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Abstract

Without access to the original training data, data-free
quantization (DFQ) aims to recover the performance loss
induced by quantization. Most previous works have focused
on using an original network to extract the train data in-
formation, which is instilled into surrogate synthesized im-
ages. However, existing DFQ methods do not take into
account important aspects of quantization: the extent of a
computational-cost-and-accuracy trade-off varies for each
image, depending on its task difficulty. To handle such vary-
ing trade-offs, several efforts have been made to dynam-
ically allocate bit-widths for each image. Such dynamic
quantization, however, remains challenging and unexplored
in the data-free domain, because synthesized images of pre-
vious works fail to possess properties in natural test images
that are crucial for learning the appropriate dynamic al-
location policy: difficulty, its diversity, and its plausibil-
ity. By contrast, we propose a data-free quantization frame-
work that is dynamic-friendly, by modeling varying extents
of task difficulties with plausibility. We generate plausibly
difficult images with soft labels, whose probabilities are al-
located to a group of similar classes. Images with diverse
and plausible difficulties enable us to train the framework
to dynamically handle the varying trade-offs. Consequently,
our framework achieves better accuracy-complexity Pareto
front than existing data-free quantization approaches.

1. Introduction

Recently, there has been a burst of interest in method-

ologies to improve the efficiency of neural networks. One

of them is network quantization, which aims to reduce the

bit-widths of weights or activation values. Among diverse

lines of research in network quantization, quantization-

aware training successfully obtains efficient networks with-

out sacrificing accuracy by fine-tuning a network after quan-

tization with the original training data [11, 17, 18, 48].

*equal contribution

However, due to growing concerns on data privacy and

security, the original training data are often inaccessible in

real-world applications such as medical, military, and in-

dustrial domains [19, 37]. This raises a demand for quan-

tization without the original training data, referred to as

data-free quantization (DFQ). Recent works on DFQ aim

to generate useful pseudo data by extracting and utilizing

the knowledge of the train data concealed in the original

pre-trained network, such as running statistics stored in the

batch normalization layers [4, 7, 36, 46]. Then, they use the

synthesized data to update the quantized network.

Yet, existing methods on DFQ overlook a crucial aspect

of quantization: the trade-off between computational cost

and accuracy varies for each image. Despite the fact that

adopting different bit-width for images of different task dif-

ficulties, referred to as dynamic quantization, allows a bet-

ter trade-off [15, 28, 39], existing methods adopt the same

bit-width for all images. Nevertheless, the realization of

such image-wise bit-width allocation is challenging without

the assistance of the original training data. Natural test im-

ages are largely diverse in terms of classification difficulty;

some images are easy to classify while others are confusing,

making it hard to predict the top class from other similar

classes. Thus, to allocate appropriate bit-widths for natural

test images, the quantized networks should be trained with

difficulty-varying samples (ranging from easy to difficult)

beforehand. Unfortunately, existing works [4, 36, 46, 47]

fail to generate such data, either by focusing only on easy

images or by producing implausibly difficult images that

mix irrelevant classes (e.g., apple and truck), which are

not confusing to trained networks, as shown in Fig. 1.

Consequently, this leads to a failure in dynamic quantiza-

tion, where computational resources are not effectively dis-

tributed across images; more resources should be allocated

to images more in need, in other words, difficult images.

On this basis, we propose the first data-free quantiza-

tion framework, dubbed DDPQ, that considers difficulty

with respect to diversity and plausibility thereof to fully ex-

ploit the benefits from dynamic quantization. As discussed

above, the difficulty diversity (ranging from easy to diffi-
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Figure 1. Diverse difficulty and plausible difficulty in generated synthetic data of data-free quantization methods. Our approach

generates more diverse synthetic data in terms of classification difficulty. Also, the difficult images produced by our approach are plausibly
difficult for the classification network, in other words, are confusing between similar classes (e.g., apple and orange). Below are sampled

labels that guide the generation of an apple class image. Synthetic data for CIFAR-100 are produced using ResNet-20. Diversity and

plausibility in difficulty are essential properties the synthetic data should exhibit to help learn the dynamic assignment of bit-widths.

cult) is needed for the network to learn how to allocate com-

putational resources according to the difficulty. Further-

more, the plausibility of difficulty (e.g., car vs. truck) needs

to be modeled such that the learned quantization scheme can

be generalized to real images. To formulate both aspects

in our image synthesis, we make use of readily available

information: class similarity. Without access to the orig-

inal dataset, class similarity information can be extracted

from the classification layer of the original pre-trained net-

work (i.e., the more similar the weights are, the more sim-

ilar corresponding classes are), as illustrated in Fig. 2. Us-

ing the class similarity, we can achieve both difficulty di-

versity and plausibility by synthesizing images whose soft

label weights are randomly allocated among similar classes.

Then, the generated images and soft labels are used to

train the dynamic quantization network that adopts different

layer-wise bit-widths for each image. Simply minimizing

original cross-entropy loss functions will encourage the net-

work to maximize accuracy, choosing the highest bit-width.

To better handle the trade-off, we use a bit regularization

loss that penalizes the computational resources (bit-FLOPs)

of the dynamically quantized network.

The experimental results demonstrate the outstanding

performance of DDPQ across various image classification

networks, underlining the importance of diverse and plau-

sible difficulty for sample generation in bridging the gap

between dynamic quantization and data-free quantization.

2. Related Works

2.1. Data-free quantization (DFQ)

Network quantization has led to a dramatic reduction in

computational resources without much compromise of net-

work accuracy [2, 6, 8, 18, 22, 33, 48]. However, the aris-

ing concerns regarding data privacy and security have led to

the lack of the access to the original training data [19, 37],

which motivated the community to investigate network

quantization methods that do not require the original train-

ing data, namely, DFQ. Nagel et al. [29] first propose to di-

rectly adapt the weights of the pre-trained model to reduce

the quantization error, followed by different post-training

quantization methods [1, 12, 44]. Subsequent works fine-

tune the quantized network with synthetic data generated

via random sampling [4] or from generative models [27,36]

to match the statistics of the pre-trained network.

The recent focus of DFQ methods is to generate syn-

thetic samples that better match the real data. In specific,

Zhang et al. [46] aim to better mimic the feature statis-

tics of the real data, Zhong et al. [47] preserve the intra-

class heterogeneity, and He et al. [14] apply ensemble tech-

nique to several compressed models to produce hard sam-

ples. More recently, Choi et al. [7] synthesize additional

boundary-supporting samples, and Li et al. [24] focus the

generation process on hard-to-fit samples, which are sam-

ples with low predicted probability on ground truth labels.

Furthermore, Chen et al. [5] use a mixup knowledge distil-

lation module to diversify synthetic samples.

However, these methods either neglect that the real data

samples exhibit greatly different classification difficulties or

neglect the semantic relationship between classes for diffi-

cult samples. In contrast, we generate samples of different

difficulties with plausibility by considering the similarity

between classes, which we find to be beneficial for dynam-

ically allocating bit-widths for various samples.

2.2. Dynamic inference

Different input images encounter different task difficul-

ties (i.e., they have different minimum required computa-

tional resources for processing). Accordingly, the dynamic

computational resource adaptation for different input im-
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ages has been widely studied in computer vision tasks via

controlling the quantization bit-width [15, 16, 28, 39], or

number of channels [30, 40], convolutional layers [21, 26,

41–43]. Dynamic quantization has been recently investi-

gated, as it grants a better trade-off between accuracy and

computational complexity. Specifically, Li et al. [28] effec-

tively allocate bit-widths to different inputs and layers on

image classification task. Dynamic bit allocation has also

been proven effective on other tasks, such as video recogni-

tion [38] and image restoration [15, 39].

However, these approaches require the training of dy-

namic networks with the original or even additional training

dataset. Unfortunately, these datasets are not always avail-

able in real-world applications. To cope with such issues,

we present a practical solution to achieve dynamic quanti-

zation without access to the original training dataset.

3. Background
In the following sections, we introduce the general pro-

cedure for data-free quantization (Sec. 3.1) and dynamic

quantization network (Sec. 3.2) and then elaborate on our

DDPQ. To fully exploit the benefits of dynamic quantiza-

tion, we first generate fake images with diverse levels of dif-

ficulty. Also, we guarantee that generated difficult images

are plausibly difficult, in other words, confusing between

relevant classes (Sec. 4.1). Then, to achieve a better trade-

off between computational resources and accuracy, we en-

courage the dynamic quantization network to assign higher

bit-widths to images in need (Sec. 4.2). Our overall genera-

tion scheme is summarized in Algorithm 1.

3.1. Data-free quantization (DFQ)

DFQ aims to obtain an accurate quantized network Q
from a pre-trained floating-point (FP) 32-bit network P
without the assistance of the original training data. DFQ

approaches [4, 24, 46, 47] commonly adopt a two-stage ap-

proach: (1) synthetic data generation and (2) quantization-

aware training with the synthetic data. First, synthetic data

pairs {Ii,yi}Ni=1 are initialized by randomly initializing a

synthetic image Ii with Gaussian noise and its label yi as

arbitrary class (i.e., one-hot label). Then, synthetic images

are generating by optimizing the following objective:

LG =
1

N

N∑
i=1

(Lce(P(Ii),yi) + Lbns(Ii)), (1)

where the first term Lce is the cross-entropy loss that guides

each Ii to follow its label yi w.r.t. P . The second term Lbns

encourages the intermediate statistics (mean and standard

deviation) produced by P to match the statistics stored in

the batch normalization (BN) layers of P .

Subsequently, the obtained synthetic samples are used to

fine-tune the quantized network Q. Q is derived by quantiz-

ing weights and features of convolutional layers of P . The

input feature X of each convolutional layer is quantized to

Xq with bit-width b by

Xq ≡ qb(X) = �clamp(X, l, u)− l

s(b)
� · s(b) + l, (2)

where s(b) = (u− l)/(2b − 1), l and u are learnable scale

parameters. First, clamp(·, l, u) truncates X into the range

of [l, u] and then scaled to [0, 2b − 1]. The features are then

rounded to the nearest integer with �·�, and the integers

are re-scaled back to range [l, u]. Following the common

practice [24, 47], we use a layer-wise quantization function

for features and a channel-wise quantization function for

weights. The quantization parameters l, u, and the weights

of Q are trained by the optimization as follows:

LQ =
1

N

N∑
i=1

(Lce(Q(Ii),yi) + Lkd(P(Ii),Q(Ii))), (3)

where Lkd is Kullback-Leibler divergence loss.

3.2. Dynamic quantization

To adaptively allocate bit-widths to input images, most

existing works [15, 28, 39] set multiple quantization bit-

width candidates for each quantization function. Then, a

bit selector is used to predict the image-wise probability for

each candidate bit-width, where the bit-width of the highest

predicted probability is selected during inference. We adopt

commonly used MLP architecture as the bit selector mod-

ule for bit-width candidates {bm}Mm=1, where we set M = 3
in this work. To minimize the additional overhead, we use

a lightweight bit selector that consists of a two-layer MLP

followed by a Softmax operation, following Liu et al. [28]:

pbm(X) = Softmax(MLP(X)), (4)

where MLP consists of an average pooling layer followed

by two fc layers with a dropout layer in between. During in-

ference, for each input image and layer, a quantization func-

tion of bit-width with the highest probability is selected.

Since selecting the max probability is a non-differentiable

operation, we use a straight-through estimator [3] to make

the process differentiable:

Xq =

{
argmaxqbm (X)pbm forward,∑M

m qbm(X) · pbm(X) backward.
(5)

Also, as dynamic quantization for weights requires storing

the weight of the largest bit candidate, which occupies a

large storage, we apply a bit selector to choose bit-widths

for activations only. In this work, we train our bit selector

using the synthetic images and labels, in order to learn the

bit-width allocation policy for each layer and image without
access to the original training dataset.
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(a) Easy/difficult sample (b) Classification weight similarity (c) Class co-occurrences in prediction

Figure 2. Motivation of class similarity-based generation. (a) While the prediction output of an easy sample is nearly one-hot, that of

a confusing sample is a soft distribution over similar classes. (b-c) Similar classes can be obtained without access to the original data by

measuring the similarity between pre-trained classification weights. The measured similarity is correlated to the class co-occurrences in

the prediction of the original data. For simplicity, we visualize five retriever classes of ImageNet.

4. Proposed Method
4.1. Plausibly and diversely difficult data generation

Difficulty. It is acknowledged that different images have

different quantization sensitivities [15,28,39], which can be

defined as the degree of quantization at which the correct

prediction can remain intact. Samples whose predictions

remain accurate even after intense (low-bit) quantization

are considered less sensitive to quantization. Intuitively,

allocating higher bit-widths to quantization-sensitive sam-

ples can lead to finding a better trade-off between efficiency

and accuracy. However, directly measuring the quantization

sensitivity is practically infeasible, as it requires multiple

inferences of each sample with different bit-width networks

that are separately trained. Instead, since quantization sen-

sitivity is related to the classification difficulty of samples,

we estimate quantization sensitivity by means of classifica-

tion difficulty. The classification difficulty can be modeled

with entropy [9], which is used to estimate the uncertainty

of the model prediction. In this work, we measure entropy

to monitor the difficulty of the generated samples.

Difficulty diversity. To effectively allocate bit-widths to

images, we are motivated to generate pseudo images with

diverse levels of difficulties. One simple approach to di-

versify the difficulty in the generated pseudo data is to as-

sign a randomly sampled soft label to an image instead of

an arbitrary class y [7, 47]. However, simple random sam-

pling does not provide a control over the diversity of diffi-

culty. Furthermore, it does not take realistic difficulty into

account, unable to guide the dynamic quantization frame-

work to effectively allocate resources for new real images.

Difficulty plausibility. To generate data that facilitate the

training of dynamic quantization framework, it is impor-

tant to generate images whose difficulties are plausible (i.e.,

similar to real images). According to our observation in

Fig. 2a, the prediction of images in the original data re-

flects the relations between classes; a difficult sample for the

classification network is confusing between similar classes.

Thus, our goal is to assign the images with soft labels that

consider the similarity between classes. To obtain the sim-

ilarity between classes without access to the original data,

we exploit the classification layer of the original pre-trained

network, as each class weight vector is regarded as a use-

ful estimated prototype of the class [34]. To validate our

assumption that class weight similarity can be used to mea-

sure the similarity between classes of the original data, we

compare the similarity of two class weight vectors and the

actual co-occurrences of the two classes in the prediction

output of the original data. As visualized in Fig. 2, the sim-

ilarity matrix of class weights and class co-occurrences are

closely correlated. Thus, we formulate the similarity be-

tween j-th class and k-th class as follows:

S(j, k) = Wj ×W T
k , j, k = 1, ..., C, (6)

where W denotes the weight vectors of the classification

layer and Wj denotes the weight vector that corresponds

to the j-th class. Motivated by the previous observations,

we assign the probability scores of soft labels only to top-

K similar classes, obtained using the similarity in Eq. (6).

Given an arbitrarily sampled class y for the i-th synthetic

image Ii, the soft label yi ∈ R
C is formulated as follows:

yi,k =

{
zk if S(y, k) ∈ top-K({S(y, 1), · · · , S(y, C)}),
0 else,

(7)

where yi,k is the k-th probability value of yi and the prob-

ability score z = [z1, z2, · · · , zK ]T are randomly sampled

from Dirichlet distribution z ∼ Dir(K,α), in which simply

set α as 1. The difficulty of each sample can be controlled

by K and the entropy of the assigned soft label. For in-
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stance, if an image is assigned with a soft label with high

entropy and large K, the image will likely be optimized to

be confusing between many similar classes, making it a dif-

ficult sample. To generate images of diverse difficulty, we

randomly sample the soft label for similar classes, and we

generate r ratio of samples optimized with top-K similar

classes and 1-r ratio of samples with top-1 class, with a

diversifying ratio hyper-parameter r. Overall, the synthetic

images are optimized with the objective function as follows:

LG =
1

N

N∑
i=1

(Lbns(Ii) + βLce(P(Ii),yi)), (8)

where β balances the losses. Given diverse, plausibly diffi-

cult and easy images, we can now facilitate the training of

dynamic quantization framework.

4.2. Quantization-aware training

Bit regularization loss. We train the bit selector and the

quantized network Q using the synthesized plausibly and

diversely difficult training pairs {Ii,yi}Ni=1. Solely mini-

mizing the original cross-entropy loss function can lead the

bit selector to choose the highest bit-width to maximize the

accuracy. Thus, to find a better balance between computa-

tional cost and accuracy, the total bit-FLOPs selected by the

bit selector are regularized, such that:

Lbr =
1

N

N∑
i=1

max(
BQ(Ii)
Btar

, 1), (9)

where BQ(·) is the total bit-FLOPs of the quantized net-

work Q assigned to each synthetic image Ii, which is cal-

culated as the weighted number of operations by the weight

bit-width and the activation bit-width. The assigned bit-

width of each feature is determined by argmaxbm
pbm(X)

from Eq. (5). Also, N denotes the mini-batch size, and Btar

is the target bit-FLOPs. In this work, we set Btar as the bit-

FLOPs of the fixed {5,4}-bit model to compare with exist-

ing methods. The overall objective function of the data-free

dynamic quantization framework is:

LQ = γLbr +
1

N

N∑
i=1

(Lce(Q(Ii),yi) + Lkd(P(Ii),Q(Ii))),

(10)

where γ is a hyper-parameter that balances the bit regular-

ization loss with the other loss terms.

5. Experiments
In this section, the proposed framework DDPQ is eval-

uated with various image classification networks to vali-

date its effectiveness. We first describe our experimental

Algorithm 1 Data generation process of DDPQ

Input: Pretrained FP 32-bit network P , iterations T .

Output: Synthetic data pair {Ii,yi}Ni=1.

for i = 1, · · · , N do
Randomly sample class y
Obtain top-K similar classes of y with Eq. (6)

Given similar classes, assign soft label yi with Eq. (7)

Initialize Ii ∼ N (0, 1)
for t = 1, · · · , T do

Given yi and Ii, calculate LG with Eq. (8)

Update Ii by minimizing LG

settings (Sec. 5.1) and evaluate our framework on CIFAR-

10/100 (Sec. 5.2) and ImageNet dataset (Sec. 5.3). Then,

we present ablation experiments (Sec. 5.4) and visualization

results (Sec. 5.5) that demonstrate the effect of our scheme.

5.1. Implementation details

Models. To validate the flexibility of our framework,

we perform evaluation with the representative classifica-

tion models, ResNet-20 [13], ResNet-18 [13], and Mo-

bileNetV2 [35] using CIFAR-10/100 [23] and ImageNet

(ILSVRC12) [10] datasets. For the dynamic bit-width al-

location, the bit selector is located after the first two con-

volutional layers of the network, which are quantized with

a fixed bit-width, the highest bit among the M candidates

(i.e., bM ). In this work, to compare with the fixed 5-bit

quantization methods, we set the bit-width candidates near

the comparison bit, namely {4,5,6}. Experiments on dif-

ferent bit-width candidates are provided in the supplemen-

tary material. Quantization of each bit-width is done using

the simple asymmetric uniform quantization function with

scale parameters following [17, 24, 36, 47].

Generation details. All our experiments are imple-

mented using PyTorch [31]. For data generation, synthetic

images are updated for 4,000 iterations with a batch size

of 64 using the Adam [20] optimizer with a learning rate

of 0.5 decayed by the rate of 0.1 when the loss stops de-

creasing for 100 iterations. A total of 5,120 images are

generated for both CIFAR-10/100 and ImageNet, which is

highly lightweight compared to the original dataset (e.g.,

∼1,000,000 images for ImageNet). For hyperparameters,

we set β=0.1, K=2 and r=0.5.

Training details. For the dynamic bit-width allocation,

the bit-selector is initialized to output the highest proba-

bility for the target bit-width (e.g., 5-bit for ∼5 mixed-

precision (MP)). Using the 5,120 synthetic images and soft

labels, we fine-tune our dynamic quantization framework

for 400 epochs with a batch size of 256 for CIFAR-10/100
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Method G. Bit-width Bit-FLOPs (%) Top-1 (%)

Baseline - 32 100.00 94.03

Real Data - 5 3.52 93.96

GDFQ (ECCV’20) � 5 3.52 93.38

Qimera (NeurIPS’21) � 5 3.52 93.46

AdaDFQ (CVPR’23) � 5 3.52 93.81

ZeroQ (CVPR’20) � 5 3.52 91.38†

DSG (CVPR’21) � 5 3.52 92.73

IntraQ (CVPR’22) � 5 3.52 92.78

HAST (CVPR’23) � 5 3.52 93.43†

DDPQ (Ours) � ∼5 MP 3.47±0.06 93.87±0.07

Real Data - 4 2.62 91.52

SQuant (ICLR’22) - 4 2.64 92.24

GDFQ (ECCV’20) � 4 2.62 90.25‡

Qimera (NeurIPS’21) � 4 2.62 91.26

AdaDFQ (CVPR’23) � 4 2.62 92.31

TexQ (NeurIPS’23) � 4 2.62 92.68

ZeroQ (CVPR’20) � 4 2.62 84.68‡

DSG (CVPR’21) � 4 2.62 88.74‡

GZNQ (CVPRW’21) � 4 2.62 91.30‡

IntraQ (CVPR’22) � 4 2.62 91.49‡

HAST (CVPR’23) � 4 2.62 92.36

DDPQ (Ours) � ∼4 MP 2.60±0.01 92.76±0.05

(a) Results on CIFAR-10

Method G. Bit-width Bit-FLOPs (%) Top-1 (%)

Baseline - 32 100.00 70.33

Real Data - 5 3.52 70.05

GDFQ (ECCV’20) � 5 3.52 66.12

Qimera (NeurIPS’21) � 5 3.52 69.02

AdaDFQ (CVPR’23) � 5 3.52 69.93
ZeroQ (CVPR’20) � 5 3.52 65.89†

DSG (CVPR’21) � 5 3.52 67.65

IntraQ (CVPR’22) � 5 3.52 68.06

HAST (CVPR’23) � 5 3.52 69.00†

DDPQ (Ours) � ∼5 MP 3.44±0.01 69.74±0.03

Real Data - 4 2.62 66.80

SQuant (ICLR’22) - 4 2.64 63.96

GDFQ (ECCV’20) � 4 2.62 63.58‡

Qimera (NeurIPS’21) � 4 2.62 65.10

AdaDFQ (CVPR’23) � 4 2.62 66.81

TexQ (NeurIPS’23) � 4 2.62 67.18

ZeroQ (CVPR’20) � 4 2.62 58.42‡

DSG (CVPR’21) � 4 2.62 62.36‡

GZNQ (CVPRW’21) � 4 2.62 64.37‡

IntraQ (CVPR’22) � 4 2.62 64.98‡

HAST (CVPR’23) � 4 2.62 66.68

DDPQ (Ours) � ∼4 MP 2.56±0.01 67.58±0.25

(b) Results on CIFAR-100
† reproduced using the official code ‡ cited from [47]

Table 1. Results of ResNet-20 on CIFAR-10/100. Bit-FLOPs

(%) show the relative bit-FLOPs compared to the FP baseline

ResNet20 (42.20G). We measure the average bit-FLOPs for 32 ×
32 sized images. G. indicates generator-based methods.

and 150 epochs with a batch size of 16 for ImageNet. The

parameters are updated with an SGD optimizer with Nes-

terov using an initial learning rate of 10−5 decayed by 0.1

every 100 epochs for CIFAR-10/100 and 10−6 decayed ev-

ery 30 epochs for ImageNet. The bit selector parameters are

updated similarly but with the initial learning rate of 10−3

and 10−4 for CIFAR-10/100 and ImageNet. To balance dif-

ferent loss terms in Eq. (10), γ is set to 100 throughout the

experiments. Also, during training, we observe that the easy

samples are learned quickly by the dynamic quantization

framework, giving minimal contribution to the training af-

terward. Thus, inspired by previous approaches [25,45], we

additionally adopt mixup to easily fit samples (i.e., samples

with lower cross-entropy loss at saturation). We blend two

easily-fit images to generate a hard-to-fit image. We apply

Mixup finetuning from 50% training epochs to p% of sam-

ples with low cross-entropy loss, where we set p as 25%.

5.2. CIFAR-10/100

To evaluate the efficacy of our proposed framework, we

compare the results with the existing data-free quantiza-

tion methods on CIFAR-10/100 [23] with a representative

classification network, ResNet-20 [13]. Specifically, we

compare DDPQ with the early DFQ method (ZeroQ [4],

GDFQ [36]) and more recent noise optimization-based

methods (DSG [46], GZNQ [14], IntraQ [47], HAST [24]).

Also, we compare our framework with generator-based

methods (Qimera [7], AdaDFQ [32], TexQ [5]) even though

these methods utilize additional generator network during

training. The accuracy of previous arts are obtained from

papers or models reproduced with official codes. To make a

fair comparison between existing approaches that allocate a

fixed universal bit-width and our dynamic mixed bit-width

approach, we compare frameworks with respect to the aver-

age bit-FLOPs consumed on the validation set. As shown in

Tab. 1, DDPQ achieves state-of-the-art accuracy on CIFAR-

10 even with fewer bit-FLOPs (Tab. 1a) and achieves the

best or second best accuracy on CIFAR-100 with fewer bit-

FLOPs (Tab. 1b). Notably, in several settings, our data-free

method outperforms the results of the original data, which

demonstrates the superiority of our difficulty-diverse data

and that dynamic quantization using our data allows a bet-

ter complexity-accuracy trade-off.

5.3. ImageNet

We evaluate our framework on a further large-scale

dataset, ImageNet [10], on widely adopted classification

models: ResNet-18 [13] and MobileNetV2 [35]. As shown

in Tab. 2a, compared to other DFQ methods on ResNet-18,

our framework uses fewer bit-FLOPs and still achieves sim-

ilar or better accuracy. We note that our approach achieves

high accuracy without utilizing an additional generator net-

work to synthesize images. According to Tab. 2b, on Mo-

bileNetV2, DDPQ achieves the highest or second highest

accuracy with a similar amount of bit-FLOPs. Overall, our

data-free dynamic framework reduces the accuracy gap with

the network trained using the original ImageNet dataset.
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(a) K=2, r=0.5 (b) K=2, r=1.0 (c) K=3, r=0.5 (d) K=3, r=1.0 (e) K=10, r=0.5

Figure 3. Classification difficulty distribution of synthetic data using different K and r for ImageNet using ResNet-18.

5.4. Ablation study

Effect of our data generation. To further verify the ef-

fectiveness of our generated samples, we conduct an ab-

lation study on our generation scheme that promotes di-

verse difficulty and plausible difficulty. As shown in Tab. 3,

while our generated data are also helpful for fixed quanti-

zation (+0.39% / +0.51%), the benefits are maximally ex-

cavated with a dynamic quantization framework (+1.12% /

+1.42%) with fewer bit-FLOPs. Also, while diversity alone

leads to a small accuracy gain (+0.05% / +0.60%), plau-

sible and diverse difficulty results in larger gain (+0.34%

/ +1.11%). The results indicate that both plausibility and

diversity in difficulty are crucial for obtaining an accurate

dynamic quantization network.

Moreover, we validate the effectiveness of the dynamic

quantization framework (DQ). As in Tab. 3, dynamic quan-

tization alone provides a slightly better trade-off with the

baseline data (+0.78% / +0.31%). Nevertheless, when

we train the dynamic quantization framework with our

synthetic data, the accuracy increases by a large margin

(+1.12% / +1.42%). The results imply that our difficulty-

diverse data generation, along with the dynamic framework,

is effective in terms of bit-FLOPs-accuracy trade-off, justi-

fying the dynamic allocation of different computations to

images of different difficulty exhibiting different trade-offs.

Compatibility with dynamic quantization. We present

the effectiveness of our generation scheme for dynamic

quantization by comparing it with the existing data genera-

tion schemes for data-free quantization. For a fair compari-

son, we apply the dynamic quantization framework to noise

optimization-based data-free quantization methods that are

open-source. Tab. 4 shows that the existing data genera-

tion schemes for DFQ fail to effectively allocate bit-widths

compared to ours. While dynamic quantization (DQ) brings

trivial or no gain on previous data-generation methods, our

method fully benefits from dynamic quantization, achiev-

ing performance closer to the performance obtained with

real data, with fewer bit-FLOPs. The results indicate that

our synthetic data successfully simulates and controls re-

alistic/plausible difficulty of different levels, and thus en-

ables dynamic quantization to effectively assign computa-

tional costs for unseen real input images without real data.

(a) Test images (b) Generated train images

Figure 4. Bit-width allocation for images of different difficulty.
For a given sample of test images and generated train images, as-

signed bit-FLOPs and output entropy are plotted. Samples with

higher entropy tend to be assigned with overall higher bit-FLOPs.

Effect of the hyper-parameters. We investigate the ef-

fect of our selection on hyperparameters: the number of

similar classes K and diversifying ratio r for data genera-

tion. As presented in Fig. 3, our choice of K and r controls

the difficulty distribution of the generated data. Based on

the results of Tab. 5, we find that the diversifying ratio of

0.50 with two or three similar classes produces results of

better trade-off, while a too-large r or K results in an accu-

racy drop. This is because a large r and K will lead to a set

of generated images that mostly consist of difficult images.

It is important for the dynamic network to see images of

diverse difficulties (both easy and difficult) during training.

5.5. Visualizations

We compare the difficulty diversity of different data-

generation methods in Fig. 1. Compared to existing meth-

ods, our approach produces more diverse data in terms of

difficulty, which hints that the diversity in difficulty serves

as a key factor for data-free dynamic quantization. More-

over, to better demonstrate the efficacy of our dynamic

quantization and plausibly difficult sample generation, we

visualize the bit allocation results of different difficulty im-

ages in Fig. 4. One can observe that the overall samples

with high (low) entropy tend to be assigned with more (less)

bit-FLOPs. Also, the results show that our synthetic images

can fairly model the difficulty of real test images.

6. Conclusion
In this paper, we present the first dynamic data-free

quantization method that allocates different bit-widths to

images without any access to the original training data. De-

spite its advantages, dynamic quantization remains unex-

plored in data-free settings due to the lack of difficulty-
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Method G. Bit-width Bit-FLOPs (%) Top-1 (%)

Baseline - 32 100.00 71.47

Real Data - 5 3.56 70.41

GDFQ (ECCV’20) � 5 3.56 66.82‡

Qimera (NeurIPS’21) � 5 3.56 69.29

AdaDFQ (CVPR’23) � 5 3.56 70.29

ZeroQ (CVPR’20) � 5 3.56 69.65‡

DSG (CVPR’21) � 5 3.56 69.53‡

IntraQ (CVPR’22) � 5 3.56 69.94‡

HAST (CVPR’23) � 5 3.56 70.04†

DDPQ (Ours) � ∼5 MP 3.40±0.08 70.41±0.01

Real Data - 4 2.54 67.89

SQuant (ICLR’22) - 4 2.58 66.14

GDFQ (ECCV’20) � 4 2.54 60.60‡

Qimera (NeurIPS’21) � 4 2.54 63.84

AdaDFQ (CVPR’23) � 4 2.54 66.53

TexQ (NeurIPS’23) � 4 2.54 67.73
ZeroQ (CVPR’20) � 4 2.54 60.68‡

DSG (CVPR’21) � 4 2.54 60.12‡

GZNQ (CVPRW’21) � 4 2.54 64.50‡

IntraQ (CVPR’22) � 4 2.54 66.47‡

HAST (CVPR’23) � 4 2.54 66.91

DDPQ (Ours) � ∼4 MP 2.49±0.01 67.47±0.05

(a) Results of ResNet-18

Method G. Bit-width Bit-FLOPs (%) Top-1 (%)

Baseline - 32 100.0 73.03

Real Data - 5 12.88 72.01

GDFQ (ECCV’20) � 5 12.88 68.14‡

Qimera (NeurIPS’21) � 5 12.88 70.45

AdaDFQ (CVPR’23) � 5 12.88 71.61

ZeroQ (CVPR’20) � 5 12.88 70.88‡

DSG (CVPR’21) � 5 12.88 70.85‡

IntraQ (CVPR’22) � 5 12.88 71.28‡

HAST (CVPR’23) � 5 12.88 71.72

DDPQ (Ours) � ∼5 MP 12.87±0.04 71.88±0.05

Real Data - 4 11.02 67.90

SQuant (ICLR’22) - 4 11.05 22.07

GDFQ (ECCV’20) � 4 11.02 51.30‡

Qimera (NeurIPS’21) � 4 11.02 61.62

AdaDFQ (CVPR’23) � 4 11.02 65.41

TexQ (NeurIPS’23) � 4 11.02 67.07
ZeroQ (CVPR’20) � 4 11.02 59.39‡

DSG (CVPR’21) � 4 11.02 59.04‡

GZNQ (CVPRW’21) � 4 11.02 53.53‡

IntraQ (CVPR’22) � 4 11.02 65.10‡

HAST (CVPR’23) � 4 11.02 65.60

DDPQ (Ours) � ∼4 MP 11.02±0.02 66.92±0.46

(b) Results of MobileNetV2
† reproduced using the official code ‡ cited from [47]

Table 2. Results of ResNet-18/MobileNetV2 on ImageNet. Bit-

FLOPs (%) show the relative bit-FLOPs compared to the FP base-

line (1862.54G for ResNet-18 and 314.12G for MobileNetV2).

We measure the average bit-FLOPs for 224× 224 sized images.

diverse synthesized data. To address this, we generate

difficulty-varied images by assigning realistic soft labels

based on class similarity, ensuring plausible and diverse

image generation. Experimental results show that our ap-

proach consistently improves accuracy with lower compu-

DQ DD PD Bit-FLOPs (%) Top-1 (%)

2.62 66.46

� � 2.62 66.85

� 2.59 67.24

� � 2.56 67.29

� � � 2.56 67.58

(a) ResNet-20 with CIFAR-100

DQ DD PD Bit-FLOPs (%) Top-1 (%)

2.54 66.05

� � 2.54 66.56

� 2.39 66.36

� � 2.49 66.96

� � � 2.49 67.47

(b) ResNet-18 with ImageNet

Table 3. Ablation study of each attribute done on ∼4MP.

“DQ”, “DD”, and “PD” respectively indicates dynamic quantiza-

tion, difficulty-diverse and plausible difficulty-based generation.

“DD” with no “PD” denotes that difficulty-diverse data are gener-

ated from arbitrary classes instead of similar classes.

Method DQ Bit-FLOPs (%) Top-1 (%)

ZeroQ+IL � 2.62 63.97‡

DSG+IL � 2.62 62.62‡

IntraQ � 2.62 64.98‡

HAST � 2.62 66.68

DDPQ � 2.62 66.85

ZeroQ+IL � 2.56 66.22

DSG+IL � 2.61 66.08

IntraQ � 2.61 66.34

HAST � 2.59 66.55

DDPQ (Ours) � 2.56 67.58

(a) ResNet-20 with CIFAR-100

Method DQ Bit-FLOPs (%) Top-1 (%)

ZeroQ+IL � 2.54 63.38‡

DSG+IL � 2.54 63.11‡

IntraQ � 2.54 66.47

HAST � 2.54 66.91

DDPQ � 2.54 66.56

ZeroQ+IL � 2.53 65.57

DSG+IL � 2.47 65.02

IntraQ � 2.48 65.42

HAST � 2.47 66.88

DDPQ (Ours) � 2.49 67.47

(b) ResNet-18 with ImageNet

Table 4. Comparison of different data generation methods on
dynamic quantization (DQ).

r K
Static Q Dynamic Q

Bit-FLOPs Top-1 Bit-FLOPs Top-1

0.25 2 2.54 67.10 2.47 67.16

0.50 2 2.54 66.56 2.49 67.47
0.50 3 2.54 66.66 2.50 67.45

0.50 10 2.54 66.50 2.54 67.01

1.00 2 2.54 66.33 2.45 66.50

1.00 3 2.54 65.78 2.47 65.02

Table 5. Effect of the diversity ratio in data generation of 4-bit

ResNet-18 on ImageNet.

tational costs.

Limitation Applying our method directly to other vision

tasks (e.g., object detection) may be challenging, as it re-

lies on class information stored in the classification layer

to control the difficulty. Nevertheless, our core principle of

promoting diverse and plausible difficulty is adaptable, with

task-specific adjustments to the define difficulty. For exam-

ple, in image restoration tasks, ‘difficulty’ can be based on

restoration complexity, measured by metrics like average

gradient magnitude or edge density.
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