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Abstract

We propose a method for dense depth estimation from
an event stream generated when sweeping the focal plane
of the driving lens attached to an event camera. In this
method, a depth map is inferred from an “event focal stack”
composed of the event stream using a convolutional neural
network trained with synthesized event focal stacks. The
synthesized event stream is created from a focal stack gen-
erated by Blender for any arbitrary 3D scene. This allows
for training on scenes with diverse structures. Addition-
ally, we explored methods to eliminate the domain gap be-
tween real event streams and synthetic event streams. Our
method demonstrates superior performance over a depth-
from-defocus method in the image domain on synthetic and
real datasets.

1. Introduction
Depth estimation enables various applications, including

collision avoidance in autonomous vehicles [18] and 3D in-
teraction in mixed reality [8]. Approaches to this fundamen-
tal task are often phrased as “depth from X,” where X can be
substituted by stereo [1], defocus [2], and even sounds [14].
One of the most feasible solutions is to use a monocular
camera to analyze active motions or disparities from one
frame to another. However, this approach easily fails in ex-
treme conditions such as fast motions and over and under
exposures [27]. As mobile measurement devices, conven-
tional cameras yet consume electrical power and memory
resources too much, limiting further practical applications.

Event-based cameras, or event cameras, collect tempo-
rally and spatially occasional responses (i.e., events) and,
thus, can break some of the limitations of the cumulative
nature of conventional cameras [10]. They report the posi-
tions, time, and polarity of intensity change at an extremely
high frequency. This allows the device to report tens of
millions of high-dynamic range responses with significantly
less electricity. Consequently, depth from events can lead to
an efficient and robust depth estimation [5, 11, 16].

Therefore, inspired by the previous framework that uti-

lizes RGB image focal stacks, a series of images captured
at different focus distances, to infer depth and create all-in-
focus images [17], we propose a method for dense depth
estimation using an “event focal stack,” which consists of
a sparse set of events corresponding to in- and out-of-focus
regions, driven by active lens control. Contrary to the ex-
isting approaches that use events from optical flows [16] or
estimates depths at exact event locations [5, 11], we design
a network that derives a complete depth map.

To tackle this task, this paper implements an event fo-
cal stack simulator for arbitrary scenes using 3D com-
puter graphics software, and event simulators [21, 23]. One
straightforward approach is to train solely on synthetic data
generated by this simulator. However, our analysis revealed
a significant domain gap between the events generated by
the simulator and real-world events. To mitigate this gap,
we introduce fine-tuning using real data.

In summary, we make the following contributions: (1)
We propose a deep dense depth estimation method using an
event focal stack from lens defocus. To this end, (2) we pro-
pose a framework that directly maps an event focal stack to
a dense inverse depth image. For this framework, (3) we
created our own synthetic and real-world datasets, consist-
ing of paired event focal stacks and inverse depth images,
to perform training and inference. (4) We also extensively
investigated the domain gap between synthetic events from
existing simulators and physical events, revealing the limi-
tations of the simulators in our task. Based on the findings,
we introduced a fine-tuning technique to effectively bridge
this domain gap, thereby enhancing the model applicability
to real-world scenarios.

2. Related Work
This section reviews image- and event-based depth esti-

mation methods, event simulators, and their challenges.

2.1. Depth from Defocus

Depth from Defocus (DfD), pioneered by Pentland [2]
is a technique for estimating the scene depth by analyzing
the amount of blur (defocus) in images. When an image is
captured, objects at different distances appear with varying
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Figure 1. The proposed framework for a dense depth map only from an event focal stack. We collected the datasets in both synthetic
and real-world (Sec 4.1) environments for this framework. By voxelizing the events from the focus sweep into an event focal stack (Sec 3.1),
the data is transformed into a format compatible with a U-Net like CNN architecture and then input into the network (Sec 3.2). We aim
to bridge the domain gap between synthetic and real-world data by fine-tuning the model, initially trained on the synthetic dataset, with
real-world data (Sec 3.3).

degrees of sharpness or blur. DfD leverages this informa-
tion, typically using multiple images with different focus
settings, to compute the distance of objects from the cam-
era. However, model-based DfD is susceptible to changes
in lighting conditions and the scattering of light on surfaces.

Recent data-driven approaches resolve this issue using
a deep neural network trained on a synthetic dataset since
defocus analysis is independent of the image domain [17].
The Focus on Defocus framework introduces image focal
stacks, a series of images captured at different focus dis-
tances, to infer depth and all-in-focus images [17]. A typi-
cal U-Net can also learn soft 3D reconstruction , a method
that can flexibly perform 3D reconstruction even with miss-
ing or noisy data like event, from synthetic focal stacks [15].
However, networks trained in the color domain suffer from
extreme conditions such as under and over-exposures and
motion blur. Although networks can be trained on images
that simulate extreme conditions, optical behaviors are of-
ten difficult to simulate appropriately [24].

Note that recent approaches are powerful enough to es-
timate a depth map from a single-shot image [6, 9, 22].
Nonetheless, all these approaches rely on the color domain
and are weak under extreme conditions [24].

2.2. Depth from Events

Depth-from-event approaches take advantage of the
event nature, such as high temporal resolution, high dy-
namic range response, and low power consumption. Ex-
isting works have explored events from motion and used

recurrent networks to handle temporal events [16, 25]. The
idea of depth from event focal stack is new, and only a few
attempts exist. These approaches estimate a single focus
distance for auto-focus [12] and a sparse depth [5]1.

Instead, we estimate a complete depth map from sparsely
observed events. We collect all events from a lens focus
sweep that travels across the volume of interest and voxelize
them as an event focal stack. Inspired by the image from
events [13], we train our network to infer a dense depth map
from the stack instead of an intensity image.

3. Proposed Method
Figure 1 shows our framework. Given a sequence of

event points ek = (xi, yi, ti, pi)i∈[0,N−1] that includes N
events, our framework obtains event focal stack, V ∈
RW×H×B by segmenting ek into B time bins of event
voxel grids composed of the event frames of size W (width)
by H (height). Here, x, y indicates 2D location, t and p rep-
resent the timestamp when the event occurred and the polar-
ity information indicating whether the brightness increased
or decreased, respectively. Event focal stack V is fed into
the depth map generation network to generate depth map
Dpred ∈ RW×H , which is our output.

For training, our method utilizes RGB image focal stacks
from a simulation of the imaging process in virtual scenes
using 3D computer graphics software, followed by event

1This arXiv preprint validates their approach only in simulated event
data. Instead, we recorded real event focal stacks and used them for fine-
tuning and testing.
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Figure 2. Collecting real-captured data. We captured the focal sweep events by event camera and computer-controlled lens. To avoid the
impact of breathing, we use homography matrices H[k] = R3×3 calculated by 330 images of a circular checkerboard for the correction.

generation via an event simulator. We used the synthetic
data to leverage ground truth depth maps. Note that image
focal stacks are generated for training. Our method relies
solely on events during inference. For testing, we gen-
erate depth maps using the synthetic events and the events
captured by a real event camera with sweeping lens.

The following subsections describe events from focus
sweep to event focal stack in Sec. 3.1, network design and
loss in Sec. 3.2 and fine-tuning and lens breathing correc-
tion in Sec. 3.3.

3.1. Constructing Event Focal Stack

Event points e form a 3D point cloud with high memory
demands. We generate an event focal stack to reduce com-
putational complexity by quantizing the event points along
the time axis. One of the straightforward ways is to seg-
ment the event points into fixed time windows and record
the number of events occurred at each pixels within that
window on a single frame. However, this approach results
in the loss of a significant amount of temporal information.
Inspired by the task of generating gray-scaled images from
event data [13], we generate time-weighted event voxels [3]
to address this issue.

To generate V of B ≪ N from the observed events ei,
we followed the voxelization method of Alex et al. [3]. This
‘voxelization’ process is outlined as follows:

1. Normalize timestamps into the size, B (0 ≤ t′i < B).

2. A polarity value, pi, is linearly weighted depending on
the distance to the two closest bins, (bk, bk+1).

3. Store the values to the corresponding voxel location,
(xi, yi, bk) and (xi, yi, bk+1)

4. After collecting all events, voxel data is normalized by
the min–max values in each dimension.

We found the practical best bin size is B = 5 (Tables 1 and
2), consistent with the work for a similar task [13].

3.2. Depth Map Generation Network

Following existing gray scale video reconstruction ap-
proach [13], we use U-Net [19] like architecture for a dense
depth map estimation. To apply [13] to our task, we remove
the recurrent functionality and modified the model to gener-
ate a single dense depth map. Here, we treat inverse depth
image as the output, in order to enhance the resolution of
the near-field depth.

The input of the network is an event focal stack, which
consists of B = 5 event frames (each frame has a size
of 256 × 256). It is fed into the encoder, which has four
2D convolutional layers, to the feature map with a size
of 512 × 16 × 16. Then, it is fed into an intermediate
layer containing two convolutional layers, where it is trans-
formed into 512 × 16 × 16 feature map, and then passed
through a four-layer decoder. In each layer of the decoder,
by adding the input features to the corresponding encoder
features through skip connections, the location information
of the events is conveyed. Finally, the output layer converts
the 32× 256× 256 feature maps into 1× 256× 256 single-
channel gray-scale depth image.

With the variable θ that contains all trainable parameters,
the training objective uses Mean Squared Error (MSE) loss

L(θ) = 1

WH

H∑
x=1

W∑
y=1

(Dgt(x, y)−Dpred(x, y))
2. (1)

For real-world data, we utilize pseudo Dgt generated by
Depth Anything [26].

3.3. Lens Breathing Correction

To develop a method that works well not only on syn-
thetic data but also in real scenes, we train the network
on a large synthetic dataset and fine-tuning it with a small
amount of real data. Unlike synthetic data with perfect op-
tics, real event data is affected by slight distortions due to
lens breathing during the focus sweep (Figure 2). Lens
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Figure 3. Qualitative comparison of bin impacts. Inverse depth images indicate that the distance increases as the color transitions from
orange to purple. Differential images show that the error increases as the color transitions from blue to red. Both ESIM and DVS-Voltmeter,
bin = 5 shows the smallest error.

breathing is a phenomenon that involves varying fields of
view as the lens focus distance changes. It is challenging to
mitigate this effect optically for physical cameras. These
distortions can be a major factor in the domain gap be-
tween synthetic and real data. Simply fine-tuning the model
with raw real-captured data is insufficient to cope with our
method effectively.

We geometrically correct lens breathing. Specifically,
we calculate homography matrices H[k] ∈ R3×3 from a
reference plane in focus to the others at different focuses.
For accurate homography calculations, we use a circular
checkerboard, which is more robust against lens defocus
blur than a typical square grid pattern. We recorded 330
images of a defocus-robust circular checkerboard at fixed
distances of up to two meters. Using the temporally closest
homography matrix, we warped event coordinates, (xi, yi).

4. Experimental Settings

4.1. Datasets

We create our synthetic and real datasets since no dataset
is publicly available for this task. Our strategy is to config-
ure the best-performing network and voxelization approach
and then evaluate the applicability to the real dataset.
Synthetic Dataset. To generate synthetic data for a wide
variety of scenes, we rendered scenes of Thingi10K objects

Table 1. Impact of the number of bins of ESIM. Bold and
underline fonts for the best and the second best scores.

Bin size (B) MAE [1/m] (↓) RMSE [1/m] (↓)

1 0.1536 0.1977
2 0.1362 0.1789
5 0.1335 0.1777

10 0.1401 0.1844
100 0.1878 0.2408

Table 2. Impact of the number of bins of DVS-Voltmeter. Bold
and underline fonts for the best and the second best scores.

Bin size (B) MAE [1/m] (↓) RMSE [1/m] (↓)

1 0.1165 0.1519
2 0.0803 0.1065
5 0.0762 0.1022

10 0.0760 0.1006
100 0.0777 0.1045

[20] with random positions and materials using Blender [4].
We set the camera parameters in Blender based on the lens
parameters used in the real-world environment, with a fo-
cal length of 16mm, sensor size of 4.81mm (height) by
6.4mm (width), and an F-number of 2.3. However, it should
be noted that these parameters in Blender do not faithfully
replicate the actual camera. After rendering image focal
stacks of 600 focus distances, we simulated event data using
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Table 3. Impact of different polarity integration strategies of
ESIM. Bold fonts for the best scores.

Method MAE [1/m] (↓) RMSE [1/m] (↓)

normal 0.1335 0.1777
ppnn 0.1256 0.1682
pnpn 0.1312 0.1775

Table 4. Impact of different polarity integration strategies of DVS-
Voltmeter. Bold fonts for the best scores.

Method MAE [1/m] (↓) RMSE [1/m] (↓)

normal 0.0762 0.1022
ppnn 0.0838 0.1140
pnpn 0.0881 0.1201

representative simulators, ESIM [21] and DVS-Voltmeter
[23], from the focal stack. The focuses were linearly placed
at 0.2 to 2 meters in depth. We also rendered corresponding
depth images as the ground truth. We eventually collected
1,000 scenes for training and 20 scenes for evaluations.
Event Simulator. Obtaining a large amount of labeled data
for event-based machine learning is challenging, especially
for real-world datasets. A potential solution is to create syn-
thetic event data via an event simulator [21, 23].

An event simulator can virtually generate events by tak-
ing multiple luminance images as input. ESIM [21] sim-
ulates event cameras by focusing on the visual signal and
adapting the frame sampling rate according to scene dy-
namics. DVS-Voltmeter [23] simulates events based on the
physical properties of dynamic vision sensors (DVS) such
as voltage changes.

Despite these attempts, we have observed critical gaps
between real and synthetic events in our real-world sce-
nario. We resolve this problem by exploring the best-
practical event focal stack configuration on a large-scale
synthetic dataset and fine-tuning the pre-trained network
with fewer real-scene datasets.
Real Dataset. To further showcase our method’s applicabil-
ity, we also tested our method with real captured event data.
We used DAVIS346 equipped with a computer-controlled
lens (LensConnect DL1623UC-MPY) to capture event data
synchronized with gray scale images. One of the advan-
tages of our task—depth map estimation using events—is
its robustness in low-light conditions. Therefore, we col-
lected data from the same scene under two different lighting
environments: a well-lit scene and a low-light environment.
In total, we recorded data from 60 scenes (30 scenes × 2
lighting conditions).

Recording ground truth depth maps for these real scenes
was challenging. Therefore, we used the state-of-the-art
depth estimator, Depth Anything [26] for luminance im-
ages, as an alternative ground truth. Since Depth Anything
does not perform well under low-light conditions, we used
images under well-lit conditions for low-light conditions.

We used 50 scenes, including both well-lit and low-light
conditions, for fine-tuning when applying real data for in-
ference. The remaining 10 scenes used for inference were
captured with depth distributions and objects different from
those used for fine-tuning.

4.2. Baseline Method

We compare our approach with a depth-from-defocus
method for the color domain, Focus on Defocus [17]. For a
fair comparison, we trained the Focus on Defocus network
on our synthetic dataset and used the same bin size (B = 5).
Although this network accepts three-channel color images,
our real dataset consists of only gray-scale images. For
better applicability to real scenes, we converted our origi-
nal color images into three-channel gray-scale images and
trained the network.

4.3. Evaluation Metrics

We calculated mean absolute error (MAE) [1/m] (↓),
and root mean squared error (RMSE) [1/m] (↓), for quan-
titative metrics:

MAE =
∑
W

∑
H

|Dpred −Dgt| /(WH)

RMSE =

√∑
W

∑
H

(Dpred −Dgt)2/(WH).

MAE and RMSE quantify the average magnitude of errors
between prediction and ground truth, and RMSE is more
sensitive to outliers. We also discuss qualitative results.

4.4. Implementation Details

For both the baseline and our methods, we trained for
200 epochs using the Adam optimizer [7] with a learning
rate of 1.0 × 10−4. We randomly rotated the data in W ×
H dimensions for data augmentation. We performed the
same evaluations 10 times to mean out the influence of the
random seeds for training.

4.5. Parameter Validations

There are multiple ways to determine the event focal
stack (such as differences in bin size and event polarity).
Furthermore, by comparing the events generated by event
simulators (ESIM, DVS-Voltmeter) with real events, we
aim to select and evaluate suitable simulator for this task.
Bin size. The bin size, B, alters the temporal resolution
of events in an event focal stack, V, which can affect the
overall performance. Although the prior work [13] found
B = 5 for their empirical best, the parameter can be task-
dependent. Therefore, using our synthetic dataset, we eval-
uated our network with differently sized bins of event focal
stacks and their impacts on performance. We measured the
errors under different bin sizes of {1, 2, 5, 10, 100}.
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Figure 4. Qualitative comparison of the impact of polarity in-
tegration. It seems no significant differences between normal,
ppnn and pnpn.

Table 5. Comparison on the synthetic dataset. Bold and underline
fonts for the best and the second best scores.

Method MAE [1/m] RMSE [1/m]
(↓) (↓)

Focus on Defocus [17] 0.1606 0.2027
Ours (ESIM) 0.1335 0.1777
Ours (DVS-Voltmeter) 0.0762 0.1022

Tables 1 and 2 show the highest performance on B = 5
with the events by ESIM and B = 10 with the events by
DVS-Voltmeter, respectively. However, Figure 3 shows the
plausibly lower errors with B = 5 for both event simula-
tors. Considering that the second-highest score for DVS-
Voltmeter is B = 5, which is more compact and consistent
with the prior finding [13], we conclude to take B = 5.
Polarity integration. Another design choice in the vox-
elization is the arrangement of negative and positive polari-
ties. In the voxelization (normal) in Section 3, positive and
negative polarity events that fall into a pixel mean out. For
smaller B, this can happen more often. To mitigate this, one
may separately store the positive (p) and negative (n) re-
sponses in different channels (i.e., 10 channels for B = 5).
The pn order would matter for this option (i.e., pnpn and
ppnn). Tables 3 and 4 indicate that the different polarity ar-
rangements do not have a significant impact. Therefore, we
take the normal approach.
Event Simulator. The reproducibility of event simulators
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Figure 5. Qualitative comparison of events using ESIM, DVS-
Voltmeter and real-captured event. The captured scene is one
in which boxes are arranged to become progressively more dis-
tant from left to right. Although the real-captured events can be
observed negative events (red dots) and noisy events, the events
generated by ESIM and DVS-Voltmeter are hard to observe nega-
tive events and appear less noisy.

matters for our task. We prepared a physical scene and re-
produced it in Blender to compare real and simulated events
under a shared condition. Figure 5 shows the results of
events from focal sweep. The scenes consist of color boxes
placed at progressively farther distances. The scene depths
get further from the left to the right in the image space.

During a focal sweep, positive events appear when lights
converge to a point in focus, and then negative events ap-
pear due to the diffusion of lights. The patterns would vary
depending on the luminance at pixel locations and those in
adjacent pixel locations.

DVS-Voltmeter shows events drawing unnaturally sharp
lines and fails to reproduce reasonable noises. We consider
that the reason for the noiseless results is that the synthetic
scene has no noise, but the model is built upon real images,
which inherently contain noise. ESIM shows scattered and
noisy events that look closer to their real counterparts. To
obtain this appearance, we needed to set the event threshold
parameter to 0.08. Nevertheless, both types of events do
not show many negative events (in red), which suggests the
limited feasibility of the simulators in our task. This led us
to the fine-tuning approach for the real dataset.
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Figure 6. Qualitative comparison using synthetic data generated by DVS-Voltmeter. Ours have a small margin of error, and the depth
images do not become blurred.

5. Experiments and Discussion

Synthetic dataset. Table 5 summarizes the quantitative
results. Our method shows superior results to our baseline,
Focus on Defocus [17], regardless of the event simulators.
Ours with ESIM and DVS-Voltmeter reduced the error by
approximately 1.2 and 2.0 times compared to the baseline,
respectively. With DVS-Voltmeter, ours performed the best.

Figure 6 shows estimated depth maps and correspond-
ing difference images of the baseline and ours with DVS-
Voltmeter in three example scenes. Contrary to the baseline,
which loses sharp edges and smooth surfaces, ours keeps
the scene structures and is less affected by the texture de-
tails. The baseline shows high errors over the image space,
and ours successfully suppresses them.

The results indicate that our event focal stack can pre-
serve denser edge information in a smoother focal sweep,
and our simple network can interpret the captured informa-
tion into a depth map. On the other hand, an image focal
stack has rather sparser or discretized information than ours.

Real dataset. Figure 7 (left) shows depth maps of the
baseline and ours in three real scenes under office lighting
conditions. The baseline method and ours without the real-
scene fine-tuning tend to show front-back reversed depths.
Ours even shows some holes. With fine-tuning, ours can
mitigate both the reversed depth and holes and present rea-
sonable overall depths, overcoming the domain gap be-
tween real and simulated events. However, details such as
thin structures and edges are more ambiguous than results in

the synthetic dataset. From these results, it can be inferred
that ours with fine-tuning is superior to image-based method
and there is a domain gap between the synthetic event data
used for training and the real-captured event data. Also,
they shows fine-tuning with real event is effective method to
overcome this problem. Compared to ours with ESIM and
DVS-Voltmeter, ESIM can present sharper and smoother
scene structures and appears to be a superior choice. This
draws the same conclusion as in Section 4.5.

Figure 7 (right) demonstrates the robustness of our ap-
proach under extreme conditions (i.e., low-light condi-
tions). Since intensity images capture almost no infor-
mation, the baseline method fails to estimate any reason-
able depth maps. Ours relies on events sensitive to subtle
changes in the imaging sensor and can still grasp the depth
information. Same as in the office lighting conditions, with-
out fine-tuning, ours shows holes and inconsistent depths.

Limitation. Our method shows inferior results on texture-
less surfaces since it lacks events of depth clues. Also, our
method is designed for static scenes. If dynamic content
appears, events on the content must be spatially aligned.
Furthermore, the performance of our imaging depends on
the focus sweep mechanisms. While we used a mechanical
lens, a focus-tunable lens can provide a faster focus sweep.

The susceptibility of image- and event-based methods
in different environments can vary. Different image blur
shapes can have a negligible impact on the former because
defocus blurs spread evenly. Event-based methods focus-
ing on brightness changes are more affected by the position
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Figure 7. Qualitative comparison using real-captured data at the condition of two light environment. The rows show the same scene.
We prepared models trained on synthetic events generated by ESIM and DVS-Voltmeter, and compared the results with and without fine-
tuning on real data. The results highlighted with red frames are the most feasible results with clear shapes and spatial relationships.

and timing of events from the blur. This makes event-based
methods more sensitive to variations in camera parameters,
increasing the significance of domain gaps.

6. Conclusion

In this paper, towards robust method even under low-
light conditions, we proposed dense depth estimation from
an event focal stack. To this end, we proposed a frame-
work and training strategies, including fine-tuning for real-
scene datasets. We validated event focal stack data structure
and configurations for the best performance. We compared
ours with the baseline method using an image focal stack for

dense depth map estimation. We identified the domain gap
between real and virtual events from lens focus sweeping in
our task. Although the image blurs by defocus have fewer
domain shifts between real and virtual worlds, events from
such blurs are strongly dependent on event simulators. The
quantitative and qualitative results showcased that ours, af-
ter real-dataset fine-tuning, is more robust. Our future work
includes improving algorithms and simulators to further re-
duce the domain gap between synthetic and real-world data.
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