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Abstract

In autonomous driving systems, online vehicle-to-sensor
(v2s) calibration is a critical component for ensuring safe
perception-based control. Since sensor pose may shift dur-
ing the life-time of a vehicle, online calibration is essen-
tial to maintain safe driving conditions. To this end, this
paper introduces Epipoles as a 3D Directional Compass
(E3DC), a sensor-agnostic v2s online calibration method.
Leveraging the nonholonomic nature of vehicles, a hand-
eye constraint between the vehicle and the sensor naturally
emerges. Consequently, we require only the sensor’s data
to determine the v2s extrinsic rotation. More specifically,
since we only require sensor odometry estimates to perform
v2s calibration, E3DC can leverage off-the-shelf odometry
estimation pipelines. This offers vast flexibility and wide ap-
plicability as the odometry estimation pipeline can be tai-
lored to the specific sensor type and driving environment.
We demonstrate that our method is robust and achieves
state-of-the-art performance on both the KITTI dataset and
a new dataset, which will be made publicly available. To
the best of our knowledge, this is the first v2s calibration
dataset for autonomous driving scenarios.

1. Introduction

The pursuit of fully autonomous vehicles has been a cen-

tral focus of research for decades, leading to substantial ad-

vancements in critical areas such as object detection, lane

detection, and depth estimation [17, 40, 43]. Concurrently,

the integration of increasingly sophisticated sensor arrays

into self-driving cars has become essential for enhancing

passenger safety, leveraging the maturity of vision algo-

rithms in these domains [5, 6]. A key aspect of ensuring

the reliability of these systems is implementing online sen-

sor calibration as a fail-safe mechanism, crucial for main-

taining the accuracy of sensor measurements. In particular,

online sensor-to-sensor (s2s) calibration has gained signifi-

cant research attention [3,9,10,15,19,22,23,25,26,35,37–

*Work completed while employed at StradVision.
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Figure 1. Illustration of the online vehicle-to-sensor extrinsic
rotation calibration problem. We aim to determine the extrinsic

rotation, Rsv between the vehicle and sensor as the vehicle moves

over time, e.g., time i to j. Refer to Sec. 3 for more details.

39, 41, 42, 44], as it enables the precise alignment of data

from diverse sensors, thereby enhancing the reliability of

perception tasks.

While past studies do exist, online vehicle-to-sensor

(v2s) calibration has received comparatively little attention

[8, 12–14, 16, 27, 28, 31, 33, 36]. Accurate online v2s cali-

bration is critical for ensuring that detected objects are cor-

rectly localized relative to the vehicle, which is essential

for the safe control of autonomous systems, including the

reliable deployment of vehicle safety features such as au-

tonomous emergency braking.

Despite the importance of v2s calibration, current pub-

lic datasets like KITTI and a2d2 [5, 6] do not offer suffi-

ciently precise v2s calibration results suitable for evaluating

v2s calibration algorithms. For instance, the KITTI dataset

assumes alignment between the GPS/IMU sensor at the rear

axle and the vehicle’s coordinate system, while a2d2 dataset

presumes the accuracy of the main LiDAR’s extrinsic cal-

ibration relative to the vehicle frame. Additionally, accu-

rately determining an object’s 3D position relative to the

ground on which the vehicle stands is essential for safe

control. However, factors such as load distribution shifts

can alter the vehicle’s orientation, thereby affecting sensor

alignment. To address these issues, we introduce a novel

dataset with accurate v2s extrinsics. This dataset includes

six cameras, providing 360-degree surround view, offering

a foundation for research in v2s calibration.

As previously noted by Su et al. [27], rotation misalign-

ment tends to have a more pernicious effect compared to

translation misalignment, which is why rotation calibration

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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is often prioritized. This priority is further justified by the

fact that rotation is more susceptible to changes due to fac-

tors such as collisions, replacements of vehicle parts, or

shifts in load distribution. These vulnerabilities necessitate

frequent recalibration to ensure accurate sensor alignment.

Consequently, much of the existing research, including our

own, has focused on developing robust methods for extrin-

sic rotation estimation, as depicted in Fig. 1, to effectively

address these challenges.

Reflecting the need for precise rotation calibration, prior

studies have used various methods. A classic approach in-

volves utilizing lane lines to determine the Longitudinal

Vanishing Point (LVP) [8, 12, 31, 36], which represents the

vehicle’s forward direction w.r.t. the sensor. Some rely on

feature detection on the ground plane to derive the ground’s

normal vector via homography decomposition [16, 28, 33].

A drawback of using lane lines or ground features is that

these approaches are effective only in environments where

the relevant features are abundant. Furthermore, since these

methods are specific to a sensor and its setup, they are lim-

ited in flexibility and difficult to adapt to different configu-

rations.

To overcome these limitations, we propose Epipoles as
a 3D Directional Compass (E3DC), a framework that is

adaptable to different sensors and environments. By de-

coupling the calibration process from sensor-specific fea-

tures, E3DC enables v2s rotation calibration using any sen-

sor, as long as the odometry is obtained. We have tested

E3DC for cameras on the KITTI dataset [5] and the new

custom dataset, showcasing state-of-the-art performance in

all surround-view directions. While our primary focus is on

cameras in this paper, we also present LiDAR results in the

supplementary material.

2. Related Works
Approaches to v2s calibration vary widely, encompass-

ing different assumptions, prior knowledge, favorable envi-

ronments, and auxiliary sensor requirements. We summa-

rize the dependencies of each method in Tab. 1.

Lane-based methods, such as S2XV [36], utilize Line

Segment Detection (LSD) [32] to identify lines, which are

then processed by a deep learning network to detect van-

ishing points (VPs) of the road and the horizon line (HL).

Other approaches also leverage lane markings to determine

the VP [8, 13, 31]. However, a fundamental limitation of

these methods is that VPs represent the alignment of the

camera with the road, i.e., world, rather than with the ve-

hicle itself. Consequently, Kalman filters [8, 13] or heuris-

tic thresholds [31, 36] are required to confirm vehicle-road

alignment, which is suboptimal. Additionally, the effec-

tiveness of these methods is limited to environments with

clearly defined straight lines, and some methods even re-

quire known lane widths to estimate the camera’s roll an-

Method
Auxiliary

Sensor

Sensor

Installation
Environment

Prior

Knowledge

Miksch et al. 2010 [16]

Tan et al. 2013 [28]

Westerhoff et al. 2016 [33]

Tummala et al. 2019 [31]

Ouyang et al. 2020 [21]

Lee et al. 2020 [13]

Lee and Lee 2020 [12]

Jang et al. 2021 [8]

Li et al. 2023 [14]

Su et al. 2023 [27]

SX2V (Yan et al. 2024) [36]

E3DC (ours)

Table 1. Comparison of each method’s dependencies. Green

shield ( ) indicates that the method is independent of this fac-

tor, demonstrating robustness and flexibility. Yellow warning ( )

indicates that the method is dependent of this factor, limiting its

applicability.

gle [8].

Homography-based methods [16, 33] utilize road fea-

tures to estimate a homography matrix, which can be de-

composed to derive the road surface normal - another form

of the HL. Despite showing promise, these methods neces-

sitate environments with globally flat road surfaces. Addi-

tionally, road surfaces are often not ideal for tracking fea-

tures, posing another significant limitation. Moreover, these

approaches typically depend on precise measurements of

camera height and additional vehicle odometry data.

While using lanes and road surfaces are valid and proven

methods for v2s calibration, these methods inherently re-

quire sacrificing a portion of the camera’s field of view to

focus on the road. This trade-off can limit the system’s abil-

ity to monitor potentially more critical elements, such as

nearby vehicles or pedestrians. Additionally, these meth-

ods are generally unsuitable for side-view cameras, as they

rely on front or rear-facing orientations to function effec-

tively. In contrast, the proposed method E3DC is adaptable

across all viewing directions, provided that the target sen-

sor’s odometry data is available.

E3DC circumvents the complexities associated with ad-

ditional sensor inputs required by other approaches. For in-

stance, the use of high-speed cameras aimed at the ground

may not be practical for widespread implementation in au-

tonomous vehicles [27]. Additionally, methods that rely on

vehicle odometry can have their reliability compromised by

physical changes in the wheels, such as wear or replace-

ment. Therefore, E3DC focuses on leveraging only the sin-

gle target sensor for v2s calibration, eliminating the need for

temporal sensor fusion and simplifying the overall process.

3. Proposed Method

The overview of our method is shown in Fig. 2. While

we eventually show our method is sensor-agnostic, we first

formulate the solution w.r.t. the camera sensor.

Coordinate Systems. As shown in Fig. 1, we work with
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Figure 2. Overview of E3DC. (a) The odometry estimation pipeline for a target sensor and environment. (b) Robust Longitudinal Vanishing

Point (LVP) estimation pipeline. (c) Robust Horizon Line (HL) estimation pipeline.

two coordinate systems: the Vehicle Ground Coordinate

System (VGCS) and the Sensor Coordinate System (SCS).

As the vehicle moves, 3D points in time frame i are trans-

formed to points in time frame j for each coordinate system

in the following manner:

Xv
j = Rv

jiX
v
i + tvji , (1)

Xs
j = Rs

jiX
s
i + tsji . (2)

The VGCS has its Z-axis aligned with the vehicle’s longi-

tudinal axis and the XZ plane parallel to the ground. The

term VGCS was introduced to emphasize that this coordi-

nate system remains unaffected by changes in the vehicle

body’s orientation, such as those caused by shifts in load

distribution. Thus, the transformation between the VGCS

and the SCS can be described by the rotation matrix Rsv

and translation vector tsv , satisfying the equation:

Xs = RsvX
v + tsv , (3)

where Xs and Xv physically represent the same 3D point

in the SCS and the VGCS, respectively. Therefore, we have

the relationships

Rs
ji = RsvR

v
jiR

T
sv , (4)

tsji = Rsv

(
tvji

(
I−Rv

ji

)
RT

svtsv
)

. (5)

The rotation matrix Rsv can be further expressed in Euler

angles and column vectors as follows:

Rsv = Rz(φ)Rx(θ)Ry(ψ) (6)

=
[
r1 r2 r3

]
, (7)

where roll is φ, pitch is θ, yaw is ψ, and ri is the ith column

vector of the rotation matrix.

Longitudinal Vanishing Point (LVP). The LVP denotes

the image point of Zv
∞, which is the point at infinity in the

Z-axis of the VGCS. Its formulation is as follows:

ps
∞ = K

[
Rsv tsv

]
Zv

∞ = Kr3 , (8)

where ps
∞ is the LVP in the SCS, K is the intrinsic camera

matrix, and Zv
∞ = [0 0 1 0]T in the homogeneous coordi-

nate system. Knowing the LVP, we can retrieve r3 as

r3 =
K−1ps

∞
‖K−1ps∞‖ , (9)

where || · || is the L2 norm.

Horizon Line (HL). The Horizon Line (HL) is the image

projection of the line at infinity on the ground plane, i.e.,

the XZ plane of the VGCS. The formulation of the HL can

be obtained by connecting two points at infinity on the XZ

plane from the VGCS. Say we have points at infinity in the

X and Z axes directions in the VGCS, i.e., Xv
∞ = [1 0 0 0]

and Zv
∞ = [0 0 1 0], projected to the image plane:

px = K
[
Rsv tsv

]
Xv

∞ = Kr1 , (10)

pz = K
[
Rsv tsv

]
Zv

∞ = Kr3 . (11)

By taking the cross product of the two points we get the HL:

lH = Kr1 ×Kr3 = K∗(r1 × r3) (12)

= K∗r2 , (13)
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where K∗ = det(K)K−T is the adjoint of K. Therefore,

knowing the HL, we can retrieve r2 as

r2 =
KT lH

‖KT lH‖ , (14)

where || · || is the L2 norm.

Obtaining the Extrinsic Rotation Rsv . Given that the

LVP and the HL is obtained, the extrinsic rotation Rsv can

be determined by finding r1 as

r1 = r2 × r3 (15)

and concatenating the three column vectors. Consequently,

Eqs. (8), (13) and (15) demonstrates that v2s calibration can

be decoupled to two distinctive problems: Identifying the

LVP and the HL.

3.1. LVP and HL are Epipoles

With readily available relative pose estimation meth-

ods, we obtain the camera’s relative pose: Rs
ji and tsji.

The homogeneous coordinate representation of 2D epipoles

es,Ik ∈ R
3 on the image plane I are defined as:

es,Ik :=

{
KRs

ji
T tsji for k = 1,

Ktsji for k = 2.
(16)

We extensively exploit these epipoles to perform v2s cal-

ibration. First, we note that in previous studies such as

[1,2,7], a key observation was made: In scenarios involving

planar motion, epipoles are invariably located on the HL. In

other words, for a vehicle traversing in planar motion, the

HL is the pencil of epipoles:

lH =
{
es,I | Rs

ji = exp(γ[πs
g]x) , tsji ⊥ πs

g

}
, (17)

where γ is the rotation angle, πs
g denotes the ground plane

normal in the SCS.

Additionally, with the LVP and HL represented as Eq. (8)

and Eq. (13), we easily confirm that the LVP is on the HL

since lTHp∞ = 0.

As epipoles point to the LVP and HL, they act as direc-

tional cues for v2s calibration. Thus, the methods is named

Epipoles as a 3D Directional Compass (E3DC) to reflect

their role as a 3D guiding tool for calibration.

3.2. Robust LVP Estimation

With Eqs. (4) and (5), and K, we can model the epipoles

with the spherical projection model [30] in the VGCS:

ev1 : = K−1ec,I1 = tvij +
(
Rv

ij − I
)
tvs , (18)

ev2 : = K−1ec,I2 = tvji +
(
Rv

ji − I
)
tvs , (19)

where the detailed derivations are provided in the supple-

mentary material.

ICRXv

Xv

Zv

Xc

Zc

Xc

Zv

Zc

Xv

Zv

LVP 

LVP tangent 
Plane

(a) (b) (c)

Figure 3. Ackermann guarantees convexity for LVP loss func-
tion. (a) Ackermann model (b) Losslvp is the distance between

epipoles projected onto a LVP tangent plane. (c) Loss landscape of

Losslvp as the angle-axis magnitude γ from the camera changes.

Additionally, as depicted in Fig. 3(a) and explained in

[34], the nonholonomic constraints inherent in the Acker-

mann steering geometry restricts a vehicle’s movement to

a circular trajectory with the axis of rotation located at the

Instantaneous Circle of Rotation (ICR):

R
v
ji =

⎡
⎣

cos(ω) 0 sin(ω)
0 1 0

− sin(ω) 0 cos(ω)

⎤
⎦ , t

v
ji =

d

sin(ω)

⎡
⎣
1 − cos(ω)

0
sin(ω)

⎤
⎦ , (20)

where d is the displacement towards the Zv direction. It

is easily verifiable that tvji =
[
0 0 1

]T ⇐⇒ Rv
ji =

I ⇐⇒ Rs
ji = I when ω = 0. In this situation, Eq. (16)

greatly simplify as follows:

ec,I1 = ec,I2 = KRsvt
v
ji (21)

= KRsv

[
0 0 1

]T
(22)

= Kr3 . (23)

Notice that the definition of LVP in Eq. (8) matches the

epipole notation in Eq. (23) for straight vehicle motion.

This realization underscores that the nonholonomic motion

inherently ensures a hand-eye constraint between the vehi-

cle and camera.

Furthermore, an analysis of the epipoles projected to a

tangent plane by the projection function Πr3 : S2 → Tr3S
2,

where r3 is the ideal LVP, showcases that Ackermann steer-

ing geometry guarantees convexity in the LVP loss func-

tion. The projection function Πr3 maps an epipole e on the

unit sphere to a point v in the tangent plane. Substituting

Eqs. (4) and (5) in Eqs. (18) and (19) and utilizing small

angle approximations of ω, the x-axis coordinate of v1 and

v2 reduces to

v1,x ≈ ω

(
1

2
+

tvs3
d

)
+O(ω2) , (24)

v2,x ≈ ω

(
−1

2
+

tvs3
d

)
+O(ω2) , (25)

where tvs3 is signed displacement of the camera in the lon-

gitudinal axis w.r.t. to VGCS and O(ω2) denote higher or-

der terms. We define a geodesic loss

Loss(v1,v2) = ||v1 − v2|| , (26)
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Figure 4. Illustration of geodesic loss and probability density
function. (a) Side view. (b) Top view. The bluish-purple color

illustrates the loss function L (Vp) at epipoles mapped to the im-

age. It increases as it gets further away from the LVP. The reddish-

yellow color illustrates the PDF of epipoles sampled from a typical

driving scene. They are highly concentrated near the LVP.

with the ideal scenario resulting in

Losslvp(ω) = |v1,x − v2,x| = |ω| . (27)

Noting that trace is invariant under circular shifts, i.e.,

Tr
(
Rs

ji

)
= Tr

(
RsvR

v
jiR

T
sv

)
= Tr

(
Rv

jiR
T
svRsv

)
=

Tr
(
Rv

ji

)
, we know that ω can be retrieved from Rs

ji with

the axis-angle rotation magnitude γ = cos−1
(

Tr(Rs
ji)−1

2

)
.

Therefore, Fig. 3(c) depicts how Ackermann steering prin-

ciple manifests a convex loss function Loss(v1,v2), which

can be optimized to obtain the optimized LVP

p∗
∞ = Π−1

p

(
argmin

v
L(Vp)

)
, (28)

where Vp is the set of epipole pairs and L (Vp) is the

loss function created from epipole and loss pairs, i.e.,{(
v1,i+v2,i

2 ), Loss(v1,i,v2,i

)}
.

As illustrated by the high Probability Density Function

(PDF) near the LVP in Fig. 4, the nonholonomic constraint

of a ground vehicle naturally causes it to traverse more fre-

quently in the LVP direction and thus allows for sufficient

samples of epipoles and loss pairs near the LVP.

3.3. Robust HL Estimation

As shown in Sec. 3.1, the LVP is a point on the HL,

which means that solving for Eq. (28) provides a highly

confident reference point for HL estimation. Additionally,

since epipoles lie on the HL for planar motion, the prob-

lem simplifies to finding the best direction that aligns the

epipoles. The directional alignment is evaluated by the Un-

normalized Absolute Cosine Similarity (UACS):

Ci(α) = |di · b(α)| , (29)

where the unit vector b(α) = R(α)b0 is formed by ro-

tating an initial basis unit vectors b0 rotated by R(α) =
exp(α[p∗

∞]x) in the tangent plane, given p∗
∞ ∈ R

3. The

goal is to find angle α∗ that maximizes the UACS across all

epipole pairs:

α∗ = arg max
α∈[0,π]

N∑
i=1

Ci(α). (30)

The optimal rotation axis is then determined as

r∗2 = b(α∗)× p∗
∞ , (31)

where b(α∗) ∈ R
3.

3.4. LVP and HL Estimation Pipeline

With N number of elements per batch, the set of relative

poses in batch m is

Tm =
{
{Rs

i+1,i, t
s
i+1,i} | i = 0, 1, . . . , N

}
, (32)

where i denote the time. At the first batch, Eq. (28) requires

a reference point p to project the epipoles to v = Πp(e).
Thus, a unit average epipole direction vector is used instead.

After optimizing Eq. (28), a better LVP estimate of pm=1

is used to project the points and perform HL optimization.

Then, the process repeats with N more new elements of

relative poses added to the set: T1:m = T1:m−1 + Tm.

3.5. Sensor Independent E3DC Formulation

The construction of identifying the HL and LVP allows

the solution to be easily expanded to other sensor modules

such as LiDAR. This is evident since the K matrix used

in Eq. (9) and Eq. (14) is essentially redundant when the

HL and LVP are represented in the unit sphere as shown in

Fig. 2. This signifies the redundancy of K in obtaining the

extrinsic rotation and, therefore, proves that this method is

truly independent of sensors.

4. Results
4.1. Sensitivity Analysis

The v2s extrinsic rotation (Re) is a parameter that can

be influenced by factors such as where the passengers are

seated. As shown in Fig. 5, depending on where passengers

take seat, the extrinsic rotation changes, with a maximum

difference of 0.40 degrees in pitch and 0.29 degrees in roll.

While s2s calibrations are not affected by these difference,

since s2s extrinsics are fixed by the body frame of the vehi-

cle, v2s calibration is susceptible to alteration due to the fact

that the VGCS’s XZ plane remains parallel to the ground

surface plane, even when the vehicle’s body frame is tilted

due to an imbalance of loads.

4.2. Convergence Time

To evaluate the repeatability and consistency of our

method, we conducted tests on 60 driving sequences, each

lasting five minutes, recorded under identical conditions us-

ing the same vehicle. We computed the converged Euler

angles from these sequences. We plotted the percentage of

converged sequences for thresholds of 0.3, 0.5, 0.7, and 1.0

degrees, as shown in Fig. 6. For a 0.5-degree threshold,

roll convergence appears to plateau at 5000 frames, whereas
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Date Sequence Frames

Pitch Yaw Roll

E3DC SX2V E3DC SX2V E3DC SX2V

cam2 cam3 |Δ| cam2 cam3 |Δ| cam2 cam3 |Δ| cam2 cam3 |Δ| cam2 cam3 |Δ| cam2 cam3 |Δ|

10-03

00 4541 0.626 0.596 0.031 -0.905 -0.849 0.057 -0.163 -0.192 0.029 -1.095 -1.299 0.204 0.015 -1.042 1.056 2.254 2.054 0.200
01 1099 0.678 0.597 0.081 -0.775 -0.785 0.010 -0.197 -0.221 0.024 -0.814 -0.915 0.101 -1.538 -1.865 0.327 -0.846 -0.910 0.064
02 4659 0.636 0.646 0.011 -0.928 -0.873 0.055 -0.267 -0.180 0.087 1.683 1.433 0.250 -1.382 -1.151 0.230 1.947 2.260 0.313

avg. - 0.647 0.613 0.034 -0.869 -0.836 0.034 -0.209 -0.198 0.011 -0.075 -0.260 0.185 -0.968 -1.353 0.384 1.119 1.135 0.016
std. dev. - 0.028 0.029 - 0.083 0.046 - 0.053 0.021 - 1.529 1.479 - 0.855 0.447 - 1.708 1.774 -

09-26 03 799 -0.220 -0.188 0.032 -0.305 1.959 2.264 -0.354 -0.214 0.140 -0.780 -5.728 4.948 0.201 0.709 0.508 -0.637 -0.133 0.504

09-30

04 269 0.905 0.888 0.017 -1.311 -1.271 0.040 -0.384 -0.311 0.073 -0.666 -0.851 0.186 1.342 -1.270 2.612 1.404 1.586 0.182
05 2759 0.937 0.955 0.018 -1.017 -1.038 0.021 -0.250 -0.355 0.105 1.250 1.044 0.206 -1.153 -0.948 0.206 1.650 1.631 0.018
06 1099 0.966 0.984 0.018 -1.203 -1.191 0.012 -0.216 -0.183 0.033 -2.073 -2.673 0.600 -1.815 -2.137 0.322 1.041 1.886 0.845

07 1099 0.940 0.939 0.001 -1.269 -1.229 0.040 -0.332 -0.143 0.189 3.670 3.446 0.224 -0.030 -0.096 0.067 0.396 0.257 0.139

08 4069 0.982 0.974 0.008 -1.206 -1.199 0.007 -0.333 -0.293 0.041 0.969 0.809 0.160 -0.317 -0.518 0.201 0.969 1.149 0.180
09 1589 0.969 0.941 0.028 -1.256 -1.222 0.034 -0.359 -0.237 0.122 -7.529 -9.806 2.276 1.466 0.891 0.575 0.976 0.847 0.130
10 1199 0.850 0.815 0.036 -0.177 -0.784 0.608 -0.068 -0.165 0.096 -1.358 -1.139 0.219 -1.345 -0.634 0.711 0.029 0.031 0.002
11 919 0.779 0.737 0.043 -1.198 -1.234 0.036 -0.295 -0.283 0.013 0.325 0.004 0.321 -0.421 -0.700 0.279 0.206 0.799 0.593

12 1059 1.046 1.037 0.009 -1.368 -1.244 0.125 -0.126 -0.152 0.025 13.708 -0.378 14.087 -2.568 -2.422 0.146 0.785 1.112 0.327

avg. - 0.930 0.919 0.020 -1.112 -1.157 0.103 -0.263 -0.236 0.078 0.922 -1.061 2.031 -0.538 -0.870 0.569 0.828 1.033 0.268
std. dev. - 0.078 0.092 - 0.364 0.155 - 0.108 0.078 - 5.697 3.691 - 1.354 1.005 - 0.537 0.623 -

Table 2. The results of v2c via c2c on the KITTI dataset for SX2V and E3DC. The bold denotes better calibration result with small

absolute error.

1 2

43 5
(c)

(b)(a)

(d)

Figure 5. Fluctuation of angles between the VGCS and the SCS
due to passengers. (a) Top view of the car. Seat 1: Driver, Seat 2:

Passenger, Seat 3: Behind driver, Seat 4: Behind passenger, Seat 5:

Back center. (b) Roll angle altered by passenger’s weight. (c) Pitch

angle altered by passenger’s weight. (d) Euler angle differences in

degrees with different seat configurations. The sequential numbers

indicate the seats that were occupied.

pitch and yaw converge around 500 and 1000 frames, re-

spectively. The fast convergence is the result of a combi-

nation of two factors. One factor is that the geodesic loss

provides a metric for assessing whether an obtained epipole

corresponds to the LVP or not. The other factor is that ve-

hicle trajectories are predominantly straight, leading to a

probability density function (PDF) of epipoles that peaks

near the LVP as demonstrated in Fig. 4. This results in

dense sampling near the LVP and faster convergence. Un-

(a) Threshold: 0.3 (b) Threshold: 0.5

(c) Threshold: 0.7 (d) Threshold: 1.0

Roll AUC: 61.9
Pitch AUC: 98.4
Yaw AUC: 95.2  

Roll AUC: 80.4
Pitch AUC: 98.8
Yaw AUC: 98.4  

Roll AUC: 90.3
Pitch AUC: 99.0
Yaw AUC: 99.2  

Roll AUC: 97.2
Pitch AUC: 99.0
Yaw AUC: 99.5  

Figure 6. Convergence of roll, pitch, and yaw for a single front
facing camera. From 60 sequences, each lasting five minutes,

we calculate the final converged Euler angles. With a convergence

threshold of (a) 0.3, (b) 0.5, (c) 0.7, and (d) 1.0 degrees, we plot the

percentage of sequences within the threshold against the frames

progressed.

fortunately, HL estimation is relatively slower since turns

occur less frequently, given the same straight trajectories.

Nonetheless, E3DC shows potential for real-world ap-

plicability. Tesla’s Autopilot functionality requires “highly-

visible lane markings in both the driving lane and adjacent

lanes (at least two lanes over on each side of the vehi-
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Figure 7. Camera Setup of Custom Dataset

cle)” which takes “2-3 hours [29].” Additionally, NVIDIA’s

Driveworks SDK [20] requires an Inertial Measurement

Unit (IMU) to measure roll and requires 3 minutes and 30

seconds for pitch and yaw. Our result in Fig. 6 shows pitch

and yaw convergence by about 33 seconds (1000 frames/30

fps) and roll convergence by about 2 minutes and 46 sec-

onds (5000 frames/30 fps), 45 seconds less than NVIDIA’s.

4.3. Evaluation Method

To estimate the Rc
ji and tcji for cameras, we use a simple

Visual Odometry (VO) implementation that finds features

with Good Features to Track [24] and track them with DIS

optical flow [11]. The relative pose is estimated with the

5-point algorithm [18]. We opted for this basic VO method-

ology to ensure that the computed Rc
ji and tcji accuracies

are representative of the most rudimentary VO pipeline.

Studies focusing on v2s calibration are comparatively

limited, with only one related work, i.e., SX2V [36], having

open-sourced their approach. SX2V employs supervised

deep learning to determine the VPs/HL from environmental

cues. However, it only provides code to detect VPs/HL in an

image, i.e., a world-to-camera calibration task. Therefore,

to determine vehicle-to-world alignment, which in turn re-

sults in v2s calibration, we implemented the rest of the algo-

rithm which calculates the Euler angles when the estimated

angles in a moving window have a standard deviation be-

low 0.02 radians for a 60-frame time window, as describe in

their paper.

KITTI. The KITTI dataset [5] is renowned for its precise

s2s calibration. However, it does not provide v2s transfor-

mations, preventing direct evaluations for E3DC. Therefore,

we indirectly evaluate the accuracy of the v2s calibration

based on the s2s calibration results.

Custom Dataset. Extrinsic rotation calibrations are sus-

ceptible to changes depending on factors such as tire pres-

sure and the number of passengers, as shown in Fig. 5.

This inevitable uncertainty in currently available datasets

prompted us to create our own accurate dataset. We em-

ploy Perspective-n-Point [4] to get the GT. We use laser

line pointers to align an edge of a checkerboard with the

vehicle’s rear axle. With measured XYZ coordinates of the

camera and checkerboard relative to the vehicle and the 2D

annotated corner points in the image, we optimize for the

extrinsic rotation of the camera. We repeat this 5 times

to ensure an accurate measure. To ensure that the extrin-

sic rotations are unaffected by passenger loads, the calibra-

tion procedure and recording were performed with the same

driver seated in the vehicle.

As depicted in Fig. 7, the vehicle is equipped with three

cameras towards the front at 45-degree intervals with cam
1 facing the front and three cameras towards the back at 45-

degree intervals with cam 2 facing the back. A The dataset

encompasses two distinct environments: an urban neighbor-

hood and a parking lot, with each location providing about

9000 frames from a five-minute drive.

4.4. Quantitative Results

Results on KITTI. Based on the analysis in Fig. 5, we

grouped sequences by date. While yaw and roll estimates

may not have fully converged due to the limited num-

ber of long sequences, pitch estimates are highly accurate

and converge quickly. Although KITTI does not provide

groundtruth v2s calibrations, we observed the consistency

of pitch estimates, where the standard deviation of pitch is

merely 0.028, 0.029, 0.078, and 0.092 for cam2 and cam3
in sequences 10-03 and 09-30. The results on KITTI

are shown in Tab. 2. Notably, the average pitch estimates

on 10-03 is 0.647 and 0.613, while they are 0.930 and

0.919 on 09-30, differing for each day, which reinforces

the claim that v2s calibration is susceptible to subtle but

meaningful changes. E3DC also shows low absolute yaw

(a) Neighborhood scene results

(b) Parking Lot scene results

E3DC
SX2V

E3DC Roll
SX2V Roll

E3DC Pitch
SX2V Pitch

E3DC Yaw
SX2V Yaw

Figure 8. Results from two scenes: Neighborhood and
Parking Lot. The green box indicates the zoomed-in region.
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(a
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(b
)

(c
)

(d
) 

SX2V E3DC GT

Figure 9. Visual results on our custom dataset. (a) Images from the corresponding cameras. The yellow box indicates the zoomed-in

region for (b-d). (b) Heat map of the epipoles found throughout a video sequence. (c) Geodesic loss of the epipoles. (d) The horizontal

line represents the HL, and the intersecting point represents the LVP.

differences between the two cameras, with the highest be-

ing 0.140 degrees for sequence 03. The absolute differ-

ence of 0.140 degrees could result from premature yaw es-

timates, as sequence 03 only has 799 frames, slightly short

of the 1000 frames required for yaw convergence. Nonethe-

less, these results are far better than SX2V’s yaw estimates,

where absolute yaw differences reach 4.948 degrees in se-

quence 03, and the standard deviation of yaw estimates

from the same date from 09-30 reaches 5.697, reflect-

ing the highly inconsistent and inaccurate results. E3DC’s

roll performance, on the other hand, is relatively lacking,

exhibiting higher standard deviations in sequences from

09-30. However, it is important to note that the majority of

sequences (03, 04, 06, 07, 10, 11, 12) comprise approxi-

mately 1000 frames or fewer. As indicated in Fig. 6, this du-

ration is insufficient for E3DC’s roll estimate to converge;

convergence is typically observed at around 4500 frames,

corresponding to the longest sequence in the dataset.

Results on Custom Dataset. Fig. 8 shows that E3DC out-

performs SX2V in all viewing directions with median roll,

pitch, yaw errors of 0.17, 0.09, and 0.24 degrees, respec-

tively, for the Neighborhood scene. On the other hand,

SX2V initially failed to find a proper yaw candidate due

to the frequent turns made by the vehicle, highlighting a

key weakness of this method: SX2V requires the vehicle

to traverse a straight road with sufficient lines for a long

enough duration to produce accurate yaw estimates. Con-

sequently, we gradually increased the standard deviation

threshold from 0.02 radians in steps of 0.02 radians until

a yaw estimate was retrieved. The resulting median roll,

pitch, yaw errors of SX2V in the Neighborhood scene

are 4.13, 7.19, and 29.91 degrees, respectively.

SX2V was trained on the front view of a camera. We

were curious about how transferable SX2V is to differ-

ent viewing directions such as camera 3,4,5, and 6. Roll

estimations for camera 1 and camera 2 seem to be

reasonable with only 0.01 and 0.16 degree errors in the

Neighborhood scene. However, 45-degree angle views

for cameras 3,4,5, and 6 resulted in roll estimation errors

of up to 7.54 degrees. While pitch estimation also suffered,

with an average error of 7.40 degrees, yaw estimations were

the most affected, with errors of 33.95, 28.72, 33.97, and

31.09 degrees for cameras 3,4,5, and 6, respectively. This

demonstrates that deep learning networks lack transferabil-

ity across different viewing directions and need to be trained

on all views. In contrast, E3DC shows low average errors

across all views. The qualitative results of E3DC on the

custom dataset are showcased in Fig. 9.

5. Conclusion
This paper introduces E3DC, a sensor-agnostic v2s cal-

ibration method, and demonstrates state-of-the-art perfor-

mance on two datasets. A key attribute of E3DC is its re-

markable simplicity, requiring only the attachment of sen-

sors to the vehicle and standard driving procedures for suc-

cessful calibration. We offer the first v2s calibration dataset

to highlight the importance of v2s calibration.
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