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Abstract

Shadow boundaries can be confused with material
boundaries as both exhibit sharp changes in luminance or
contrast within a scene. However, shadows do not mod-
ify the intrinsic color or texture of surfaces. Therefore,
on both sides of shadow edges traversing regions with
the same material, the original color and texture should
be the same if the shadow is removed properly. These
shadow/shadow-free pairs are very useful but difficult-to-
collect supervision signals. The crucial contribution of
this paper is to learn how to identify those shadow edges
that traverse material-consistent regions and how to use
them as self-supervision for shadow removal refinement
during test time. To achieve this, we fine-tune SAM, an im-
age segmentation foundation model, to produce a shadow-
invariant segmentation and then extract material-consistent
shadow edges by comparing the SAM segmentation with
the shadow mask. Utilizing these shadow edges, we in-
troduce color- and texture-consistency losses to enhance
the shadow removal process. We demonstrate the effec-
tiveness of our method in improving shadow removal re-
sults on more challenging, in-the-wild images, outperform-
ing the state-of-the-art shadow removal methods. Addition-
ally, we propose a new metric and an annotated dataset
for evaluating the performance of shadow removal methods
without the need for paired shadow/shadow-free data. Our
code and dataset are available at: https://github.com/cvlab-
stonybrook/ShadowRemovalRefine

1. Introduction

Shadow edges were extensively studied in early shadow
removal work [12,34,53]. These edges delineate the bound-
ary between shadow and non-shadow areas, providing a
clear indication of the transition in pixel colors and inten-
sity that characterize the shadow, serving as useful super-
vision signals for shadow removal [24, 27, 46]. However,
shadow edges can also coincide with object boundaries. In
these cases, the color and texture differences between the
two sides of the shadow edges result from both the shadow
effect and the different materials, making them difficult to

disentangle. Therefore, identifying shadow edges that cross
areas of consistent material is beneficial for shadow re-
moval. However, this is challenging since object boundaries
can be confused with shadow boundaries as both exhibit
sharp changes in luminance or contrast within a scene. In
this work, we propose a novel method to identify material-
consistent shadow edges and use them as supervision sig-
nals for shadow removal.

To identify material-consistent shadow edges, we pro-
pose to fine-tune SAM [25], an image segmentation foun-
dation model, to produce a shadow-invariant segmentation.
The main idea is to force SAM to output the same seg-
mentation mask, with or without shadows, thereby guiding
the model to be less responsive to the presence of shadows.
We then compare the output shadow-invariant segmentation
with the shadow mask to obtain material-consistent shadow
edges. These are shadow edges that do not coincide with
any material edges from SAM.

These material-consistent shadow edges can be extracted
for any image. We show that at test time, we can extract
these edges and use them as supervision to refine shadow-
removal results. To do so, we sample pixels and patches
alongside the shadow edges to form shadow/shadow-free
pairs. We then introduce two losses: an RGB distance loss
and an RGB distribution loss. The RGB distance loss calcu-
lates the minimum distance between each sampled shadow
and non-shadow pixel along the selected edges to recover
the correct color of the shadow region. The RGB distri-
bution loss computes the Earth Mover’s Distance (EMD)
between the color distributions of the sampled pixels to en-
sure texture consistency alongside the shadow edges. We
further use the Learned Perceptual Image Patch Similarity
(LPIPS) [56] loss on sampled patches within the same ma-
terial to constrain the texture consistency between the non-
edge shadow/non-shadow region. By imposing these con-
straints, we refine the pre-trained model in a self-supervised
manner, enabling adaptation to more complex shadow im-
ages (see Fig. 1).

Further, we propose a novel evaluation metric based on
material-consistent shadow edges, namely Color Distribu-
tion Difference (CDD). In essence, we can evaluate shadow
removal performance by measuring the disparity in pixel
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(a) Input (b) SP+M-Net [26] (c) SP+M-Net+Ours (d) ShadowFormer [14] (e) ShadowFormer+Ours

Figure 1. Examples from our proposed SBU-S (top) and CUHK-S (bottom) testing sets. We show the shadow removal results of two
existing state-of-the-art methods, SP+M-Net [26] and ShadowFormer [14], in columns (b) and (d), respectively, for two challenging cases.
The results of both methods are significantly improved when used jointly with our refinement method, as shown in columns (c) and (e). Our
proposed Color Distribution Difference (CDD) metric for each image is shown in red, which can measure shadow removal performance
without the need for shadow-free images.

color distribution on both sides of the material-consistent
shadow edges. These edges can be easily annotated, even in
cases where shadow-free images are hard to obtain. A lower
CDD value corresponds to a more effective shadow removal
performance, signifying a closer alignment between the tex-
tures on either side of the shadow edge, as shown in Fig. 1.
This new evaluation scheme enables benchmarking shadow
removal methods on challenging, in-the-wild shadow im-
ages. We curate a test set sourced from existing shadow de-
tection datasets, namely SBU [42] and CUHK [21]. These
datasets contain images under complex shadow scenarios,
providing a more comprehensive representation of shadow
images in general. We annotate pixels on both sides of the
shadow edge that belong to the same background material
for each image within the proposed dataset. This bench-
mark test set will serve as a valuable resource for evaluating
the generalizability of shadow removal methods on complex
shadow images.

To summarize, our contributions are as follows:

• We introduce a novel shadow edge extraction mod-
ule designed to identify shadow edges that traverse the
same material. We achieve this by fine-tuning SAM
to generate shadow-invariant segmentation and then
comparing this segmentation with the shadow mask to
perform the extraction.

• We propose a test-time adaptation method that refines
the shadow removal results, which relies on the ex-
tracted self-supervision signal to enforce the material
consistency between shadow and non-shadow regions.

• We curate a dataset featuring shadow images in general
scenes, serving as a benchmark for assessing shadow

removal methods in complex scenarios. We propose a
novel evaluation metric, Color Distribution Difference
(CDD), to assess the shadow removal performance,
even when shadow-free ground truth is not available.

• Experimental results demonstrate that our method can
be seamlessly integrated with existing models, signifi-
cantly enhancing performance on complex shadow im-
ages. Specifically, when combined with two state-of-
the-art shadow removal approaches, SP+M-Net [26]
and ShadowFormer [14], our method outperforms
them by at least 30% on the CDD measurement on our
proposed test set.

2. Related Works

Early-stage shadow removal research [6, 9–11] was mo-
tivated by physical modeling of illumination and color,
typically using a light source-occluder system [1, 22, 39].
The aim was to find useful self-supervision signals to fit
the model and then remove the shadows. Guo et al. [17]
proposed identifying pairs of regions under different il-
luminations within the same material. Several methods
[24, 38, 45, 46] looked for cues at shadow edges, typically
involving hand-crafted features designed to capture illumi-
nation and color changes. However, these methods relied
on idealized assumptions from physical modeling, which
do not align with real-world settings due to the complexity
and variability of shadow appearances.

State-of-the-art shadow removal methods include deep
networks trained end-to-end on pairs of shadow/shadow-
free images [3, 4, 13, 14, 28, 33, 44, 57], taking advantage
of the powerful ability in learning mappings from the train-
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ing pairs. Iterative refinement [7, 8] has also been adopted
for shadow removal, e.g. ARGAN [5], which progressively
removes shadows using a multi-step generator, with each
step refining the output by removing remaining shadows.
Recently, [15, 23, 35, 36] have utilized diffusion models for
shadow removal via iterative denoising. A method similar
to ours is the work of Guo et al. [16] that also explored
boundary cues for shadow removal. They found that their
illumination model was insufficient to model the boundary
region, necessitating additional supervision during training.

A few methods [20, 27, 30] have sought to mitigate
the dependence on paired data. Hu et al. [20] proposed
Mask-ShadowGAN, which utilizes unpaired data to learn
the adaptation from the shadow-free domain to the shadow
domain and vice versa. Le and Samaras [27] introduced
a technique for cropping unpaired patches from the same
shadow image to avoid the need for a shadow-free image.
However, these un-/semi-supervised methods have not sur-
passed their fully-supervised counterparts.

Our method is among the first to employ test-time adap-
tation (TTA) for shadow removal. In general, TTA [41]
aims to enhance a pre-trained model’s performance on spe-
cific test data. Xiao et al. [47] and Yuan et al. [54] pro-
posed energy-based models to align target samples with the
source distribution. MEMO [55] augmented test samples in
various ways to encourage consistent and confident predic-
tions for test-time robustness. TENT [43] focused on the
fully test-time adaptation setting, similar to ours, by using
only test data and a specific test loss for adaptation. In our
case, we search for supervision from each testing sample
for test-time adaption. By leveraging the learning capacity
of deep models and the guidance from material-consistent
edges, we propose extracting self-supervision signals for re-
fining shadow removal performance during inference.

3. Method

In this section, we describe our novel self-supervised
test-time adaptation method for refining shadow removal
given a shadow image and its shadow mask. Our approach
introduces a shadow edge extraction module that leverages
shadow/non-shadow pairs along shadow edges to provide
supervision. We fine-tune the Segment Anything Model
(SAM) [25] to segment materials regardless of shadows, en-
abling the identification of shadow edges crossing the same
material.

During inference, shadow edges guide an iterative re-
finement process that adjusts shadow removal by analyzing
color transitions across edges and enforcing texture consis-
tency within material masks. This self-supervised adapta-
tion improves pre-trained shadow removal models, achiev-
ing robust results on complex real-world shadow images.

Input Vanilla SAM Fine-tuned SAM

Figure 2. Fine-tuning SAM for Material-Consistent Edge Ex-
traction. Given the input image, we compare the segmentation
results of the vanilla SAM [25] with our fine-tuned SAM. Our
fine-tuned SAM achieves shadow-invariant segmentation, preserv-
ing the material consistency of each mask. In contrast, the vanilla
SAM is sensitive to shadow presence, segmenting shadow regions
as individual masks.

3.1. Material-Consistent Shadow Edge Extraction

Shadow edges mark the boundaries between shadow and
shadow-free areas. The regions on either side of these edges
offer potential supervision for shadow removal, as they con-
tain areas with matching colors and textures. However,
not all shadow edges reflect consistent underlying materi-
als. For instance, when the shadow edges align with object
boundaries, the two sides of the shadow edges display dis-
parate colors and textures, lacking material consistency and
rendering them unsuitable for supervising shadow removal.
To address this, we propose segmenting materials in the im-
age and selecting only shadow edges that traverse the same
material, ensuring reliable and consistent supervision.

We fine-tune the Segment Anything Model (SAM) to
produce shadow-invariant material segmentations. While
vanilla SAM excels in semantic segmentation, its sensitivity
to shadows often causes partially shadowed materials to be
split into separate masks (Fig. 2). To address this, we freeze
the image and prompt encoders and fine-tune only the mask
decoder, following a common strategy [2, 48]. Unlike [2],
which adapts prompt encoders, we use the default uniform
grid of point prompts [25] on shadow images. SAM is fine-
tuned to achieve shadow-invariant segmentation by aligning
its outputs with segmentations from shadow-free counter-
parts. This is enforced using Dice Loss [40], ensuring sim-
ilarity between masks predicted with and without shadows.
The fine-tuned SAM effectively produces shadow-invariant
material segmentations, as shown in Fig. 2.

For a given test image, we compare the shadow mask
with the fine-tuned SAM segments, which highlight same-
material boundaries. Shadow edges intersecting SAM seg-
ments are identified as material-consistent shadow edges.
This allows us to extract edges crossing the same material
and sample pixels near these edges, as well as patches from
shadow and non-shadow regions, enabling effective super-
vision for shadow removal.
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Input&Mask MC Masks MC Pixels MC Patches

Figure 3. Supervision for the adaptation. Given the input image
and the shadow mask, we first use the fine-tuned SAM to produce
material-consistent (MC) masks. We sample pixels on both sides
alongside the MC shadow edge, denoted as Sin (shown in red)
and Sout (shown in green), and patches within the same material,
denoted as Pin (shown in red) and Pout (shown in green). Pixels
and patches on both sides of the shadow edge provide supervision
for the subsequent adaptation process.

3.2. Test-time Adaptation

Due to the complexity and variability in shadow ap-
pearances, existing methods often struggle when confronted
with out-of-distribution shadow images, leading to residual
shadow effects. To address this challenge, we propose an
iterative adaptation approach for pre-trained models based
on supervision derived from shadow edges and shadow-
invariant segmentation masks.

To ensure color consistency between the shadow and
non-shadow regions, we sample pixels along the extracted
shadow edges, denoted as Sin and Sout (see Fig. 3). Sin =
{u1, . . . , ui, . . . , uM}, i ∈ [1,M ] represents the pixels
inside the shadow boundary, obtained by subtracting an
eroded shadow mask from the original shadow mask. Sim-
ilarly, Sout = {v1, . . . , vj , . . . , vN}, j ∈ [1, N ] is obtained
by subtracting the shadow mask from its dilated version. To
smooth out the boundaries of the binary shadow mask, we
apply dilation and erosion operations to the shadow mask
before subtraction. We then introduce two novel losses to
constrain color consistency: 1) The RGB distance loss cal-
culates the mean of the minimum distance between each
pixel in Sin and all pixels in Sout, enforcing the restoration
of the correct color of the shadow region; 2) The RGB dis-
tribution loss computes the Earth Mover’s Distance (EMD)
between the color distributions of the two sets of sampled
pixels, ensuring consistency in color distributions within the
sampled pixel sets. The losses are formulated as:

Ldistance =

∑M
i=1 minj∈[1,N ] d(ui, vj)

M
, (1)

Ldistribution = EMD([Hist(Sin), Hist(Sout)]), (2)

where d(u, v) denotes the Euclidean distance between two
pixels in RGB color space, and Hist(S) is the histogram of
sampled pixel colors across RGB channels.

To ensure texture consistency between the shadow
and non-shadow regions, we randomly sample 16 × 16
patches within the segmentation mask of the same ma-
terial, denoted as Pin and Pout (see Fig. 3). Pin =
{p1, . . . , pi, . . . , pM}, i ∈ [1,M ] represents patches in the
shadow region, Pout = {q1, . . . , qj , . . . , qN}, j ∈ [1, N ]
represents patches in the non-shadow region. Note that, to
ensure the patches are within the material masks, we apply
an erosion operation to the material mask before sampling.
We then compute the mean of the minimum of the Learned
Perceptual Image Patch Similarity (LPIPS) [56] loss be-
tween each patch in the shadow region and all patches in
the non-shadow region. The loss is formulated as follows:

Lper =

∑M
i=1 minj∈[1,N ] LPIPS(pi, qj)

M
, (3)

We compute the average across all material masks for
Ldistance,Ldistribution, and Lper. Finally, the pre-trained
shadow removal model is updated iteratively to adapt to
each testing case, using the weighted sum of all three losses:

Ltotal = λ1 ·Ldistance+λ2 ·Ldistribution+λ3 ·Lper, (4)

where (λ1, λ2, λ3) are controlling parameters.
Our method can be seamlessly integrated into existing

pre-trained models. The shadow edge extraction serves as a
standalone module while minimizing the proposed losses is
the training objective of the pre-trained models.

4. New Benchmark Test set and Evaluation
Metric

The most commonly used datasets for shadow removal
training and evaluation are ISTD [44], ISTD+ [26], and
SRD [37], which provide triplets of shadow image, shadow
mask, and shadow-free ground truth. However, these
datasets contain only simple shadows as they lack occluders
within the image. We argue that the current evaluation data
is insufficient to assess the adaptability of current shadow
removal methods due to limitations in data diversity. Col-
lecting paired data is laborious [18, 19, 29, 31, 32, 49–52],
with inherent limitations in diversity.

To address this gap, we curate a benchmark test set of
shadow images in the wild. These images are sourced from
existing shadow detection datasets, namely SBU [42] and
CUHK [21], exhibiting more complex scenes and larger
variations in illumination, thus better representing shadow
images in real-world scenarios. The proposed dataset con-
tains 400 images in total. Among them, 210 shadow im-
ages are from SBU (SBU-S), and 190 images from CUHK
(CUHK-S). To enable assessment of shadow removal per-
formance on the proposed benchmark test set, we annotate
pixels alongside the shadow edges that traverse the same
material for each image in the dataset, examples of images
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(a) Shadow Images from SBU-S (b) Shadow Images from CUHK-S

Figure 4. Example images from our proposed benchmark test
set for shadow removal performance evaluation. Annotated pix-
els alongside the shadow edges are also shown for each image:
Sin in red and Sout in green. (a) shows examples from SBU-S,
and (b) shows images from CUHK-S.

and corresponding annotations are shown in Fig. 4. We be-
lieve that this dataset can serve as a valuable resource for
evaluating shadow removal performance on general shadow
images in real-world scenarios.

Another challenge in assessing shadow removal for
shadow images in the wild is the lack of an evaluation met-
ric. All current metrics used in shadow removal evaluation,
e.g. Mean Absolute Error (MAE), Peak Signal-to-Noise Ra-
tio (PSNR), and Structural Similarity Index (SSIM), require
comparison between the shadow-removed result and the
ground truth shadow-free image. However, due to the com-
plexity of real-world scenarios, obtaining the shadow-free
version of the scene is impractical.

To tackle the absence of an effective evaluation metric,
we propose a straightforward metric called Color Distribu-
tion Difference (CDD). CDD is grounded in the assump-
tion that the area alongside the shadow edge maintains the
same underlying texture. The CDD metric calculates the
Earth Mover’s Distance (EMD) between the color distribu-
tion histograms of pixels on both sides of the shadow edges.

CDD = EMD([Hist(S), Hist(NS)]) (5)

where S,NS denotes the pixel sets in the shadow region
and the non-shadow region, respectively.

The CDD quantifies the disparity in color distribution
and is correlated with the quality of shadow removal perfor-
mance. A lower mean CDD value indicates a better shadow-
removal outcome, reflecting alignment between the colors
on both sides of the shadow edge. A lower variance sug-
gests more consistent performance across various shadow
appearances, illustrating the method’s generalizability.

5. Experiments
Implementation Details. The proposed method is imple-
mented using PyTorch. All experiments are conducted on

Table 1. Comparison with SOTA models. We report the perfor-
mance of existing state-of-the-art (SOTA) methods on our pro-
posed test set and compare them with our adaptation method.
CDD mean and variance values are provided, note that these val-
ues are reported as 1000× the original value. ∗ denotes that only
the SRD pre-trained model is available for evaluation.

Methods CUHK-S SBU-S

CDD Mean CDD Var CDD Mean CDD Var

Input 291.6 125.0 279.0 119.0

Inpaint4Shadow [33] 25.3 36.0 28.6 40.7

ShadowDiffusion∗ [15] 50.2 89.1 82.3 111.9
ShadowDiffusion∗+Ours 48.7 77.1 78.2 103.4

SP+M-Net [26] 41.7 52.9 43.0 54.9
SP+M-Net+Ours 22.2 36.5 23.9 46.7

ShadowFormer [14] 23.3 33.6 27.9 45.4
ShadowFormer+Ours 16.4 31.9 15.0 26.3

an NVIDIA TITAN RTX GPU. We apply our method to
three models, ShadowDiffusion [15], SP+M-Net [26] and
ShadowFormer [14]. Hyperparameters are set to be the
same as in the training phase, except for the learning rate,
which is set to 1e−5. During the adaptation process, we up-
date the pre-trained model for 20 iterations per image. The
refining parameters λ1, λ2 and λ3 are set to 1, 1, 0.1 in our
experiments. More details are in the supplementary.
Datasets and Evaluation Metrics. We evaluate shadow re-
moval performance for images in the wild on our proposed
test set, comprising 400 shadow images from SBU [42] and
CUHK [21], with material-consistent shadow edge pixels
annotated for each image. As shadow-free images are not
available in our test set, we use the proposed Color Distribu-
tion Difference (CDD) as the quantitative evaluation metric.
Additional evaluation results on the ISTD+ [26] dataset are
provided in the supplementary material.

5.1. Comparison with SOTA Models

To demonstrate the seamless integration of our proposed
adaptation method with existing shadow removal models,
we apply it on top of three state-of-the-art (SOTA) models:
SP+M-Net [26], a CNN-based model, ShadowFormer [14],
a Transformer-based model, and ShadowDiffusion [15], a
diffusion-based model.
Quantitative evaluation. For fair comparison, we evalu-
ate the performance of all existing methods using models
trained on the ISTD+ dataset (except for ShadowDiffusion,
where only the SRD-trained model is available). As shown
in Tab. 1, our adaptation method enables all three methods
to surpass their original results, with ShadowFormer achiev-
ing the best performance when our adaptation is applied.
The high errors from existing SOTA methods indicate lim-
ited adaptability to various complex shadow scenes in the
wild, as they are trained on simple and limited scenes. In
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(a) Input (b) SP+M-Net [26] (c) [26]+Ours (d) ShadowFormer [14] (e) [14]+Ours

Figure 5. Examples from test cases in our proposed dataset, (a) shows input images from our curated dataset; the first three rows are from
SBU-S, and the last two rows are from CUHK-S. (b) and (c) present results from the pre-trained and refined SP+M-Net [26]. (d) and (e)
show results from the pre-trained and refined ShadowFormer [14].

contrast, our adaptation method leverages self-supervision
from shadow edges in each image, refining each case during
test time. Notably, the SRD-trained ShadowDiffusion per-
forms the worst among the SOTA methods due to the inten-
sity differences between the training shadow and shadow-
free pairs, which we discuss further in Sec. 5.4.

Qualitative evaluation. As shown in Fig. 5, we demon-
strate the improvement with our proposed adaptation
method on both base models. Column (a) shows the in-
put shadow images. In columns (b) and (d), we can see
that the pre-trained models struggle with complex shadows
of various shapes, near the dark materials, and with visible
occluders in the scene, resulting in obvious artifacts in the
shadow region. With our adaptation method, as shown in
columns (c) and (e), we fix the color shift in the shadow

region. This is because our proposed adaptation constrains
the color and texture consistency between the shadow and
non-shadow regions.

5.2. Usefulness of CDD

We propose the Color Distribution Difference (CDD)
metric to address the lack of evaluation metrics for shadow
removal in real-world scenarios, where existing metrics rely
on ground truth shadow-free images. To validate the useful-
ness of our CDD metric, we plot the Mean Absolute Error
(MAE) values alongside the CDD values for each shadow
image in the ISTD+ test set [26] in Fig. 6. The plot demon-
strates a strong correlation between the two metrics, high-
lighting that CDD serves as a reliable alternative for evaluat-
ing shadow removal methods in the absence of shadow-free
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Figure 6. Per-image CDD and MAE errors for shadow images in
the ISTD+ [26] test set. Each point represents the CDD and MAE
errors computed for a single image. The two metrics are highly
correlated. Note that measuring MAE requires a paired shadow-
free image while measuring the proposed CDD only requires an-
notating MC-shadow edges in the input shadow image.

Input Vanilla SAM Fine-tuned SAM

Figure 7. Comparison of vanilla SAM and fine-tuned SAM on
test images. Our fine-tuned SAM predicts shadow-invariant masks
while vanilla SAM is sensitive to shadow regions.

ground truth images.

5.3. Ablation Studies

The effect of Fine-tuned SAM. We fine-tune the Segment
Anything Model [25] to extract shadow edges that traverse
the same material. In Fig. 7, we demonstrate that the fine-
tuned SAM produces shadow-invariant masks. Addition-
ally, Tab. 2 compares the performance of using vanilla SAM
and our fine-tuned SAM for adaptation. The latter surpasses
the former due to its reduced sensitivity to shadow presence.
The effectiveness of the Proposed Adaptation Method.
Tab. 2 shows evaluations of different configurations for the
adaptation method. We find that the proposed approach,
which combines fine-tuned SAM edge extraction with pixel
and patch sampling for supervision, yields the best over-
all results. “Per Mask” refines the edge pixels and patches
on each SAM-detected material mask that intersects with
the shadow mask, and “Pixels” refines only the pixels on

Table 2. Quantitative results for different configurations of the
adaptation method and with different loss settings. We report the
CDD mean and variance values on our proposed dataset. Note that
the CDD values are reported as 1000× the original value.

CUHK-S SBU-S

Configurations CDD Mean CDD Var CDD Mean CDD Var

VanillaSAM+Pixels&Patches 19.6 34.4 21.3 44.9
FinetunedSAM+Per Mask 16.9 29.3 16.8 33.6
FinetunedSAM+Pixels 16.9 32.1 15.5 27.0
FinetunedSAM+Pixels&Patches 16.4 31.9 15.0 26.3

Losses CDD Mean CDD Var CDD Mean CDD Var

All losses 16.4 31.9 15.0 26.3
- Ldistance 16.8 32.7 15.0 25.8
- Ldistribution 19.2 30.9 21.4 43.6
- Lper 16.9 32.1 15.5 27.0

Input Per Mask Pixels Pixels&Patches

Figure 8. Comparison of different refinement configurations. Re-
fining pixels on all extracted shadow edges and patches per mate-
rial mask yields the best performance.

Input [14] All Edges MC Edges

Figure 9. Example of the proposed edge extraction. We show the
refined outputs using all shadow edges (colored in red), and the re-
fined outputs using only our extracted material-consistent shadow
edges (colored in green). Using the extracted MC edges improves
the performance from 0.0372 to 0.0039.

all extracted edges at once. We can see that the “Pix-
els&Patches” configuration achieves the best overall results
(shown in Fig. 8), as it maintains texture consistency within
each material while ensuring global consistency across all
the extracted shadow edges. When no edge extraction is
performed, the entire shadow edge is used, including those
edges coinciding with material boundaries. The adaptation
process is misguided because these edges separate different
materials on either side, as depicted in Fig. 9.

Proposed Losses. Our adaptation method comprises three
loss functions. In Tab. 2, we present experimental results
from the ablation of each of these losses. Ldistance and
Ldistribution enforce color matching and distribution align-
ment along the shadow edges, while the Lper ensures tex-
ture consistency within the same material. The combination
of these three losses yields the best performance.
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Table 3. Quantitative results of cross dataset testing. ISTD pre-
trained ShadowFormer and SRD pre-trained ShadowFormer are
tested on the ISTD+ test set.

Trained On Tested On Methods MAE CDD

S NS A Mean Var

SRD ISTD+ w.o. Ours 13.7 3.4 5.1 55.0 43.3

w. Ours 6.2 2.4 3.0 8.0 9.4

ISTD ISTD+ w.o. Ours 10.6 6.3 7.0 11.8 17.7

w. Ours 6.3 2.7 3.4 1.0 3.1

(a) Input (b) [14] (c) [14]+Ours (d) GT

Figure 10. Qualitative comparison in cross dataset testing. We use
ISTD pre-trained ShadowFormer and test it on the ISTD+ test set.
(a) shows input image, (b) shows ShadowFormer [14] result, (c)
presents the results with refinement, and (d) presents the ground
truth. Error maps are also plotted in the corner.

5.4. Cross-Dataset Testing

To further demonstrate the performance of our adapta-
tion method on out-of-distribution images, we apply our
method to ShadowFormer [14] pre-trained on the SRD
dataset [37] (shadow masks provided by DHAN [4]) and
the ISTD dataset [44], testing on the ISTD+ test set. Note
that images from the SRD and ISTD datasets exhibit differ-
ent light intensities between training shadow and shadow-
free image pairs due to the image acquisition process. As
a result, models pre-trained on these datasets often alter the
overall color intensity of the whole input image.

To address this, we further calculate the Mean Squared
Error (MSE) loss of the non-shadow region pixels, denoted
as Lnonshadow. Tab. 3 presents the ISTD+ test results for
these models with and without our proposed adaptation
method. With our adaptation, the output images exhibit cor-
rect colors for both shadow and non-shadow regions, out-
performing pre-trained models in both MAE and CDD mea-
surements. As illustrated in Fig. 10, the ISTD pre-trained
model alters the overall light intensity of the image, result-
ing in subpar performance on ISTD+ test cases. In contrast,
our adaptation method effectively corrects this error by in-
corporating Lnonshadow, which enforces color consistency
in the non-shadow regions.

(a) Input (b) [15] (c) [33] (d) Ours

Figure 11. Limitation on shadow edges. Results of SOTA meth-
ods on our test images show visible edge artifacts caused by the
limited adaptability of pre-trained models. Our refinement mainly
focuses on addressing color discrepancies in the shadow regions.

5.5. Limitations

Our adaptation method has several limitations that can
be interesting directions for future work. First, we do not
enforce specific constraints on penumbra shadow regions.
Handling the smoothly varying shadow effects in those ar-
eas is challenging for all shadow removal methods, includ-
ing ours, which often leaves noticeable shadow edge arti-
facts (see Fig. 11). While our method focuses on correct-
ing color discrepancies, future research could explore miti-
gating edge artifacts, particularly for out-of-distribution test
cases. Second, our approach involves iterative refinement
of the pre-trained model using extracted self-supervision,
leading to a computational overhead of approximately 24
seconds per image. Finally, we primarily focus on the su-
pervision obtained from material-consistent edges, but the
remaining portions of the shadow edge might also help un-
derstand and remove shadows.

6. Conclusion
We introduce a test-time self-supervised adaptation

method for deep-learning-based shadow removal. To gather
the supervision signal, we fine-tune the image foundation
model, SAM, to generate shadow-invariant segmentation
masks, effectively extracting shadow edges that traverse the
same material. Pixels near these edges and patches within
the same material provide valuable supervision. We then
propose an iterative adaptation approach for the pre-trained
model using the collected supervision to ensure color and
texture consistency. We demonstrate that our proposed
losses significantly enhance deep shadow removal, both
qualitatively and quantitatively, across various challenging
testing cases. Furthermore, we introduce a benchmark test
set and a metric that enable the evaluation of shadow re-
moval methods on images with complex shadows, even in
the absence of shadow-free ground truth images.

Acknowledgment. This research was partially supported
by NSF grant IIS-2212046.

2638



References
[1] Harry Barrow, J Tenenbaum, A Hanson, and E Riseman. Re-

covering intrinsic scene characteristics. Comput. vis. syst,
2(3-26):2, 1978. 2

[2] Tianrun Chen, Lanyun Zhu, Chaotao Deng, Runlong Cao,
Yan Wang, Shangzhan Zhang, Zejian Li, Lingyun Sun, Ying
Zang, and Papa Mao. Sam-adapter: Adapting segment
anything in underperformed scenes. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3367–3375, 2023. 3

[3] Zipei Chen, Chengjiang Long, Ling Zhang, and Chunxia
Xiao. Canet: A context-aware network for shadow removal.
In Proceedings of the IEEE/CVF international conference on
computer vision, pages 4743–4752, 2021. 2

[4] Xiaodong Cun, Chi-Man Pun, and Cheng Shi. Towards
ghost-free shadow removal via dual hierarchical aggrega-
tion network and shadow matting gan. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
pages 10680–10687, 2020. 2, 8

[5] Bin Ding, Chengjiang Long, Ling Zhang, and Chunxia
Xiao. Argan: Attentive recurrent generative adversarial net-
work for shadow detection and removal. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 10213–10222, 2019. 3

[6] Mark S Drew, Graham D Finlayson, and Steven D Hordley.
Recovery of chromaticity image free from shadows via illu-
mination invariance. In IEEE Workshop on Color and Photo-
metric Methods in Computer Vision, ICCV’03, pages 32–39,
2003. 2

[7] Nikita Durasov, Nik Dorndorf, Hieu Le, and Pascal Fua.
Zigzag: Universal sampling-free uncertainty estimation
through two-step inference. Transactions on Machine Learn-
ing Research, 2024. 3

[8] Nikita Durasov, Doruk Oner, Jonathan Donier, Hieu Le, and
Pascal Fua. Enabling uncertainty estimation in iterative neu-
ral networks. In Forty-first International Conference on Ma-
chine Learning, 2024. 3

[9] Graham D Finlayson and Mark S Drew. 4-sensor camera cal-
ibration for image representation invariant to shading, shad-
ows, lighting, and specularities. In Proceedings Eighth IEEE
International Conference on Computer Vision. ICCV 2001,
volume 2, pages 473–480. IEEE, 2001. 2

[10] Graham D Finlayson, Mark S Drew, and Cheng Lu. Entropy
minimization for shadow removal. International Journal of
Computer Vision, 85(1):35–57, 2009. 2

[11] Graham D Finlayson, Steven D Hordley, and Mark S
Drew. Removing shadows from images. In Computer Vi-
sion—ECCV 2002: 7th European Conference on Computer
Vision Copenhagen, Denmark, May 28–31, 2002 Proceed-
ings, Part IV 7, pages 823–836. Springer, 2002. 2

[12] Graham D Finlayson, Steven D Hordley, Cheng Lu, and
Mark S Drew. On the removal of shadows from images.
IEEE transactions on pattern analysis and machine intelli-
gence, 28(1):59–68, 2005. 1

[13] Lan Fu, Changqing Zhou, Qing Guo, Felix Juefei-Xu,
Hongkai Yu, Wei Feng, Yang Liu, and Song Wang. Auto-
exposure fusion for single-image shadow removal. In Pro-

ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10571–10580, 2021. 2

[14] Lanqing Guo, Siyu Huang, Ding Liu, Hao Cheng, and Bihan
Wen. Shadowformer: Global context helps image shadow
removal. arXiv preprint arXiv:2302.01650, 2023. 2, 5, 6, 7,
8

[15] Lanqing Guo, Chong Wang, Wenhan Yang, Siyu Huang,
Yufei Wang, Hanspeter Pfister, and Bihan Wen. Shadowd-
iffusion: When degradation prior meets diffusion model for
shadow removal. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14049–14058, 2023. 3, 5, 8

[16] Lanqing Guo, Chong Wang, Wenhan Yang, Yufei Wang,
and Bihan Wen. Boundary-aware divide and conquer: A
diffusion-based solution for unsupervised shadow removal.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 13045–13054, 2023. 3

[17] Ruiqi Guo, Qieyun Dai, and Derek Hoiem. Paired regions for
shadow detection and removal. IEEE transactions on pattern
analysis and machine intelligence, 35(12):2956–2967, 2012.
2

[18] Prantik Howlader, Srijan Das, Hieu Le, and Dimitris Sama-
ras. Beyond pixels: Semi-supervised semantic segmenta-
tion with a multi-scale patch-based multi-label classifier. In
ECCV, 2024. 4

[19] Prantik Howlader, Hieu Le, and Dimitris Samaras. Weight-
ing pseudo-labels via high-activation feature index similarity
and object detection for semi-supervised segmentation. In
ECCV, 2024. 4

[20] Xiaowei Hu, Yitong Jiang, Chi-Wing Fu, and Pheng-Ann
Heng. Mask-shadowgan: Learning to remove shadows from
unpaired data. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 2472–2481,
2019. 3

[21] Xiaowei Hu, Tianyu Wang, Chi-Wing Fu, Yitong Jiang,
Qiong Wang, and Pheng-Ann Heng. Revisiting shadow de-
tection: A new benchmark dataset for complex world. IEEE
Transactions on Image Processing, 30:1925–1934, 2021. 2,
4, 5

[22] Xiang Huang, Gang Hua, Jack Tumblin, and Lance
Williams. What characterizes a shadow boundary under the
sun and sky? In 2011 international conference on computer
vision, pages 898–905. IEEE, 2011. 2

[23] Yeying Jin, Wei Ye, Wenhan Yang, Yuan Yuan, and Robby T
Tan. Des3: Adaptive attention-driven self and soft shadow
removal using vit similarity. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, number 3,
pages 2634–2642, 2024. 3

[24] Salman H Khan, Mohammed Bennamoun, Ferdous Sohel,
and Roberto Togneri. Automatic shadow detection and re-
moval from a single image. IEEE transactions on pattern
analysis and machine intelligence, 38(3):431–446, 2015. 1,
2

[25] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE/CVF International Con-

2639



ference on Computer Vision, pages 4015–4026, 2023. 1, 3,
7

[26] Hieu Le and Dimitris Samaras. Shadow removal via shadow
image decomposition. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 8578–
8587, 2019. 2, 4, 5, 6, 7

[27] Hieu Le and Dimitris Samaras. From shadow segmentation
to shadow removal. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XI 16, pages 264–281. Springer, 2020. 1,
3

[28] Hieu Le and Dimitris Samaras. Physics-based shadow im-
age decomposition for shadow removal. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(12):9088–
9101, 2021. 2

[29] Hieu Le, Dimitris Samaras, and Heather J Lynch. A con-
volutional neural network architecture designed for the auto-
mated survey of seabird colonies. Remote Sensing in Ecology
and Conservation, 8(2):251–262, 2022. 4

[30] Hieu Le, Tomas F Yago Vicente, Vu Nguyen, Minh Hoai,
and Dimitris Samaras. A+ d net: Training a shadow de-
tector with adversarial shadow attenuation. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 662–678, 2018. 3

[31] Hieu Le, Chen-Ping Yu, Gregory Zelinsky, and Dimitris
Samaras. Co-localization with category-consistent features
and geodesic distance propagation. In Proceedings of the
IEEE International Conference on Computer Vision Work-
shops, pages 1103–1112, 2017. 4

[32] Hieu M Le, Bento Collares Gonçalves, Dimitris Samaras,
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