversarial-driven approach [24,30, 33, 36]. This ap-
proach can be further classified into two categories: adver-
sarial training, which focuses on defending against adver-
sarial attacks, and adversarial augmentation, which tackles
OOD samples.

Adversarial Training. Adversarial training is the most ef-
fective way of improving adversarial robustness by adapting
adversarial samples for training. Mady et al. [24] propose
to train the model to minimize the adversarial loss while
using PGD attack to maximize it. The vast majority of ad-
versarial training methods follow the same paradigm, but
train the model with different loss objective functions to
obtain better robustness performances. TRADES [33] min-
imizes the multi-class calibrated loss between the output of
the original image and that of the adversarial examples as
the surrogate loss function to substitute for cross-entropy
loss. MART [30] proposes to revisit the misclassified sam-
ples and optimize the misclassification-aware regularization
with the standard adversarial risk.

Adversarial Augmentation. Adversarial augmentation has
recently been investigated to help models obtain stronger
robustness against distribution-shifted samples. It intends
to apply data augmentation under the guidance of adver-
sarial gradients instead of randomness. Wang et al. [29]
develop the adversarial variant of AugMix [13], namely as
AugMax to adversarially mix multiple diverse augmented
images. Their method achieves a significant improvement
in OOD robustness compared to the random mixing of Aug-
Mix. Zhang et al. [35] formulate AdvStyle to explore a
larger augmentation space for feature-level style augmen-
tation with adversarially updating the statics control fac-
tors. Similar approaches have also been proposed [9, 36]
for cross-domain segmentation and few-shot domain gener-
alization.

2.2. Robustness Lacuna of Semantic Layer

Previous adversarial training methods mainly employ
loss functions in the output layer solely for adversarial gra-
dient backpropagation [24] but overlook the importance of
the deep semantic layer and intermediate layers. Notably,
Feature Scattering [32] generates adversarial examples by
maximizing the distances between the adversarial features
and the natural ones. Bai et al. [2] aim to suppress re-
dundant channel activations in intermediate layers by ad-
versarial examples. Recently, LAFEAT [31], an adversarial
attack targeting the semantic layers, revealed that the se-
mantic layer features can be effectively utilized for crafting
the adversary, indicating the existing robustness lacuna of
deep layers even for adversarial-trained models. However,
we observe that the majority of the adversarial robustness
works solely apply output layer attacks during training and

evaluation, but do not take deep semantic layer robustness
into consideration.

3. Layer-wise Adversarial Effect

Previous works in adversarial augmentation [29, 35, 36]
and the majority of works in adversarial training [24,30,33]
primarily employ output layer losses (OLL) compute back-
ward adversarial gradients. However, relying solely on out-
put layer losses would distort the training of the deep se-
mantic layer with overpowering noises in these layers, re-
sulting in a lacuna of robustness for various OOD samples
and adversaries.

Adversarial Samples. Recent adversarial training meth-
ods have gained significant improvement against adversar-
ial samples by modifying the loss functions on the output
layer [24, 30, 33]. Despite gaining robustness improvement
on the adversarial samples generated by adversarial gradi-
ent calculation from OLL, recent methods of adversarial
training suffer from attack samples targeting deep seman-
tic layer [31]. We reckon that this robustness lacuna of the
semantic layer comes from the overpowering distortion on
the semantic layer during adversarial training, resulting in
sufficient training for these layers. As OLL-driven adversar-
ial samples mainly affect features in the deep layers, solely
using these adversarial samples for training leads to a ro-
bustness lacuna in the deep semantic layer.

OOD Samples. On the robustness against OOD sam-
ples, recent adversarial augmentation methods [29, 35, 36]
utilize OLL losses solely to generate augmentation samples.
However, since OOD samples can be corrupted in various
ways, the effects specific to these samples may vary signifi-
cantly across the layers of a network. To this end, adversar-
ial augmentation is used to produce sufficient perturbations
in various layers of networks. However, adversarial aug-
mentation methods mainly perturb only shallow layers. As
opposed to adversarial training, these adversarial augmen-
tation methods have neglected the robustness of the deep
layers of neural networks.

Here, we observe how diverse adversarial attacks or ad-
versarial augmentation techniques impact various layers.
To assess the influence of these different adversarial tech-
niques, we measure cosine similarity between the features
of benign samples and that of the adversarial samples across
different layers to quantify the extent of the adversarial im-
pact.

As shown in Fig. 2, solely adopting OLL to generate ad-
versarial samples primarily leads to disruptions in the deep
semantic layer. However, as shown in Fig. 1, adversarial-
trained models have much higher trace values in the deep
layers with adversarial test samples. This indicates that
adversarial training mainly defends the model in the shal-
low layers, but leaves a robustness lacuna in the deep se-
mantic layers. As adversarial training consistently creates
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loss and cosine similarity loss to generate adversarial samples, respectively. The cosine similarity loss is adopted for the features in the

4-th layer.

Model / Attack PGD-20 LAFEAT SSA

PGD-CE AT 44.66 38.07 51.21
MART 48.13 41.12  49.89
PGD-CS AT 41.28 39.70  56.84

Table 1. Recognition accuracy of adversarially-trained models un-
der output-layer attack (PGD-20 [24]) and intermediate layers at-
tack (LAFEAT [31] and SSA [23]). PGD-CE and PGD-CS de-
note the PGD training using cross-entropy loss and cosine simi-
larity loss to generate adversarial samples, respectively. PGD-CE
and MART [30] employ output-layer losses for adversarial sample
generation and PGD-CS employs a semantic layer cosine similar-
ity loss function.

overpowering perturbations in the deep semantic layer, we
reckon that such excessive perturbations could distort the
robust training for the deep semantic layer.

As shown in Tab. 1, semantic layer attack achieves
a larger performance decline against PGD-trained models
compared with PGD-20, validating the existence of robust-
ness lacuna in the semantic layers for the adversaries. To
generate different perturbations from vanilla PGD (PGD-
CE) in the deep semantic space, we introduce a simple vari-
ant of PGD (PGD-CS), that employs the cosine similarity
loss of the features in the deep semantic layer instead of
cross-entropy loss at the output layer, to generate adversar-
ial training samples. In this case, PGD-CS aims to mini-
mize the cosine similarity between deep features from ad-
versarial samples and benign samples. As shown in Tab. 1,
by employing targeted perturbations on the deep semantic
layer, the PGD-CS AT trained model’s robustness against
intermediate-layer attacks is improved. This indicates that
inducing perturbations in the intermediate layers during the
training can improve robustness against intermediate-layer
attacks. This demonstrates that distracting the excessive
perturbations generated in the deep semantic layer during
adversarial training could lead to a semantic layer with

stronger robustness.

Meanwhile, it can be seen that despite using PGD-CE
AT could improve adversarial robustness against PGD ad-
versarial samples, there would be a corresponding decrease
in the adversarial robustness against semantic layer attack
(i.e LAFEAT and SSA). This indicates that evaluations on
adversarial robustness with solely PGD samples might not
be comprehensive.

4. Stochastic Loss Integration Method (SLIM)

With solely leveraging output layer losses (OLL) to gen-
erate adversarial gradients providing an overpowering ef-
fect in the deep semantic layers, we propose to introduce
an additional and random loss term functioned in the inter-
mediate layers to combine with OLL to calculate adversar-
ial gradients, namely as Stochastic Loss Integration Method
(SLIM). By combining losses functioned in the intermedi-
ate layers, SLIM could relax the noises in the deep layers
by affecting the calculation of the adversarial gradient, and
thus prevent the overpowering noises in the deep semantic
layers from distorting the training. It is worth noting that the
proposed method serves as a plug-and-play strategy that can
be seamlessly instantiated into methods in adversarial train-
ing and adversarial augmentation. However, for the sake of
clarity, we describe how our method is inserted into adver-
sarial training. To prevent overpowering noises generated in
the deep semantic layer, the proposed SLIM mainly has two
random elements: arbitrary functioned layers and stochastic
loss function metric.

Arbitrary layer selection for inducing perturbation.
Let feL be a neural network with L — 1 intermediate lay-

ers and parameter 6. z() and f(gl)(x) denote the input and
output of the /- th intermediate layer. It is worth noting that
all layers, excluding the final layer which outputs the prob-
ability vectors, are referred to as intermediate layers in the
former definition.
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To ensure a comprehensive exploration of perturbations
across various intermediate layers during the training pro-
cess, we randomly assign the [-th intermediate layer as the
target to adversarially induce perturbation.

Diversity enhancement for intermediate layer pertur-
bations. In order to empower the model with the abil-
ity to withstand a broad range of potential disruptions, an
additional loss term functioned on the chosen intermedi-
ate layer is randomly sampled from a formulated dictionary
D, with d,, various loss function metrics, including widely
used mean square error loss and cosine similarity:

Lymse —-Hfb( ) — fé(madv)”2
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Each time we generate adversarial samples, as shown
in Eq. 2, we employ both the task-specific OLL L (e.g.
cross-entropy loss) and the randomly selected intermediate
layer loss function L4 from Dy, for the computation of
adversarial backward gradients. To ensure a sufficient ex-
ploration of the adversarial augmentation space, we intro-
duce an additional mixing factor sampled from an uniform
distribution, i.e., A ~ U(—1,1) to control the respective
influences of the two loss components in generating adver-
sarial gradients.

£(L(i1) - £task(f9L(‘T)7 y) + A Edict(fé(x); fé(l,adv)) (2)

In the context of adversarial training, as shown in Eq. 3,
we iteratively update the input image x utilizing the adver-
sarial gradients generated by the adversarial loss combina-
tion defined in Eq. 2 for ¢4, times.
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To incorporate the proposed method into adversarial aug-
mentation or domain adversarial training, one will only
need to update the corresponding elements of the adversar-
ial loss combination (e.g. the control factor of feature statics
in adversarial feature-level style augmentation for domain
generalization [35]), rather than the input images, for ad-
versarial training.

5. Experiments

Experimental Setup. To validate the effectiveness of
the proposed method, we integrate it into diverse tasks
across two research domains: (i) cross-domain classifica-
tion and segmentation for domain generalization and (ii)
adversarial robustness evaluation for adversarial training.

Implementation Details. For domain generalization, re-
ported results in both multi-source and single-source do-
main generalization are averaged over three runs. We train
models for 120 epochs across all datasets. For adversar-
ial training, we set PGD as € = 8/255 and a =1/255 for
PGD-AT [24]. When integrating SLIM with other meth-
ods [30, 33, 36], models were trained for 200 epochs with
the same hyperparameter settings in the original literature.

For domain generalization, in both the multi-source
leave-one-domain-out and single-source domain general-
ization scenarios, we train with the Adam optimizer. In clas-
sification tasks on PACS [21], VLCS [8], OfficeHome [27],
CIFAR-10-C [12] and Terralncognita [3], the initial learn-
ing rate and batch size are set as 2e-4 and 64, respectively.
A cosine annealing schedule for adjusting the learning rate
is also applied. For the cross-domain segmentation task, we
follow the same hyperparameter setting with AdvStyle [35].

For adversarial training, we follow the attack setting and
learning rate used in previous methods [30, 33]. The batch
size is set as 64 across all the adversarial training experi-
ments and no data augmentation techniques are included.

5.1. Domain Generalization

In the area of domain generalization, we integrate the
proposed method into AdvStyle [35], which is a feature-
level adversarial style augmentation method for domain
generalization. To solidify the effectiveness of the proposed
method, we conduct experiments on the task of domain gen-
eralized classification and segmentation. We evaluate the
proposed method under both the leave-one-domain-out sce-
nario and the more challenging single-source domain gen-
eralization scenario.

For multi-source domain generalization, under the
widely adopted leave-one-domain-out setting, experiment
results are shown in Tab. 2. By integrating with SLIM, Ad-
vStyle can be further boosted across four different datasets
and two network architectures. Specifically, when conduct-
ing experiments with ResNet-18 [1 1], performances of Ad-
vStyle on the PACS and OfficeHome dataset can be further
improved by the margins of 3.12% and 2.24%, respectively.
For the more challenging single-source domain generaliza-
tion scenario, experiment results are shown in Tab. 3. When
integrated with the proposed SLIM, the performances of
AdvStyle can still be boosted across various datasets in the
two tasks of segmentation and classification, which further
validates the effectiveness and versatility of the proposed
SLIM.

5.2. Adversarial Training

In this section, we integrate the proposed method into
widely used adversarial training methods [24, 30, 33] and
evaluate the adversarial robustness against both output-layer
attacks (PGD [24], AutoAttack [5]) and intermediate-layer
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Method PACS VLCS OfficcHome Terralncognita Method Clean PGD-20 AutoAttack LAFEAT SSA
ResNet-18 ResNet-18 90.70 0.00 0.00 0.00 31.79
Baseline 79.68 - PGD-AT 84.07 46.63 38.07 38.68 51.21
FACTCVPR‘ZII 84.51 66.56 TRADES 84.97 49.66 45.34 40.08 50.78
StyleNeophilecvpr-22 85.47 - 65.89 MART 81.51  55.04 41.76 4112 49.89
COMENCcvpr'22 85.70  75.00 66.50 AWP 80.81 54.00 R - R
MVDGgccv 22 86.56 77.13 66.80
DSUscrxan o010 - 66.10 PGD-AT +SLIM | 8496  51.10 38.71 4367 63.76
TRADES + SLIM | 84.71 51.37 45.86 4391 68.73
AdvStyleuxiv s, Newrps22 | 83.00  74.86 66.48 43.32 MART + SLIM | 8225 5531 42.05 4446 5721
AdvStyle + SLIM 86.12  76.03 68.72 45.95 AWP + SLIM 82.06 54.33 R _ _
ResNet-50
DAC-Pcypro23 ‘ 85.60  77.00 69.50 45.80
AdvStyleyxivas, Newtps22 | 8472 75.89 67.94 4431 Table 4. Adversarial robustness evaluation on CIFAR-10 [
AdvStyle + SLIM 87.03  77.53 69.21 46.05 when the proposed SLIM is integrated with widely adopted adver-

1

Table 2. Experiment results of multi-source domain generalization
on classification under the leave-one-domain-out setting on PACS
[21], VLCS [&], OfficeHome [27] and Terralncognita [3].

Method Segmentation (mIoU) | Classification (Acc.)
GTAS — Cityscapes | PACS CIFAR-10-C
Baseline 37.0 46.6 74.2
pAdalN 38.7 51.7 76.4
MixStyle 38.8 51.7 76.6
DSU 40.3 53.7 76.6
AdvStyle 41.9 58.7 78.0
AdvStyle + SLIM 44.1 67.1 80.6

Table 3. Experiment results of single-source domain generaliza-
tion on classification and semantic segmentation. ResNet-101
(Deeplab v2), ResNet-18 and WideResNet-40-2 are adopted as the
baseline settings for segmentation from GTAS5 [26] to Cityscapes
[4] and classification in PACS [21] and CIFAR-10-C [12], respec-
tively.

attacks (LAFEAT [31], SSA [23]).

Tab. 4 describes the comparison of the adversarial ro-
bustness of the networks trained by various methods on
the CIFAR-10 dataset [20]. As shown in Tab. 4, the per-
formances of adversarial training methods can be further
boosted by integrating with the proposed SLIM in terms of
robustness against both output layer attacks and interme-
diate layer attacks. Specifically, the robustness of MART
has been improved by 1.15% and 3.34% in terms of ro-
bustness against PGD-20 and LAFEAT, respectively. The
experiment results of robustness against intermediate layer
attacks further demonstrate that the proposed method can
enhance the robustness of intermediate layers.

6. Analysis

In this section, we conduct an analysis of (1) the models’
clustering effect [17], (2) the average trace of the module-
wise Hessian matrix [6], (3) the model-wise convergence
minimum [34], (4) adversarial loss over-fitting phenomenon

sarial training methods, including PGD-AT [24], TRADES [33]
and MART [30].
Method Layer 1 Layer 2 Layer 3 Layer 4
Clean Test Set
PGD-AT 3224  39.71 57.02 77.82
PGD-AT + SLIM | 34.19 45.19 6198 77.94
AdvStlye 45.61 57.02  73.98 88.04
AdvStyle + SLIM | 48.28 62.32 80.18 92.16
PGD Adversarial Test
PGD-AT 2842 3231 35.66  22.26
PGD-AT + SLIM | 29.28 3531 4049 37.77
LAFEAT Adversarial Test
PGD-AT 26.33 29.70 32,52 28.17
PGD-AT + SLIM | 28.74 32.57 41.10 37.19
OOD Corruptions Test
AdvStyle 28.47 32.05 47.63 56.91
AdvStyle + SLIM| 30.98 36.65 5138 67.69

Table 5. Clustering accuracy of models for various test samples.

study and (5) scalability study of the loss dictionary Dy .
The clustering effect provides a measurement of the model’s
layer-wise resistance ability against perturbations. Mean-
while, the average trace of the module-wise Hessian matrix
and the model-wise parameter convergence minimum pro-
vide insights into the module-wise and model-wise smooth-
ness of the loss landscape, respectively.

6.1. Clustering Effect

Previous work [17] introduces the clustering effect as
a measurement of models’ class-wise resistance ability
against noises. In this section, we provide analysis from the
perspective of enhancing the clustering effect to improve
model robustness.

In this section, we compare the clustering effect accu-
racy of models trained with different methods under clean
test set, adversarial attacks and OOD samples. Experiment
results are shown in Tab. 5. Intuitively, a higher clustering
effect accuracy indicates a stronger robustness of interme-
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Figure 3. Trace of the module-wise Hessian matrix when testing with clean test set and PGD-20 adversarial samples. A lower trace value

indicates a smoother loss landscape.

diate layers in resisting diverse perturbations. As shown in
Tab. 5, models trained with the proposed method manifest
a stronger clustering effect. Specifically, when undertak-
ing intermediate-layer attacks of LAFEAT, clustering accu-
racy in the 3rd layer of our model significantly outperforms
vanilla PGD-AT with a margin of 8.58%. As the integration
of SLIM could achieve a stronger clustering effect across
various methods, one can observe the effectiveness and uni-
versal applicability of the proposed method in improving
layer-wise robustness.

6.2. Flatter Minimum

To study whether integrating with the proposed method
can lead the convergence of the model to a flatter minimum,
we follow Zhang et al. [34] to conduct the experiments of
injecting Gaussian noise into the trained model weights.
Fig. 5 shows the test accuracy for the cases that Gaus-
sian noise is injected into the models’ parameters. Since the
PGD AT model integrated with the proposed method can re-
sist stronger perturbations in the parameters before collaps-
ing, we can conclude that PGD AT model integrated with
SLIM achieves flatter minima in the weight space. Since it’s
universally acknowledged that a flatter minimum guaran-
tees stronger robustness and generalization ability, models
trained with adversarial-driven strategies integrated with the
proposed method can obtain stronger robustness and gener-
alization ability.

6.3. Average Trace of Module-wise Hessian Matrix

In this section, we investigate the average trace of the
module-wise Hessian matrix of the model’s parameter,
which is the second-order derivative of the loss function
w.r.t. the model’s parameters. The average trace of the Hes-
sian matrix can provide insights into the local geometry of

the loss landscape as a sensitivity metric [6]. It is widely
acknowledged that a lower trace of the model indicates a
smoother local loss landscape, representing stronger robust-
ness and generalization ability [18,37]. Following Dong et
al. [7], we compute trace information using Hutchinson’s
algorithm [1]. Clean test samples and adversarial samples
are leveraged for calculation separately.

As shown in Fig. 3, (i) Compared with adversarial train-
ing, adversarial training protocol can obtain lower traces in
the shallow layers than the naive training methods, but it
suffers from a significant rise in the deep layer. (ii) In both
testing scenarios, lower traces of the Hessian matrix for the
deep semantic layers are obtained by PGA AT with SLIM
compared with vanilla PGD AT, indicating that the gener-
ated relaxed perturbations at the deep semantic layers can
indeed help these layers converge to a relatively smoother
loss landscape. (iii) In the deep layer, the vanilla PGD AT
model obtains much higher traces than the others, indicating
that the vanilla adversarial training method mainly impacts
the robustness of the shallow layers but leaving a robustness
lacuna in the deep layer.

6.4. Overfitting to the Adversarial Loss

Jin et al. [17] conduct the experiments of calculating
the cosine similarity between the intermediate-layer gradi-
ent versus the shift caused by the generated perturbation, to
demonstrate that the adversarial gradients are overfitted to
the applied output layer loss.

Following Jin et al. [17], we conduct the same experi-
ments in Fig. 4. As shown in Fig. 4, by integrating with
the proposed SLIM, numerical oscillation of cosine similar-
ity between features shift and the adversarial gradients will
occur later compared with the vanilla PGD and TRADES.
This indicates that the proposed SLIM can prevent the ad-
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Figure 4. Layer-wise cosine similarity between the intermediate layer adversarial gradient and the feature shift caused by the generated
perturbations. Experiments are conducted on the CIFAR-10 [20] with ResNet-18 [11].
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noise injected into the models’ parameters.

versarial gradients from overfitting to the applied loss com-
binations. Meanwhile, it can be seen that SLIM could mod-
erate the overpowering noises in the deep layer, serving as
a relaxation to the excessive distortion during adversarial
training.

6.5. Scalability of Loss Dict D,

We provide an ablation study on the formulated loss
functions included in the loss dictionary Dy, . For the sake
of clarity, only three loss functions are included for all the
experiments conducted in this paper, including MSE loss,
orthogonal loss and reverse loss as shown in Eq. 1.

Since a larger loss dictionary can bring more diversified
perturbations, we conduct an ablation study on the single-
source domain generalization of classification on PACS to
validate the high scalability of the proposed method. As
shown in Tab. 6, performances on the cross-domain classi-
fication integrated with AdvStyle [35] decline when remov-
ing pre-defined loss functions in the loss dictionary, indicat-

Loss Dictionary Setting | PACS

Dy, 86.12

an without Lysg 85.46

Dd” without Loyno 85.39

Dg,, without Lreyerse | 85.02

Table 6. Ablation study of the formulated loss functions in the
loss dictionary Dg,, on the PACS dataset for single-source domain
generalization classification.

ing that the diversity of the generated perturbations in the
intermediate layers can help improve the layer-wise robust-
ness and generalization ability. Considering the extension-
friendly features of the loss dictionary, with more loss func-
tions appended, our method may boost the performances of
the existing adversarial-driven methods even further.

7. Conclusion

In this paper, we provide an analysis of the robustness
lacuna of deep semantic layers from the perspective of ad-
versarial effect, indicating the overpowering perturbations
in the deep semantic layers brought by previous adversarial
techniques could distort the training for these layers. There-
after, to ensure the robustness of the deep semantic layers,
we propose SLIM, the stochastic loss integration method,
which can integrate into previous adversarial-driven meth-
ods of adversarial robustness and domain generalization to
further boost the performances. Experiment results of do-
main generalization and adversarial training demonstrate
the effectiveness and versatility of the proposed SLIM.
Based on our SLIM, we further provide insights into layer-
wise adversarial training.
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