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Abstract

The advancement of autonomous driving systems hinges
on the ability to achieve low-latency and high-accuracy per-
ception. To address this critical need, this paper introduces
Dynamic Routering Network (DyRoNet), a low-rank en-
hanced dynamic routing framework designed for streaming
perception in autonomous driving systems. DyRoNet inte-
grates a suite of pre-trained branch networks, each metic-
ulously fine-tuned to function under distinct environmental
conditions. At its core, the framework offers a speed router
module, developed to assess and route input data to the
most suitable branch for processing. This approach not only
addresses the inherent limitations of conventional models
in adapting to diverse driving conditions but also ensures
the balance between performance and efficiency. Extensive
experimental evaluations demonstrating the adaptability of
DyRoNet to diverse branch selection strategies, resulting in
significant performance enhancements across different sce-
narios. This work not only establishes a new benchmark for
streaming perception but also provides valuable engineer-
ing insights for future work.1

1. Introduction
In autonomous driving systems, it is crucial to achieve

low-latency and high-precision perception. Traditional ob-
ject detection algorithms [38], while effective in various
contexts, often confront the challenge of latency due to in-
herent computational delays. This lag between algorithmic
processing and real-world states can lead to notable dis-
crepancies between predicted and actual object locations.
Such latency issues have been extensively reported and are

*This work was completed during visit to CMU and Alibaba.
†Corresponding author, also a Visiting Assistant Professor at CMU.
1Project: https://tastevision.github.io/DyRoNet/

Figure 1. Illustration of DyRoNet’s adaptive selection mechanism
in streaming perception, contrasting with static traditional meth-
ods in complex environments [Best viewed in color and enlarged].

known to significantly impact the decision-making process
in autonomous driving systems [3].

Addressing these challenges, the concept of streaming
perception has been introduced as a response [19]. This per-
ception task aims to predict “future” results by accounting
for the delays incurred during the frame processing stage.
Unlike traditional methods that primarily focus on detec-
tion at a given moment, streaming perception transcends
this limitation by anticipating future environmental states,
and aligning perceptual outputs closer to real-time dynam-
ics. This new paradigm is key in addressing the critical
gap between real-time processing and real-world changes,
thereby enhancing the safety and reliability of autonomous
driving systems [21].

Although the existing streaming approach seems promis-
ing, it still faces contradictions in real-world scenarios.
These contradictions primarily stem from the diverse and
unpredictable nature of driving environments. The factors
such as camera motion, weather conditions, lighting vari-
ations, and the presence of small objects seriously impact
the performance of perception measures, leading to fluc-
tuations that challenge their robustness and reliability (see
Sec. 3.1). This complexity in real-world scenarios under-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5959



scores the limitations of a single, uniform model, which
often struggles to adapt to the varied demands of different
driving conditions [7]. In general, the challenges of stream-
ing perception mainly include:

(1) Diverse Scenario Distribution: Autonomous driving
environments are inherently complex and dynamic, show-
ing a myriad of scenarios that a single perception model
may not adequately address (see Fig. 1). The need to
customize perception algorithms to specific environmen-
tal conditions, while ensuring that these models operate
cohesively, poses a significant challenge. As discussed in
Sec. 3.1, adapting models to various scenarios without com-
promising their core functionality is a crucial aspect of
streaming perception.

(2) Performance-Efficiency Balance: To our knowledge,
the integration of both large and small-scale models is es-
sential to handle the varying complexities encountered in
different driving scenes. The large models, while poten-
tially more accurate, may suffer from increased latency,
whereas smaller models may offer faster inference at the
cost of reduced accuracy. Balancing performance and effi-
ciency, therefore, becomes a challenging task. In Sec. 3.1,
we explore the strategies for optimizing this balance, ex-
ploring how different model architectures can be effectively
utilized to enhance streaming perception.

Generally speaking, these challenges highlight the de-
mand for streaming perception. As we study in Sec. 3.1,
addressing the diverse scenario distribution and achieving
an optimal balance between performance and efficiency are
key to advancing the state-of-the-art in autonomous driving.
To address the intricate challenges presented by real-world
streaming perception, we introduce DyRoNet, a framework
designed to enhance dynamic routing capabilities in au-
tonomous driving systems. DyRoNet stands as a low-rank
enhanced dynamic routing framework, specifically crafted
to cater to the requirements of streaming perception. It
encapsulates a suite of pre-trained branch networks, each
meticulously fine-tuned to optimally function under distinct
environmental conditions. A key component of DyRoNet
is the speed router module, ingeniously developed to assess
and efficiently route input to the optimal branch, as detailed
in Sec. 3.2. To sum up, the contributions are listed as:

• We emphasize the impact of environmental speed as
a key determinant of streaming perception. Through
analysis of various environmental factors, our research
highlights the imperative need for adaptive perception
responsive to dynamic conditions.

• By utilizing a variety of streaming perception tech-
niques, DyRoNet provides the speed router as a ma-
jor invention. This component dynamically determines
the best route for handling each input, ensuring effi-
ciency and accuracy in perception. The ability to adapt

and be versatile is demonstrated by this dynamic route-
choosing mechanism.

• Extensive experimental evaluations have demonstrated
that DyRoNet is capable of adapting to diverse branch
selection strategies, resulting in a substantial enhance-
ment of performance across various branch structures.
This not only validates the framework’s wide-ranging
applicability but also confirms its effectiveness in han-
dling different real-world scenarios.

2. Related Work
This section revisits developments in streaming percep-

tion and dynamic neural networks, highlighting differences
from our proposed DyRoNet framework. While existing
methods have made progress, limitations persist in address-
ing real-world autonomous driving complexity.

2.1. Streaming Perception

The existing streaming perception methods fall into
three main categories. (1) The initial methods focused
on single-frame, with models like YOLOv5 [14] and
YOLOX [5] achieving real-time performance. However,
lacking motion trend capture, they struggle in dynamic
scenarios. (2) The recent approaches incorporated current
and historical frames, like StreamYOLO [33] building on
YOLOX with dual-flow fusion. LongShortNet [18] used
longer histories and diverse fusion. DAMO-StreamNet [9]
added asymmetric distillation and deformable convolutions
to improve large object perception. (3) Recognizing the
limitations of single models, current methods explore dy-
namic multi-model systems. One approach [6] adapts mod-
els to environments via reinforcement learning. DaDe [13]
extends StreamYOLO by calculating delays to determine
frame steps. A later version [12] added multi-branch pre-
diction heads. Beyond 2D detection, streaming perception
expands into optical flow, tracking, and 3D detection, with
innovations in metrics and benchmarks [23, 28, 30]. Dis-
tinct from these existing approaches, our proposed method,
DyRoNet, introduces a low-rank enhanced dynamic rout-
ing mechanism specifically designed for streaming percep-
tion. DyRoNet stands out by integrating a suite of advanced
branch networks, each fine-tuned for specific environmental
conditions. Its key innovation lies in the speed router mod-
ule, which not only routes input data efficiently but also dy-
namically adapts to the diverse and unpredictable nature of
real-world driving scenarios.

2.2. Dynamic Neural Networks

Dynamic Neural Networks (DNNs) feature adaptive net-
work selection, outperforming static models in efficiency
and performance [8, 16, 34]. The existing research pri-
marily focuses on structural design for core deep learn-
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Figure 2. The DyRoNet Framework: This figure shows DyRoNet’s architecture with a multi-branch network. Two branches are illustrated,
each as a streaming perception sub-network. The upper right details the core architecture. Each branch processes the current frame It
and historical frames It−1, It−2, · · · , It−n. Features are extracted by the backbone and neck, split into streams for current and historical
frames, fused, then passed to the prediction head. The Speed Router selects the branch based on frame difference ∆It from It and It−1.

ing tasks like image classification [11, 27, 29]. DNNs fol-
low two approaches: (1) Multi-branch models [1, 2, 17, 22,
24, 26, 31] rely on a lightweight router assessing inputs
to direct them to appropriate branches, enabling tailored
computation. (2) By generating new weights based on in-
puts [4, 25, 32, 37], these models dynamically alter compu-
tations to match diverse needs. DNN applications expand
beyond conventional tasks. In object detection, Dynam-
icDet [20] categorizes inputs and processes them through
distinct branches. This illustrates DNNs’ broader applica-
bility and promising contributions for dynamic environ-
ments.

3. Proposed Method
This section outlines the framework of our proposed Dy-

RoNet. Beginning with its underlying motivation and the
critical factors driving its design, we subsequently provide
an overview of its architecture and training process.

3.1. Motivation for DyRoNet

Autonomous driving faces variability from weather,
scene complexity, and vehicle velocity. By strategically ana-
lyzing key factors and routing logic, this section details the
rationale behind the proposed DyRoNet.
Analysis of Influential Factors. Statistical analysis of the
Argoverse-HD dataset [19] underscores the profound in-
fluence of environmental dynamics on the effectiveness
of streaming perception. While weather inconsistently im-
pacts accuracy, suggesting the presence of other influen-
tial factors (see Appendix A.1), fluctuations in the object
count show limited correlation with performance degrada-
tion (see Appendix A.2). Conversely, the presence of small
objects across various scenes poses a significant challenge
for detection, especially under varying motion states (see
Appendix A.3). Notably, disparities in performance are

most pronounced across different environmental motion
states (see Appendix A.4), thereby motivating the need for
a dynamic, velocity-aware routing mechanism in DyRoNet.
Rationale for Dynamic Routing. Analysis reveals that
StreamYOLO’s reliance on a single historical frame falters
at high velocities, in contrast to multi-frame models, high-
lighting a connection between speed and detection perfor-
mance (see Tab. 2). Dynamic adaptation of frame history,
based on vehicular speed, enables DyRoNet to strike a bal-
ance between accuracy and latency (see Sec. 4.3). Through
first-order differences, the system efficiently switches mod-
els to align with environmental motions. Specifically, the
dynamic routing is designed to select the optimal architec-
ture based on the vehicle’s speed profile, ensuring precision
at lower velocities for detailed perception and efficiency
at higher speeds for swift response. These comprehensive
analysis imforms DyRoNet as a robust solution for reliable
perception across diverse autonomous driving scenarios.

3.2. Architecture of DyRoNet

Overview of DyRoNet. The structure of DyRoNet, as de-
picted in Fig. 2, proposes a multi-branch structure. Each
branch within DyRoNet framework functions as an inde-
pendent streaming perception model, capable of processing
both the current and historical frames. This dual-frame pro-
cessing is central to DyRoNet’s capability, facilitating a nu-
anced understanding of temporal dynamics. Such a design
is key in achieving a delicate balance between latency and
accuracy, aspects crucial for real-time autonomous driving.

Mathematically, the core of DyRoNet lies the processing
of a frame sequence, S = {It, · · · , It−Nδt}, where N in-
dicates the number of frames and δt the interval between
successive frames. The framework process is formalized as:

T = F(S,P,W),

where P = {P0, · · · , PK−1} denotes a collection of
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Figure 3. The mean curves of frame differences are depicted
here. The four curves correspond to frame sizes of the original
frame, 200×200, 100×100, and 50×50. Notably, these curves
show distinct fluctuations across different vehicle motion cases.

streaming perception models, with each Pi denoting an in-
dividual model within this suite. The architecture is further
enhanced by incorporating a feature extractor Gi and a per-
ception head Hi for each model. The Router Network, R,
is instrumental in selecting the most suitable streaming per-
ception model for each specific scenario.

Correspondingly, the weights of DyRoNet are denoted
by W = {W d,W l,W r}, where W d indicates the weights
of the streaming perception model, W l relates to the Low-
Rank Adaptation (LoRA) weights within each model, and
W r pertains to the Router Network. The culmination of
this process is the final output, T , a compilation of fea-
ture maps. These maps can be further decoded through
Decode(T ), revealing essential details like objects, cate-
gories, and locations.
Router Network. The Router Network in DyRoNet plays a
crucial role in understanding and classifying the dynamics
of the environment. This module is designed for both en-
vironmental classification and branch decision-making. To
effectively capture environmental speed, frame differences
are employed as the input to the Router Network. As shown
in Fig. 3, frame differences exhibit a high discriminative ad-
vantage for different environmental speeds.

Specifically, for frames at times t and t− 1, represented
as It and It−1 respectively, the frame difference is com-
puted as ∆It = It − It−1. The architecture of the Router
Network, R, is simple yet efficient. It consists of a sin-
gle convolutional layer followed by a linear layer. The net-
work’s output, denoted as fr ∈ RK , captures the essence
of the environmental dynamics. Based on this output, the
index σ of the optimal branch for processing the current in-
put frame It is determined through the following equation:

σ = argmax
K

(R(∆It),W
r), σ ∈ {0, · · · ,K − 1}, (1)

where σ is the index of the branch deemed most suitable for
the current environmental context. Once σ is determined,
the input frame It is automatically routed to the correspond-
ing branch by a dispatcher.

In particular, this strategy of using frame differences to

gauge environmental speed is efficient. It offers a faster
alternative to traditional methods such as optical flow
fields. Moreover, it focuses on frame-level variations rather
than the speed of individual objects, providing a more
generalized representation of environmental dynamics. The
sparsity of ∆It also contributes to the robustness of this
method, reducing computational complexity and making
the Router Network’s operations nearly negligible in the
context of the overall model’s performance.
Model Bank & Dispatcher. The core of the DyRoNet
framework is its model bank, which consists of an ar-
ray of streaming perceptual models, denoted as P =
{P0, · · · , PK−1}. Typically, the selection of the most suit-
able model for processing a given input is intelligently man-
aged by the Router Network. This process is formalized as
Pσ = Disp(R,P), where Disp acts as a dispatcher, facili-
tating the dynamic selection of models from P based on the
input. The operational flow of DyRoNet can be mathemati-
cally defined as:

T = F(S,P,W ) = Disp(R(∆It),P)(It;W
d
σ ,W

l
σ),

where R symbolizes the Router Network, and ∆It refers to
the frame difference, a key input for model selection. The
weights W d

σ and W l
σ correspond to the selected streaming

perception model and its LoRA parameters, respectively.
Note that the versatility of DyRoNet is further high-

lighted by its compatibility with a wide range of Stream-
ing Perception models, even ones that rely solely on de-
tectors [5]. To demonstrate the efficacy of DyRoNet, it
has been evaluated using three contemporary streaming per-
ception models: StreamYOLO [33], LongShortNet [18],
and DAMO-StreamNet [9] (see Sec. 4.3). This Model
Bank & Dispatcher strategy illustrates the adaptability and
robustness of DyRoNet across different streaming percep-
tion scenarios.
Low-Rank Adaptation. A key challenge arises when fully
fine-tuning individual branches, especially under the di-
rection of Router Network. This strategy can lead to bi-
ases in the distribution of training data and inefficiencies
in the learning process. Specifically, lighter branches may
become predisposed to simpler cases, while more complex
ones might be tailored to handle intricate scenarios, thereby
heightening the risk of overfitting. Our experimental results,
detailed in Sec. 4.3, support this observation.

To address these challenges, we have incorporated the
LoRA [10] into DyRoNet. Within each model Pi, initially
pre-trained on a dataset, the key components are the con-
volution kernel and bias matrices, symbolized as W d

i . The
rank of the LoRA module is defined as r, a value signif-
icantly smaller than the dimensionality of W d

i , to ensure
efficient adaptation. The update to the weight matrix ad-
heres to a low-rank decomposition form, represented as
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W i
d+δW = W i

d+BA.2 This adaptation strategy allows for
the original weights W i

d to remain fixed, while the low-rank
components BA are trained and adjusted. The adaptation
process is executed through the following projection:

W d
i x+∆Wx = W d

i x+W l
ix, (2)

where x represents the input image or feature map, and
∆W = W l

i = BA. The matrices A and B start from an
initialized state and are fine-tuned during adaptation. This
approach maintains the general applicability of the model
by fixing W i

d, while also enabling specialization within spe-
cific sub-domains, as determined by Router Network.

In DyRoNet, we employ r = 32 for the LoRA mod-
ule, though this can be adjusted based on specific require-
ments of the scenarios in question. This low-rank adaptation
mechanism not only enhances the flexibility of the DyRoNet
framework but also mitigates the risk of overfitting, ensur-
ing that each branch remains efficient and effective in its
designated role.

3.3. Training Details of DyRoNet

The training process of DyRoNet focuses on two pri-
mary goals: (1) Improving the performance of individual
branches. The backpropagation only updates the chosen
model’s weights in this step, enabling fine-tuning on seg-
regated samples. (2) Achieving an optimal balance be-
tween accuracy and computational efficiency. This step
only train the speed router while the remaining branches
are frozen. This dual-objective framework is represented by
the overall loss function:

L = Lsp + LE2

, (3)

where Lsp represents the streaming perception loss, and
LE2

denotes the effective and efficient (E2) loss, which su-
pervises branch selection.
Streaming Perception (SP) Loss. Each branch in DyRoNet
is fine-tuned using its original loss function to maintain
effectiveness. The router network is trained to select the
optimal branch based on efficiency supervision. Let Ti =
{F cls

i , F reg
i , F obj

i } denote the logits produced by the i-th
branch and Tgt = {F cls

gt , F reg
gt , F obj

gt } represent the cor-
responding ground-truth, where F cls

· , F reg
· , and F obj

· are
the classification, objectness, and regression logits, respec-
tively. The streaming perception loss for each branch, Lsp

i ,
is defined as follows:

Lsp
i (Ti, Tgt) =Lcls(F

cls
i , F cls

gt ) + Lobj(F
obj
i , F obj

gt )

+ Lreg(F
reg
i , F reg

gt ),
(4)

2Here, B is a matrix in Rd×r , and A is in Rr×k , ensuring that the
rank r remains much smaller than d.

where Lcls(·) and Lobj(·) are defined as Mean Square Error
(MSE) loss functions, while Lreg(·) is represented by the
Generalized Intersection over Union (GIoU) loss.
Effective and Efficient (E2) Loss. During the training
phase, streaming perception loss values from all branches
are compiled into a vector vsp ∈ RK , and inference time
costs are aggregated into vtime ∈ RK , with K indicat-
ing the total number of branches in DyRoNet. To account
for hardware variability, a normalized inference time vector
v̂time = softmax(vtime) is introduced. This vector is de-
rived using the Softmax function to minimize the influence
of hardware discrepancies. The representation for effective
and efficient (E2) decision-making is defined as:

fE2

= ON (argmin
k

(softmax(vtime) · vsp)), (5)

where O denotes one-hot encoding, producing a boolean
vector of length K, with the value of 1 at the index repre-
senting the estimated optimal branch at that moment. The
E2 Loss is then formulated as:

LE2

= KL(fE2

, fr), (6)

where fr = R(∆It) and KL represents the Kullback-
Leibler divergence, utilized to constrain the distribution.
DyRoNet and relevant techniques. Although the structure
of DyRoNet is somewhat similar to MoE [24, 35], in con-
trast, the gate network of MoE is not well-suited for stream-
ing perception. This limitation has led to the development
of speed router and the LE2

loss function. DyRoNet, for ef-
ficiency, chooses one model over MoE’s multiple experts,
aligning with MoE in concept but differing in gate struc-
ture and selection strategy, making it unique for streaming
contexts.

The speed router is inspired by Network Architecture
Search (NAS). However, it uniquely addresses the challenge
of streaming perception by transforming the search prob-
lem into an optimization of coded distances. The formu-
lation of the loss function, LE2

, involves converting vtime

into a distribution via softmax, which is then combined
with vsp to determine the optimal model through an one-hot
vector fE2

. This approach effectively simplifies the intri-
cate problem of balancing accuracy and latency into a more
tractable optimization task. Instead of employing NAS for
loss search, our design is intricately linked to the specific
needs of streaming perception, with KL divergence selected
for its robustness in noisy situations [15]. This demonstrates
the efficiency and innovation of our approach.

Overall, the process of training DyRoNet involves strik-
ing a meticulous balance between the SP loss, which en-
sures the efficacy of each branch, and the E2 loss, which
optimizes efficiency. The primary objective of this training
is to develop a model that not only delivers high accuracy
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in perception tasks but also operates within acceptable la-
tency constraints, which is a critical requirement for real-
time applications. This balanced approach enables DyRoNet
to adapt dynamically to varying computational resources
and environmental conditions, thereby maintaining optimal
performance in diverse streaming perception scenarios.

4. Experiments
4.1. Dataset and Metric

Dataset. Argoverse-HD dataset [19] is utilized for our ex-
periments, specifically designed for streaming perception in
autonomous driving scenarios. It comprises high-resolution
RGB images captured from urban city street, offering a
realistic representation of diverse driving conditions. The
dataset is structured into two main segments: a training set
consisting of 65 video clips and a test set comprising 24
video clips. Each video clip in the dataset spans over 600
frames in average, contributing to a training set with ap-
proximately 39k frames and a test set containing around
15k frames. Notably, Argoverse-HD provides high-frame-
rate (30fps) 2D object detection annotations, ensuring ac-
curacy and reliability without relying on interpolated data.
Evaluation Metric. Streaming Average Precision (sAP) are
adopted as the primary metric for performance evaluation,
which is widely recognized for its effectiveness in stream-
ing perception tasks [19]. It offers a comprehensive as-
sessment by calculating the mean Average Precision (mAP)
across various Intersection over Union (IoU) thresholds,
ranging from 0.5 to 0.95. This metric allows us to evaluate
detection performance across different object sizes, includ-
ing large, medium, and small objects, providing a robust
measurement in real-world streaming perception scenarios.

4.2. Implementation Details

We tested three state-of-the-art streaming perception
models: StreamYOLO [33], LongShortNet [18], and
DAMO-StreamNet [9]. These models, integral to the
DyRoNet architecture, come with pre-trained parameters
across three distinct scales: small (S), medium (M), and
large (L), catering to a variety of processing require-
ments. In constructing the model bank P for DyRoNet, we
strategically selected different model configurations to eval-
uate performance across diverse scenarios. For instance, the
notation DyRoNet (DAMOS + M) represents a configuration
where DyRoNet employs the small (S) and medium (M)
scales of DAMO-StreamNet as its two branches.3 All exper-
iments were conducted on a high-performance computing
platform equipped with Nvidia 3090Ti GPUs (x4), ensuring
robust and reliable computational power to handle the inten-

3Similar notations are used for other model combinations, allowing for
a systematic exploration of the framework’s adaptability and performance
under varying computational constraints.

sive processing demands of the streaming perception mod-
els. This setup provided a consistent and controlled environ-
ment for evaluating the efficacy of DyRoNet across different
model configurations, contributing to the thoroughness and
validity of our results. For more implementation details,
please refer to Appendix C.

4.3. Comparision with SOTA Methods

We compared DyRoNet with state-of-the-art methods to
evaluate its performance. In this subsection, we directly
copied the reported sAP performance from their original pa-
pers as their results, for fair comparison, we evaluated the
latency of each real-time model on 1x RTX 3090. The per-
formance comparison was conducted on the Argoverse-HD
dataset [19]. An overview of the results reveals that our pro-
posed DyRoNet with a model bank of DAMO-StreamNet
series achieves 37.8% sAP in 37.61 ms latency, outperform-
ing the current state-of-the-art methods in latency by a sig-
nificant margin. This demonstrates the effectiveness of the
systematic improvements in DyRoNet.

4.4. Inference Time

In this subsection, we conducted detailed experiments
analyzing the trade-offs between DyRoNet’s inference time
and performance under different model bank selection. It
is notable that the latency of DyRoNet presented in Tab. 2
do not accurately reflect the real outperform. Due to the
varying hardware platforms for measuring latency across
methods, a fair comparison cannot be achieved. For in-
stance, DAMO-StreamNet is tested on 1x V100. To ad-
dress these differences, we conducted additional tests on
a 1x RTX 3090, which highlight DyRoNet’s performance
enhancements. Tab. 1 presents the latency comparison and
highlights DyRoNet’s superior performance—maintaining
competitive inference speed alongside accuracy gains ver-
sus the random and MoE approaches. Where the MoE pre-
dicts the weights of each branch via a gate module and then
combines the output results accordingly. Specifically, Dy-
RoNet achieves efficient speeds while preserving or enhanc-
ing performance. This balance enables meeting real-time
needs without compromising perception quality, critical for
autonomous driving where both factors are paramount. By
validating effectiveness in inference time reductions and ac-
curacy improvements, the results show the practicality and
efficiency of DyRoNet’s dynamic model selection.

4.5. Ablation Study

Router Network. To validate the effectiveness of the
Router Network based on frame difference, we conducted
comparative experiments using frame difference ∆It, the
current frame It, and the concatenation of the consecutive
frames [It + It−1] as input modality of the Router Net-
work. For comparison, a naive method of input guidance
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Model Random MoE DyRoNet
Bank latency sAP latency sAP latency sAP sAP50 sAP75 sAPs sAPm sAPl

sYOLOS + M 39.16 31.5 66.16 29.5 26.25 (-12.91) 33.7 (+2.2) 53.9 34.1 13.0 35.1 59.3
sYOLOS + L 24.04 33.2 70.19 29.5 29.35 (+5.31) 36.9 (+3.7) 58.2 37.5 14.8 37.4 64.2
sYOLOM + L 24.69 35.4 83.65 33.7 23.51 (-1.18) 35.0 (-0.4) 55.7 35.5 13.7 36.2 61.1

LSNS + M 24.79 31.8 128.74 29.8 21.47 (-3.32) 30.5 (-1.3) 51.2 30.2 11.3 31.1 56.1
LSNS + L 21.49 33.4 121.62 29.8 30.48 (+8.99) 37.1 (+3.7) 58.3 37.6 15.1 37.6 63.7
LSNM + L 24.75 35.6 136.66 34.1 29.05 (+4.30) 36.9 (+1.3) 58.2 37.4 14.9 37.5 63.3

DAMOS + M 36.61 33.5 188.42 31.8 33.22 (-3.39) 35.5 (+2.0) 56.9 36.2 14.4 36.8 63.2
DAMOS + L 35.12 34.5 188.57 31.8 39.60 (+4.48) 37.8 (+3.3) 59.1 38.7 16.1 39.0 64.2
DAMOM + L 37.30 36.5 195.87 35.5 37.61 (+0.31) 37.8 (+1.3) 58.8 38.8 16.1 39.0 64.0

Table 1. Comparison of latency (ms) and the corresponding sAP performance on 1x RTX 3090. The values are highlighted in bold font if
the DyRoNet perform better than the corresponding random and MoE case. Due to the overall poorer performance of MoE, we only lists
the relative latency and sAP differences between DyRoNet and the random approach.

Methods Latency (ms) sAP ↑

Non-real-time detector-based methods

Adaptive Streamer [6] - 21.3
Streamer (S=600) [19] - 20.4
Streamer (S=900) [19] - 18.2
Streamer+AdaScale [6] - 13.8

Real-time detector-based methods

DAMO-StreamNet-L [9] 39.6 37.8
LongShortNet-L [18] 29.9 37.1
StreamYOLO-L [33] 29.3 36.1

DAMO-StreamNet-M [9] 33.5 35.7
LongShortNet-M [18] 25.1 34.1
StreamYOLO-M [33] 24.8 32.9

DAMO-StreamNet-S [9] 30.1 31.8
LongShortNet-S [18] 20.3 29.8
StreamYOLO-S [33] 21.3 28.8

DyRoNet (DAMOM + L) 37.61 (-1.99) 37.8 (same)
DyRoNet (LSNM + L) 29.05 (-0.85) 36.9 (-0.2)

DyRoNet (sYOLOM + L) 23.51 (-5.79) 35.0 (-1.1)

Table 2. The comparison of DyRoNet and SOTA. The optimal
values over its larger model are highlighted in bold font and the
optimal values of online evaluation latency are shown in underline
font. The latency of DyRoNet is evaluated on 1x RTX 3090 and
compared with the latency of corresponding smaller model.

Model Bank Full (sAP) LoRA (sAP)

StreamYOLOS + M 32.9 33.7 (+0.8)
StreamYOLOS + L 36.1 36.9 (+0.8)
StreamYOLOM + L 36.2 35.0 (-1.2)
LongShortNetS + M 29.0 30.5 (+1.5)
LongShortNetS + L 36.2 37.1 (+0.9)
LongShortNetM + L 36.3 36.9 (+0.6)

DAMO-StreamNetS + M 34.8 35.5 (+0.7)
DAMO-StreamNetS + L 31.1 37.8 (+6.7)
DAMO-StreamNetM + L 37.4 37.8 (+0.4)

Table 3. Comparison of LoRA finetune and Full finetune. The
optimal values between Full and LoRA are shown in bold font.

also employed: By calculating E(∆It), the larger branch
is selected if E(∆It) > 0, otherwise the smaller branch is
chosen. The results are presented in Tab. 6. For compar-
ison, the Router Network only be trained in these experi-

Model Bank b0 b1 b2 sAP

K = 2
same
model

DAMOS + M 31.8 35.5 - 35.5
DAMOS + L 31.8 37.8 - 37.8
DAMOM + L 35.5 37.8 - 37.8

LSNS + M 29.8 34.1 - 30.5
LSNS + L 29.8 37.1 - 37.1
LSNM + L 34.1 37.1 - 36.9

sYOLOS + M 29.5 33.7 - 33.7
sYOLOS + L 29.5 36.9 - 36.9
sYOLOM + L 33.7 36.9 - 35.0

K = 2
different
model

DAMOS + LSNS 31.8 29.8 - 30.5
DAMOS + LSNM 31.8 34.1 - 34.1
DAMOS + LSNL 31.8 37.1 - 31.8
DAMOM + LSNS 35.5 29.8 - 29.8
DAMOL + LSNS 37.8 29.8 - 29.8

K = 3
same
model

DAMOS + M + L 31.8 35.5 37.8 37.7
LSNS + M + L 29.8 34.1 37.1 36.1

sYOLOS + M + L 29.5 33.7 36.9 36.6

Table 4. The performance of DyRoNet under various model bank
selection. K means the number of the model in bank P .

ments while the leftover parts be frozen.
It shows that using ∆It as input exhibits better perfor-

mance than other methods (35.0 sAP of sYOLOS + L and
34.6 sAP of sYOLOM+L). This indicates that utilizing ∆It
offers significant advantages in comprehending and char-
acterizing environmental speed. Conversely, it also under-
scores that employing single frames as input or using mul-
tiple frames as input renders the lightweight model bank
selection model ineffective. Furthermore, the proportion of
sample splits across branches can also illustrate the discrim-
inative power with respect to environmental factors. For in-
stance, the E(∆It) criterion resulting in a evenly spliting
distribution (48.22% E(∆It) > 0 over train set and 49.85%
E(∆It) > 0 over test set). Indicating the direct sample
selection without router lacks estimation of environmental
factors, thereby weakening its discriminative power.

In contrast, Tab.5 presents statistics indicating the router
layer’s effectiveness in allocating samples to specific mod-
els and showcase its ability to strike a balance between la-
tency and performance. This balance is crucial for stream-
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Model training time inference time
Combination Model 1 Model 2 Model 1 Model 2

SYOLO (M+L) 37.53% 62.47% 94.67% 5.33%
LSN (M+L) 30.86% 69.14% 19.87% 80.13%
DAMO (M+L) 84.61% 15.39% 0.02% 99.98%

Table 5. The statistics of model selection by DyRoNet under dif-
ferent model choices during both training and inference time.

Model Input Modality / Criterion
Bank It [It + It−1] E(∆It) ∆It (DyRoNet)

sYOLOS + M 33.7 33.7 31.5 32.6
sYOLOS + L 34.1 30.2 32.9 35.0
sYOLOM + L 33.7 33.7 34.2 34.6

Table 6. Ablation of router network input / criterion. The optimal
results are marked in bold font under the same model bank setting.

ing perception and underscores our contribution.
Branch Selection. Our research on streaming perception
models has shown that configuring these models across
varying scales can optimize their performance. We found
that combining L and S models strikes an optimal balance,
resulting in significant speed improvements. This conclu-
sion is supported by the empirical evidence presented in
Tab. 4, which clearly shows that the L+S model pairing out-
performs both the L+S and L+M cases. Our findings high-
light the importance of strategic model scaling in streaming
perception and provide a framework for future model opti-
mization in similar domains.
Fine-tuning Scheme. We contrasted the performance of
direct fine-tuning with the LoRA fine-tuning strategy [36]
for streaming perception models. Tab. 3 shows that LoRA
fine-tuning surpasses direct fine-tuning, with the DAMO-
Streamnet-based model bank configuration realizing an ab-
solute gain of over 1.6%. This substantiates LoRA’s fine-
tuning proficiency in circumventing the pitfalls of forget-
ting and data distribution bias inherent to direct fine-tuning.
This result demonstrates that LoRA fine-tuning can effec-
tively mitigate the overfitting while fine-tuning, leading to a
stable performance improvement.
LoRA Rank. To assess the impact of LoRA ranks in Dy-
RoNet, we conducted experiments with rank r = 32, 16, 8
respectively. All experiments were train for 5 epochs be-
tween Router Network training and model bank fine-
tuning. The results are presented in Tab. 7. It can be ob-
served that the performance is better with r = 32 com-
pared to r = 8 and r = 16, and only occupy 10% of the
total model parameters. Therefore, based on these experi-
ments, r = 32 was selected as the default setting for our ex-
periments. Although a smaller LoRA rank occupies fewer
parameters, it leads to a rapid performance decay. The ex-
perimental results clearly demonstrate that with LoRA fine-
tuning, it is possible to achieve superior performance than a
single model while utilizing a smaller parameter footprint.

Model Bank Rank branch 0 branch 1 after train Param.(%)

DAMOS + L 8 31.8 37.8 35.9 4.02
DAMOS + L 16 31.8 37.8 35.9 7.73
DAMOS + L 32 31.8 37.8 37.8 14.35

LSNS + L 8 29.8 37.1 30.6 5.48
LSNS + L 16 29.8 37.1 30.6 5.48
LSNS + L 32 29.8 37.1 36.9 10.39

sYOLOS + L 8 29.5 36.9 35.0 2.7
sYOLOS + L 16 29.5 36.9 35.0 5.38
sYOLOS + L 32 29.5 36.9 36.6 10.21

Table 7. Ablation of LoRA rank: In the Param. column, we solely
compare the proportion of parameters occupied by LoRA to the
entire model. The best performance under the same model bank
setting are highlighted in bold font.

Model Bank b1 b2 Random MoE DyRoNet

sYOLOS + M 6.9 9.2 8.1 6.9 8.9
sYOLOS + L 7.3 9.9 8.6 7.3 9.0
sYOLOM + L 8.9 9.6 9.2 8.9 9.3

sYOLOS + LSNS 6.6 6.2 6.4 6.2 6.5
sYOLOM + LSNM 9.1 9.3 9.2 9.1 9.3
sYOLOL + LSNL 9.0 9.6 9.3 9.0 9.6

Table 8. The sAP results are shown in the table. Where b1 denotes
the independent performance of the first branch and b2 denotes
the second one. The branch fusion method Random and MoE are
similar with Tab. 1. The best method is highlighted in bold font.

4.6. Extra Experiment on NuScenes-H dataset

To validate the DyRoNet on other dataset, we converted
the 3D streaming perception dataset nuScenes-H [28] into
2D format. The experiment details are provided in the
Appendix D. As shown in Tab. 8, DyRoNet consistently
achieves better results than other branch fusion methods on
nuScenes-H 2D dataset. It demonstrates DyRoNet’s advan-
tages in branch fusion selection and its versatility.

5. Conclusion
In conclusion, we present the Dynamic Routering

Network (DyRoNet), a system that dynamically selects spe-
cialized detectors for varied environmental conditions with
minimal computational overhead. Our innovative increase-
boosting fine-tuning, featuring a Low-Rank Adapter, mit-
igates distribution bias and overfitting, enhancing scene-
specific performance. Experimental results validate Dy-
RoNet’s state-of-the-art performance, offering a benchmark
for streaming perception and insights for future research. In
the future, DyRoNet’s principles will undoubtedly inform
the development of more advanced, reliable systems.
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