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Abstract

Despite advancements in human motion generation mod-
els, their performance drops in infant motion generation
due to limited data available and lack of 3D skeleton ground
truth. To address this, we introduce the infant action gen-
eration and classification (InfAGenC) pipeline, which com-
bines a transformer-based variational autoencoder (VAE)
with a spatial-temporal graph convolutional network (ST-
GCN) to create synthetic infant action samples. By iter-
ative refinement of the generative model with diverse and
accurate data, we improve the realism of synthetic data,
leading to more precise infant action recognition models.
Our results show significant improvements in action recog-
nition performance on real-world data, demonstrating that
synthetic data can enhance small training datasets and ad-
vance infant action recognition. Our pipeline increases ac-
tion recognition accuracy up to 88.58% on the infant action
dataset and up to 98% on an adult action dataset1.

1. Introduction
Despite the significant advancements in current vision-

based human action recognition (HAR) models, which
leverage extensive datasets like NTU RGB+D 120 [21],
Human3.6M [17], and N-UCLA [36] with abundant sam-
ples per class, infant activity recognition is still in its in-
fancy. High costs associated with collecting and labeling
infant data, coupled with concerns regarding security and
privacy, have resulted in a significantly limited pool of in-
fant data available for model training. Recent research [12]
highlights a challenge in transferring knowledge from adult-
based HAR models to infant datasets, resulting in poor per-
formance. This discrepancy stems from differences in ac-
tion types and settings between adults and infants. Adult

1The InfAGenC code and our infant skeletal data available at https:
//github.com/ostadabbas/Infant-Action-Generative-
Modeling.
Supported by NSF-CAREER Grant #2143882.

datasets [19, 21, 31, 33] often feature actions like taking
selfies or shaking hands, absent in infant behavior. Con-
versely, infant actions like crawling are not typically found
in adult datasets. Variations in how common actions are per-
formed further hinder generalization. Unlike controlled lab
setups for adults, obtaining precise infant datasets is chal-
lenging due to infants’ uncooperative nature.Consequently,
most current accessible infant datasets like InfAct [16] and
InfActPrimitive [12] lack 3D skeleton ground truth and are
sourced from diverse camera angles without control, often
collected through YouTube.

Recent advances in generative models [10, 11, 35, 40]
have facilitated the creation of synthetic motion data to aug-
ment datasets. However, their effectiveness is hindered by a
reliance on large datasets for training, posing a challenge
when applied to smaller datasets. Models such as gen-
erative adversarial networks (GANs), variational autoen-
coders (VAEs) struggle to generate sufficient data for lim-
ited datasets due to their need for extensive training data.
This issue is notably pronounced in specialized areas such
as infant motion recognition, where accurately capturing
domain-specific interactions and knowledge from sparse
real data is exceptionally challenging [12, 15].

Given the limited infant action data and domain gap be-
tween real and synthetic datasets, we successfully generate
high-quality skeleton-based infant motions by introducing
our infant action generation and classification (InfAGenC)
pipeline depicted in Fig. 1. InfAGenC pipeline harnesses
the synergistic capabilities of a transformer-based VAE [27]
for data generation, combined with a spatial-temporal graph
convolutional network (ST-GCN) [38] for action recogni-
tion. Drawing inspiration from active learning’s pool-based
sampling method [39], our approach selectively enriches
the dataset. Every ten iterations, we identify and incorpo-
rate high-quality synthetic samples—evaluated on accuracy
and diversity—using between- and within-class distance
measurements. These carefully chosen samples, alongside
real data, are reintroduced to the system, creating a more
robust and diverse dataset for model training.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Overview of Our Infant Action Generation and Classification (InfAGenC) Pipeline. The diagram depicts the cyclic pipeline,
beginning with Step 1, where real and synthetic data form the initial training set for the transformer-based VAE pose generative model.
In Step 2, the action recognition model, an ST-GCN, evaluates the generated samples to identify those with the highest Classification
Accuracy Score (CAS). Step 3 applies a sample filtering technique to retain high-confidence samples, while Step 4 involves a sample
selection process based on weighted within-class and between-class distance metrics. The central portion of these samples is then selected
in Step 5 for synthetic data recycling. In Step 6, the filtered high-quality samples are concatenated back to the training set. Finally, Step 7
closes the loop by updating the action recognition model with the augmented training set, preparing it for the next cycle of evaluation.

Compared to GANs [37], VAEs are known for their more
stable training dynamics and the ability to generate inter-
pretable latent spaces, which facilitate a more accurate as-
sessment of diversity scores. Recognizing the variability in
infants’ movement speeds across different actions, our ap-
proach enhances motion consistency between real and syn-
thetic data by integrating velocity as a factor in the loss
function through the use of regularization metrics.

Our experimental outcomes indicate a marked improve-
ment in the performance of action recognition models test
on “in-the wild” videos of InfActPrimitive dataset, achiev-
ing increasing accuracy to more than 15%. In summary, this
paper introduces following significant contributions:

• Developing a novel pipeline, called InfAGenC that
combines a transformer-based VAE for generation
with a spatial-temporal graph convolutional network
(ST-GCN) for recognition, aiming to enhance infant
action recognition with limited data and bridging gap
between real and synthetic data.

• Implementing a pool-based sampling approach to en-
rich the dataset, selecting samples that offer an optimal
balance between accuracy (determined by predicted

confidence scores) and diversity (assessed through
between- and within-class distances).

• Creating an infant action dataset (InfantAction) with
more complex action movements compared to the
existing InfActPrimitive data. InfantAction includes
daily activity data from 5 infant subjects, cover-
ing broader action classes such as Sitting, Standing,
Rolling, and Crawling.

2. Related Work
Skeleton-based methods for Human Activity Recogni-

tion (HAR) [5, 8, 23, 28, 38]emerged as a prominent choice
due to their ability to efficiently represent human move-
ments using joint coordinates, effectively minimizing po-
tential disruptions caused by RGB appearance variations.
ST-GCN [38] introduces inter-frame edges, connecting cor-
responding joints across consecutive frames, enhancing
inter-frame relationship modeling and improving tempo-
ral dynamics understanding within skeletal data. MS-G3D
[23] combines multi-scale graph convolutions into a uni-
fied G3D module, enhancing long-range modeling by pri-
oritizing nodes in different neighborhoods. It utilizes dense
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cross-spacetime edges as skip connections for direct infor-
mation propagation across the spatial-temporal graph. In-
foGCN [5] merges a learning objective with an encoding
method utilizing attention-based graph convolution, captur-
ing discriminative information regarding human actions.

However, the above-mentioned models have been trained
on the enormous data backbones such as NTU RGB+D 120
[21] containing 120 kinds of actions, a total of 114,480 sam-
ples, in the form of depth, 3D skeleton, RGB and infrared
sequence, Kinetics-700 [4], a video dataset of 650,000 clips
that covers 700 human action classes, and BABEL [29], a
large dataset with language labels describing the actions be-
ing performed in mocap sequences. There are over 28k se-
quence labels, and 63k frame labels in BABEL, which be-
long to over 250 unique action categories. When it comes
to infant studies, Recently, several infant-specific image and
video datasets have been released, each are tailored for
specific applications [1, 2, 41, 42]. SyRIP [15] and MINI-
RGBD [13] respectively with 17 and 24 annotated joints
were created benchmark for a standardized evaluation of
pose estimation algorithms in infants. AggPose [3] was
proposed to train a deep aggregation transformer for infant
pose detection. They adopted general movements assess-
ment (GMA) devices to record infant movement videos in
supine position. More than 216 hours of videos and 15
million frames were extracted. They randomly sampled
20,748 frames from the videos and let professional clini-
cians annotate infant 21 keypoints locations. Both MINI-
RGBD and AggPose have considerable amounts of data.
However, All of these dataset contains image-only data and
are not suited for task of infant action recognition. Baby-
Pose [26] contains over 1000 videos of preterm infants cap-
tured using a depth-sensing camera along with annotations
of 12 limb-joint positions for each frame. However, it only
contains the data of newborns with no to limited motions
on only supine body pose with one-fold background. The
most relevant dataset available for infant action recognition
is InfActPrimitive containing small set of 975 video clips
from 5 class of action collected from two different sources:
Youtube and recruited subjects.

Domain adaptation has been extensively used to bridge
the gap between source (real) and target (synthetic) data
distributions encountered during the application of Deep
Neural Networks [30] [32]. Hatamimajoumerd et al. [12]
fine-tuned state-of-the-art skeleton-based action recognition
models pre-trained on adult skeleton datasets on InfAct-
Primitive. Their results indicate a remarkable gap between
the action recognition results on infant and adult datasets.

Recent advancements in human pose estimation have
led to the development of motion generation models us-
ing skeleton data. These models can enrich the training
set and tackle the small data problem, specifically in the
infant action recognition domain, where data collection is

difficult [6, 10, 18, 20, 25]. Tevet et al. [35] developed Mo-
tion Diffusion Model (MDM) a transformer-based genera-
tive model for human motion, prioritizing sample predic-
tion over noise in diffusion steps while employing geomet-
ric losses. Degardin et al. [7] introduced Kinetic-GAN, an
architecture blending Generative Adversarial Networks and
Graph Convolutional Networks, capable of conditioning up
to 120 actions. Compared to GAN-based models, VAEs
offer more stable training and interpretable latent spaces,
aiding in accurate diversity score assessment. Lucas et al.
[24] introduced PoseGPT, an auto-regressive transformer-
based approach which internally compresses human mo-
tion into quantized latent sequences. Feng et al. [9] lever-
aged Large Language Models (LLMs) to directly gener-
ate 3D human body poses from images or text by embed-
ding SMPL poses within a multi-modal LLM. However,
they have not been explored in small data domains like in-
fant motion, where unpredictability and lack of 3D skeleton
ground truth present significant challenges.

3. Method

In this section, we introduce infant action generation
and classification (InfAGenC) pipeline, crafted to improve
action recognition by creating a variety of accurate sam-
ples, especially within the challenging context of small
data domains, with a particular emphasis on infant action
recognition–a prime scenario of data scarcity.

Problem Formulation Consider a skeleton dataset X =
{x1, x2, . . . , xn}, where each sample xi encapsulates a
sequence of joint locations or axis angle values xi ∈
RK×R×T . Here, K denotes the number of infant joints,
R the dimensionality of the joint representation, and T
the sequence length. Each sample xi is associated with
an action class ai belonging to a set of m actions A =
{a1, a2, . . . , am}. Our aim is to devise a generative model
G(X; θ) adept at mirroring the original data distribution
pdata(x). The purpose of G is to fabricate synthetic ac-
tion sequences s, such that s ∼ pmodel(x), with pmodel(x; θ)
closely emulating pdata(x). This entails that the synthetic
data should not only exhibit diverse pose variations but also
faithfully preserve the intrinsic motion styles and statisti-
cal characteristics inherent to the original dataset. Addi-
tionally we define an action recognition model, denoted as
M(S), which dynamically evaluates each synthetic sam-
ple si within the set of generated action sequences S =
{s1, s2, . . . , sp} to determine if the sample is good enough
to be assigned into the correct action class, which means
predicted action equals to the given class, noted as âi =
ai.To highlight the capabilities of the generative model, we
amalgamate the refined, high-quality synthetic action se-
quences S with the infant real data X , forming a com-
prehensive training dataset Xtrain = {s1, s2, . . . , sp} ∪
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{x1, x2, . . . , xn}, which is employed to further augment the
training of generative model G and recognition model M .

3.1. InfAGenC Pipeline

Motion generation, action recognition, and sample se-
lection/filtering are major components of our pipeline. As
depicted in Fig. 1, the process begins by feeding real data,
which is a set of body keypoints/pose angles, into a pre-
trained generative model. Subsequently, theresultant sam-
ples undergo evaluation by an action recognition model.
Utilizing predicted confidence scores and diversity scores,
selected samples are transferred to the synthetic data pool
for integration into the training data for subsequent itera-
tions. Each component will be thoroughly described below.

Action Generation We adopted a transformer-based con-
ditional VAE model G, and trained it on the training data
initially comprising only real infant data X , serving as our
baseline generative model. Following this, we embark on
the integrated training of our motion generative model on
the training set Xtrain. This phase involves iterative train-
ing on the set, focusing on the optimization of losses includ-
ing reconstruction loss Lrec, motion/velocity loss Lvel, and
Kullback–Leibler (KL) divergence loss LKL. The equation
representing the loss function of the generative model can
be formalized as follows:

Ltotal = λKLLKL + λrecLrec + λvelLvel, (1)

Lrec =
1

N

N∑
i=1

∥xi − x̂i∥2 (2)

LKL = −1

2

d∑
j=1

(
1 + log(σ2

j )− µ2
j − σ2

j

)
(3)

Lvel =
1

N − 1

N−1∑
i=1

∥(xi+1 − xi)− (x̂i+1 − x̂i)∥2 (4)

where λKL, λrec, and λvel represent the weights assigned
to each respective loss term.

Action Recognition Parallel to the generative model’s
development, the action recognition model training plays
a pivotal role in the methodology. A well-trained action
recognition model M , specifically the ST-GCN in our sce-
nario, is prepared. This model also trained on the original
real infant motion data X is crucial for evaluating the gen-
erated samples’ quality and performing action classification
tasks effectively. Cross-entropy loss is the loss function to
minimize. Following each generative model G training it-
eration, it produces samples {stki }Nk

i=1 and Nk is the num-
ber of samples generated at epoch tk, that are subsequently

evaluated by the ST-GCN model to assess their classifica-
tion accuracy score (CAS). After every 10 epochs, the sam-
ples achieving the highest CAS are selected as candidates
for the next synthetic data filtering, ensuring a continuous
improvement in sample quality. This can be formalized as:

tbest = argmax
tk∈{t1,t2,...,t10}

1

Nk

Nk∑
i=1

CAS(stki ). (5)

Subsequently, the set of generated samples from the best-
performing epoch, tbest, is selected as candidate:

Scandidate = {stbest
i }Ntbest

i=1 . (6)

Notably, with the training set Xtrain augmented by syn-
thetic data, the action recognition model M undergoes 3
epochs of updates to adapt to the new input data. The up-
dated model is then utilized for evaluating the next cycle
of generated samples. This update ensures that the model
remains attuned to the nuances of both original and newly
generated synthetic samples, thereby maintaining high ac-
curacy and efficiency in action classification tasks.

Sample Filtering and Selection Before transferring gen-
erated samples to next training iterations, we discard low-
quality samples in the set Scandidate based on their classi-
fication accuracy and confidence scores. We retain only
samples that are correctly classified and exceed a predefined
confidence threshold defined in Eq 7, ensuring high-quality
motion samples in the synthetic data recycling process. This
filtering maintains integrity and quality of the training data.

Sfiltered = {si ∈ Scandidate|Conf(si) > θ and âsi = asi},
(7)

where Sfiltered is the set of samples retained after filtering,
Conf(si) represents the confidence score of sample si, θ
is the predefined confidence threshold, and Acc(si) is a
boolean indicating whether sample si was correctly classi-
fied by the action recognition model.Then, given the inher-
ent limitation of VAE models to sample data closely aligned
with the distribution of their training dataset, which, in the
context of our minimal real training data, restricts the di-
versity of generated samples, we employ a strategic sample
selection method aimed at enhancing the training dataset’s
variance. This method is quantitatively defined by two es-
sential metrics for each sample si in filtered samples Sfiltered:
Within-Class Distance, dwithin, the average of Euclidean dis-
tances between the feature vector of synthetic samples and
the feature vectors of all real samples within the same class:

dwithini =
1

Nasi

Nasi∑
j=1

∥f(si)− f(xj)∥2 , (8)

Between-Class Distance, dbetween, the average of the Eu-
clidean distances between the feature vector of the synthetic
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sample and the feature vectors of all real samples from dif-
ferent classes:

dbetweeni =
1

Na̸=asi

Na̸=asi∑
j=1

∥f(si)− f(xj)∥2 , (9)

where the Nasi
is the number of real data points xj with

the same action class label of the synthetic sample si, while
Na̸=asi

is the number of real data points xj with the differ-
ent action class label of the synthetic sample si. f(·) is the
encoder of action recognition model, which extracts the fea-
ture vector of motion sample. To reconcile these objectives,
we evaluate the ratio of weighted within-class to between-
class distances for each sample, prioritizing samples based
on this ratio within each class and ultimately retaining the
central 50% of samples to balance diversity and distinction.
These selected samples Sselected are then used as as part of
training data Xtrain = {Sselected ∪ X} for further gener-
ative model training and contribute to building our initial
infant synthetic motion dataset.

4. Experimental Results
We evaluated our pipeline using two Infant dataset in-

cluding InfactPrimitive [12] and our collect infant action
dataset. We have also used the small portion of NTU [21] to
illustrate our pipeline’s performance with limited data. With
3D ground truth provided, sourced from a standard skeleton
representation, we could effectively control potential noise
in estimation, underscoring the robustness of our approach.
Detailed implementation our pipeline and experiment hy-
perparameters are provided in the Supplementary Materi-
als Sec. A.2. We evaluated the models through both gener-
ation metrics and action recognition accuracy in Sec. 4.2.

4.1. Datasets

NTU The NTU RGB+D 120 [21] dataset is a widely-used
dataset for the human activity recognition task. We sampled
data from the NTU dataset to create a smaller set for train-
ing our pipeline. We selected four classes: “Sitting Down”,
“Standing Up”, “Jumping”, and “Falling”, which are simi-
lar to infant action classes. Our training set includes 5 sam-
ples per class from 5 subjects, totaling 100 data points. For
testing, we created two sets: (1) a small test set with 10
samples per class from another 5 subjects (200 samples in
total), comparable to the size of the infant datasets, and (2)
a large test set that includes all samples from the remain-
ing subjects for these four classes, totaling 3081 samples, to
provide more robust evaluations.

InfActPrimitive The InfActPrimitive [12] dataset com-
prises video clips from YouTube and real-life scenarios, in-
volving 127 infant subjects. The YouTube portion initially

Subject ID Crawling Sitting Standing Rolling Total
Inf01 31 41 10 0 82
Inf02 43 1 0 15 59
Inf03 0 1 0 3 4
Inf04 52 0 0 9 61
Inf05 6 24 27 0 57

Table 1. The distribution of action classes of action classes of our
created InfantAction dataset.

had 400 clips, but after removing unreliable and outlier sam-
ples, 310 clips across five classes remained: 46 Supine, 40
Prone, 99 Sitting, 67 Standing, and 58 All-fours. We des-
ignated one-third of these clips (103 clips) as a validation
set to maintain class balance and avoid subject overlap dur-
ing training for action recognition and generation.We set
the“in-the-wild” segment of InfActPrimitive as our test set,
featuring home-based clips of infants aged 3 to 12 months
engaged in various activities. The older infants often per-
form Sitting, Standing, and All-fours actions, while the
younger ones primarily showed Supine and Prone actions.
This led to a naturally imbalanced distribution of action
classes, reported in the Supplementary Materials Tab. S1.

InfantAction (Ours) The InfActPrimitive dataset con-
tains infant basic actions with limited body movements. To
include more complex actions, we created a dataset through
recruitment of five infants. They details of our study is
discussed in the Supplementary Materials Sec. A.1. Our
dataset contains four action classes: “Crawling”, “Sitting”,
“Standing”, and “Rolling”. However, similar to InfAct-
Primitive [12] due to age variations among the infants, the
distribution of action classes remained imbalanced, as de-
tailed in Tab. 1. We included Inf04 and Inf05 in our test set
which cover the whole action classes, and used the remain-
ing 3 subjects in our training resulting a total of 145 and 118
samples in training and test sets.
The collection and usage of infant data under Institutional
Review Board (IRB #22-11-32) strictly adhere to the high-
est ethical standards. All data handling and sharing are in
full compliance with applicable data protection regulations,
ensuring that the data remains secure and accessible only to
authorized personnel for research purposes.

4.2. Evaluation of Infant Action Generation

Tab. 2 reports the performance comparison of our
pipeline and the VAE baseline among all three datasets in
terms of evaluating Fréchet Inception Distance (FID), ac-
tion recognition accuracy, overall diversity, as well as diver-
sity and multimodality on a per-action basis. Existing gen-
erative models, like MDM and Action2Motion, are primar-
ily designed for adult datasets with a large number of sam-
ples. We also adapted and fine-tuned MDM model on the
InfActPrimitive training set to benchmark its performance
against our model in scenarios with limited data availabil-
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Dataset Model FID ↓ Accuracy ↑ Diversity ↑ Multimodality ↑

InfActPrimitive [12]
MDM [40] 17.38±5.25 98.3±0.42 19.22±0.14 6.95±0.45

VAE (Baseline) 5.87±1.49 97.6±7.29 18.45±0.51 6.78±0.36

InfAGenC (Ours) 15.15±4.08 100.00±0.09 26.65±1.24 7.65±0.36

InfantAction (Ours) VAE (Baseline) 44.31±69.39 71.80±19.70 13.54±0.86 7.45±0.70

InfAGenC (Ours) 29.00±7.45 98.6±2.69 23.80±2.20 5.32±0.78

NTU [21] VAE (Baseline) 29.35±18.81 72.60±7.92 14.02±0.46 4.35±0.26

InfAGenC (Ours) 47.61±20.68 99.90±0.18 22.84±0.98 4.79±0.35

Table 2. Comparative Evaluation of the InfAGenC Model with the Baseline Conditional VAE Model. This table presents the performance
metrics of our InfAGenC model versus the baseline model across the NTU, InfActPrimitive, and InfantAction datasets, and also make the
contrast with MDM model on InfActPrimitvie dataset. The best results are bold.

Model InfActPrimitive [12] InfantAction (Ours) NTU [21]
Real Real + Syn Real Real + Syn Real Real + Syn

ST-GCN Acc. (%) 68.71 88.58 80.51 70.34 94.00 98.00
MS-G3D Acc. (%) 58.35 66.38 66.10 65.30 86.65 88.28

Table 3. Performance of Infant Action Recognition Models Using
Different Data Configurations. We respectively trained ST-GCN
model and MS-G3D model on InfActPrimitive, InfantAction, and
NTU dataset under two conditions: (1) Real - utilizing the training
set of each dataset and (2) Real+Syn - a hybrid approach combin-
ing both real and synthetic data samples. The highest accuracy for
each model and dataset are distinguished in bold.

ity in Tab. 2. Our results show substantial improvements in
both accuracy and diversity when the InfAGenC model is
trained on any of these three datasets. Our model also out-
performs the MDM model, confirming the effectiveness of
our approach in handling limited and diverse data contexts.
Even though it demonstrates higher FID on both InfAct-
Primitive and NTU datasets compared to the counterparts,
this underscores the capability of our generated samples to
span a broader distribution, affirming their sufficient vari-
ance. Given the constraints of dealing with sparse data and
lacking 3D ground truth, our goal is to prevent overfitting
to outliers and noise in the dataset while ensuring the di-
versity of samples remains accurate. This trade-off in re-
ducing fidelity compared to other baseline models may be
explained by the inclusion our sampling and selection ap-
proach considering both between and within class distance.
Additionally, we qualitatively evaluated our models by visu-
alizing the generated samples. Fig. 2 displays snapshots of
the skeletal representations of the generated samples based
on InfactPrimitive. These visuals demonstrate our model’s
capability to generate a diverse array of motion samples
for each targeted class, significantly enriching the dataset
and supporting advancements in research on infant motion.
More visualizations of generated motions based on Infan-
tAction and NTU data are presented in the Supplementary
Materials Fig. S1 and Fig. S2.

4.3. Evaluation of Infant Action Recognition

We employed two distinct action recognition models.
The first model is the ST-GCN model, identical to the one
utilized in our methodology, which uses 6D rotations for

Figure 2. Snapshots of Our Generated Samples. The images are
organized by action class, displayed in the following order from
left to right: Supine, Prone, Sitting, Standing, and All-fours. First
row is the real action samples, the other two rows present distinct
motions depicted as skeletons per action class.

joints representation. The second model, MS-G3D [23],
adopts xyz coordinates for joints representation and fea-
tures a disentangled aggregation approach coupled with a
unified spatial-temporal graph convolution (G3D) operator
to enhance action feature learning. We trained each action
recognition model trained under two data configurations:
(a) Real, using only the real training set and (2) Real+Syn,
including both real training set and synthetic data sam-
ples generated by our InfAGenC model. The overall per-
formance outcomes of these configurations are compared
in Tab. 3. Either the ST-GCN model or the MS-G3D model,
the accuracy improves significantly when synthetic data is
included, with the notable increase seen in both InfActPrim-
itive dataset and NTU dataset, indicating that the synthetic
data aids in generalizing the models’ predictive capabilities.
However, for the InfantAction dataset, the performance of
both models trained with only the real dataset outperforms
those trained with the hybrid dataset. This inconsistency
may be attributed to two main factors: (1) Compared to
other datasets, the InfantAction dataset is relatively small,
with only 145 samples, which may not be sufficient to gen-
erate high-quality synthetic data. (2) The imbalance in class
distribution could introduce a bias in evaluations, favoring
classes with more samples. The addition of balanced syn-
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Supine (Real Test)
Supine (Selected)
Supine (Real Train)

Prone (Real Test)
Prone (Selected)
Prone (Real Train)

Sitting (Real Test)
Sitting (Selected)
Sitting (Real Train)

Standing (Real Test)
Standing (Selected)
Standing (Real Train)

All-fours (Real Test)
All-fours (Selected)
All-fours (Real Train)

(a) InfactPrimitive

Crawling (Real Test)
Crawling (Selected)
Crawling (Real Train)

Sitting (Real Test)
Sitting (Selected)
Sitting (Real Train)

Standing (Real Test)
Standing (Selected)
Standing (Real Train)

Rolling (Real Test)
Rolling (Selected)
Rolling (Real Train)

(b) InfantAction

Sitting (Real Test)
Sitting (Real Train)
Sitting (Selected)

Standing (Real Test)
Standing (Real Train)
Standing (Selected)

Jumping (Real Test)
Jumping (Real Train)
Jumping (Selected)

Falling (Real Test)
Falling (Real Train)
Falling (Selected)

(c) NTU

Figure 3. T-SNE Feature Visualization of Real and Synthetic Data. We compared the features of real train data, real test data, and synthetic
data (generated during training InfAGenC model) for each experimental dataset (i.e. InfactPrimitive, InfantAction, and NTU). The data
points are color-coded to distinguish between various infant actions. And data sources are shape-coded: • for real part of train data, ▲ for
real test data, and while + for selected synthetic samples during training.

200 Test Samples Acc. (%) 3081 Test Samples Acc.(%)
Method Train Set Sitting Standing Jumping Falling Overall Sitting Standing Jumping Falling Overall
- Real 82.00 96.00 100.00 98.00 94.00 95.33 91.16 97.78 96.64 95.73
Conditional Transform-based VAE Syn 90.00 92.00 96.00 96.00 93.50 93.11 96.61 93.54 93.78 94.26
(Baseline) Real+Syn 92.00 98.00 94.00 100.00 96.00 90.25 98.83 79.97 99.35 92.08
Random Selection InfAGenC Syn 82.00 90.00 96.00 94.00 90.05 87.65 98.04 84.24 89.25 89.78
(Ours) Real+Syn 88.00 96.00 98.00 100.00 95.50 93.50 98.43 89.66 98.83 95.10
Distance-based Selection InfAGenC Syn 86.00 90.00 80.00 94.00 87.50 86.48 81.07 75.19 93.01 83.93
(Ours) Real+Syn 96.00 98.00 98.00 100.00 98.00 95.71 97.65 95.61 99.35 97.08

Table 4. Ablation Analysis of ST-GCN Action Recognition Models on NTU Dataset Using Various Synthetic Training Sets. We evaluate
the quality of synthetic data produced by three different configurations of generative model training: (1) a baseline conditional transform-
based VAE, (2) our InfAGenC network with random sample selection, and (3) our InfAGenC network employing a distance-based sample
selection strategy. The action recognition models were trained using different combinations of datasets: (a) Real, which solely utilizes the
prepared NTU real training set; (b) Syn, which uses synthetic infant data generated from the corresponding generative model configuration;
and (c) Real+Syn, a hybrid approach that combines both real and synthetic data. The highest accuracy for each class is underlined, and the
highest overall accuracy is highlighted in bold.

thetic data diminishes the model’s preference for specific
classes, thereby enhancing performance across all classes,
not just those that are overrepresented. To further support
our hypotheses, detailed subject-wise and action-wise eval-
uations will be presented in the upcoming ablation studies.
We also visualized each experimental dataset’s feature dis-
tribution by using T-SNE algorithm in Fig. 3. It is obvious
that most classes are clustered very well and those gener-
ated samples are largely scattered around the real training
data. This expansion of each class’s distribution effectively
broadens the variety of actions covered within each class,
thereby enhancing the performance of the action recogni-
tion model.

4.4. Ablation Studies

To ensure an unbiased evaluation of our methods and
provide an ablation analysis, we conducted experiments on
the subset of NTU data, which features a balanced class dis-
tribution, 3D ground truth, and sufficient test data, allowing
us to assess our methods effectively.

Synthetic Data Recycling In Tab. 2, we evaluate the per-
formance of our generative model in comparison with a
baseline VAE model, specifically examining the quality of

synthetic samples generated by both. We assessed the effec-
tiveness of our synthetic data recycling approach by com-
paring the performance of ST-GCN action recognition mod-
els trained on equivalent amounts of synthetic samples pro-
duced by (1) the baseline VAE model and (2) our InfAGenC
model. These models were tested on the NTU dataset’s
small test set of 200 samples and a large test set of 3081
samples, with results detailed in Tab. 4. The action recog-
nition model trained with fusion data, combining synthetic
samples from our InfAGenC model and real data, shows
a performance increase of 4% on the small test set and
1.35% on the large test set compared to models trained only
with real data. In contrast, synthetic data from the baseline
model, which lacks the recycling component, only improves
performance by 2% on the small test set and actually de-
creases performance by 3.65% on the large test set. These
results highlight the significant benefits of integrating our
synthetic data recycling module into the training process.

Distance-based Sample Selection We conducted a com-
parative experiment to assess the efficacy of our distance-
based sample selection strategy for synthetic data. In
contrast to selectively using high-quality, diverse synthetic
samples during InfAGenC model training, we experimented
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ST-GCN Acc. (%) MS-G3D Acc. (%)
Subject Train Set Supine Prone Sitting Standing All-fours Overall Supine Prone Sitting Standing All-fours Overall

Real 73.91 86.67 - - - 83.67 100.00 89.33 - - - 91.84D01 Real+Syn 78.26 90.67 - - - 87.76 100.00 88.00 - - - 90.82
Real 0.00 0.00 52.94 28.57 59.09 46.84 100.00 100.00 48.00 14.28 31.81 35.84D02 Real+Syn 100.00 0.00 52.94 33.33 63.64 50.63 100.00 0.00 60.60 47.62 45.45 52.66
Real - 0.00 86.96 51.35 60.00 72.11 - 16.67 68.11 27.02 32.85 51.00D03 Real+Syn - 16.67 80.43 64.86 64.29 72.11 - 0.00 86.23 37.83 57.14 68.92
Real - 55.56 - - - 55.56 - 66.67 - - - 66.67D04 Real+Syn - 66.67 - - - 66.67 - 22.22 - - - 22.22

Table 5. Detailed Performance of Infant Action Recognition Models on the InfActPrimitive Dataset. This table displays the accuracy for
each subject and action class, comparing models trained across different data configurations: (1) Real - utilizing the InfActPrimitive dataset
and (2) Real+Syn - a hybrid approach that merges both real and synthetic data generated by our InfAGenC model. In the analysis, entries
showcasing the highest accuracy for each class and subject are distinguished in bold.

ST-GCN Acc. (%) MS-G3D Acc. (%)
Subject Train Set Crawling Sitting Standing Rolling Overall Crawling Sitting Standing Rolling Overall

Real 98.08 - - 22.22 86.89 75.00 - - 44.44 67.18Inf04 Real+Syn 75.00 - - 55.56 72.13 94.23 - - 0 76.56
Real 100.00 100.00 44.44 - 73.68 83.33 58.33 16.66 - 42.93Inf05 Real+Syn 83.33 100.00 37.04 - 68.42 83.33 58.33 16.66 - 42.93

Table 6. Detailed Performance of Infant Action Recognition Models on the InfantAction Dataset. This table displays the accuracy for each
subject and action class, comparing models trained across different data configurations: (1) Real - utilizing the InfantAction dataset and (2)
Real+Syn - a hybrid approach that merges both real and synthetic data generated by our InfAGenC model. The highest accuracy for each
class and subject are distinguished in bold.

with random synthetic sample selection to augment train-
ing data. We evaluated the performance of ST-GCN action
recognition models trained with two configurations: (1) us-
ing the real NTU training set combined with synthetic sam-
ples generated by our InfAGenC model employing a ran-
dom selection strategy, and (2) using the real NTU training
set alongside synthetic samples generated by our InfAGenC
model with a distance-based selection strategy. Our find-
ings reveal that the ST-GCN models trained with synthetic
data produced via the distance-based selection consistently
achieved the highest accuracy, not just on the NTU’s small
test set but also on the large test set, reaching accuracies of
98% and 97.08%, respectively. This underscores the advan-
tage of the distance-based selection approach in enhancing
the effectiveness of training data.

Subject-wise and Action-wise Evaluation Due to the
rapid motor development in infants, the range of action
shifts over time. Additionally, there is a huge within-class
discrepancy in infant actions, as illustrated by [12], even
for the same class of action. For better interpretability,
we compared the performance outcomes of infant action
recognition models for each infant subject and action class
across both the InfActPrimitive and InfantAction datasets,
as presented in Tab. 5 and Tab. 6, respectively. As shown
in Tab. 5, across both ST-GCN and MS-G3D, the highest
accuracy for most subjects and action classes is achieved
with the hybrid training set. Specifically, older subjects D02
and D03, who perform more advanced actions but exhibit
fewer elementary motor skills (their data class distribution
is reported in Tab. S1), show significant performance im-
provements when trained on hybrid data compared to just
real data. Similarly, in Tab. 6, although the overall accu-

racy of models trained solely with real data appears higher,
the accuracy distribution across different action classes is
more uneven when compared to models trained on hybrid
data. This evidence justifies the value of integrating bal-
anced synthetic data to enhance model performance across
diverse action classes.

5. Limitation and Conclusion
In this study, we developed an infant motion generation

pipeline and introduced a unique dataset with a more com-
plex set of actions. Due to the uncooperativeness of infants,
data gathered in home settings without assumptions about
camera angles and views vary from infant to infant, result-
ing in limited samples but substantially different positions.
Additionally, due to age variations, even the same action,
such as standing, differs among infants (some use support,
while others stand by themselves). Another limitation is
that acquiring 3D pose ground truth using motion capture
is not possible for infants, as they are often surrounded and
occluded by toys and other objects, posing significant chal-
lenges for 3D pose estimation and tracking in videos. How-
ever, our pipeline’s results on the NTU dataset, with less
noise and reliable ground truth, demonstrate its capability
to handle small data effectively. In future work, we plan to
increase the dataset size to establish a more robust bench-
mark for infant action recognition tasks. We hope that the
results of this study will encourage others in this field to
develop their models, leading to smarter and safer environ-
ments for infants.

260



References
[1] Ghada Alsebayel, Mahsa Nasri, Caleb P Myers, Giovanni M

Troiano, Elaheh Hatamimajoumerd, Sarah Ostadabbas, Kris-
ten Allison, and Casper Harteveld. Articumotion: Towards
assessing motor speech disorders via gamification. In Pro-
ceedings of the 23rd Annual ACM Interaction Design and
Children Conference, pages 232–247, 2024.

[2] Somaieh Amraee, Bishoy Galoaa, Matthew Goodwin, Ela-
heh Hatamimajoumerd, and Sarah Ostadabbas. Multiple
toddler tracking in indoor videos. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 11–20, 2024.

[3] Xu Cao, Xiaoye Li, Liya Ma, Yi Huang, Xuan Feng, Zen-
ing Chen, Hongwu Zeng, and Jianguo Cao. Aggpose: Deep
aggregation vision transformer for infant pose estimation. In
Proceedings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence (IJCAI-22) Special Track on
AI for Good, 2022. 3

[4] Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zis-
serman. A short note on the kinetics-700 human action
dataset. arXiv preprint arXiv:1907.06987, 2019. 3

[5] Hyung-gun Chi, Myoung Hoon Ha, Seunggeun Chi,
Sang Wan Lee, Qixing Huang, and Karthik Ramani. In-
fogcn: Representation learning for human skeleton-based
action recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
20186–20196, 2022. 2, 3

[6] Qiongjie Cui, Huaijiang Sun, and Fei Yang. Learning dy-
namic relationships for 3d human motion prediction. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6519–6527, 2020. 3

[7] Bruno Degardin, Joao Neves, Vasco Lopes, Joao Brito,
Ehsan Yaghoubi, and Hugo Proença. Generative adversarial
graph convolutional networks for human action synthesis. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 1150–1159, 2022. 3

[8] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and Bo
Dai. Revisiting skeleton-based action recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2969–2978, 2022. 2

[9] Yao Feng, Jing Lin, Sai Kumar Dwivedi, Yu Sun, Priyanka
Patel, and Michael J Black. Posegpt: Chatting about 3d hu-
man pose. arXiv preprint arXiv:2311.18836, 2023. 3

[10] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao
Sun, Annan Deng, Minglun Gong, and Li Cheng. Ac-
tion2motion: Conditioned generation of 3d human motions.
In Proceedings of the 28th ACM International Conference on
Multimedia, pages 2021–2029, 2020. 1, 3

[11] Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and
Christopher Pal. Robust motion in-betweening. ACM Trans-
actions on Graphics (TOG), 39(4):60–1, 2020. 1

[12] Elaheh Hatamimajoumerd, Pooria Daneshvar Kakhaki, Xi-
aofei Huang, Lingfei Luan, Somaieh Amraee, and Sarah Os-
tadabbas. Challenges in video-based infant action recogni-
tion: A critical examination of the state of the art. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 21–30, 2024. 1, 3, 5, 6, 8

[13] Nikolas Hesse, Christoph Bodensteiner, Michael Arens,
Ulrich G Hofmann, Raphael Weinberger, and A Sebas-
tian Schroeder. Computer vision for medical infant motion
analysis: State of the art and rgb-d data set. In Proceedings
of the European Conference on Computer Vision (ECCV)
Workshops, pages 0–0, 2018. 3

[14] Nikolas Hesse, Sergi Pujades, Javier Romero, Michael J
Black, Christoph Bodensteiner, Michael Arens, Ulrich G
Hofmann, Uta Tacke, Mijna Hadders-Algra, Raphael Wein-
berger, et al. Learning an infant body model from rgb-
d data for accurate full body motion analysis. In Medi-
cal Image Computing and Computer Assisted Intervention–
MICCAI 2018: 21st International Conference, Granada,
Spain, September 16-20, 2018, Proceedings, Part I, pages
792–800. Springer, 2018. 11

[15] Xiaofei Huang, Nihang Fu, Shuangjun Liu, and Sarah Os-
tadabbas. Invariant representation learning for infant pose
estimation with small data. In 2021 16th IEEE International
Conference on Automatic Face and Gesture Recognition (FG
2021), pages 1–8. IEEE, 2021. 1, 3

[16] Xiaofei Huang, Lingfei Luan, Elaheh Hatamimajoumerd,
Michael Wan, Pooria Daneshvar Kakhaki, Rita Obeid, and
Sarah Ostadabbas. Posture-based infant action recogni-
tion in the wild with very limited data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4911–4920, 2023. 1

[17] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 36(7):1325–1339, jul 2014. 1

[18] Manuel Kaufmann, Emre Aksan, Jie Song, Fabrizio Pece,
Remo Ziegler, and Otmar Hilliges. Convolutional autoen-
coders for human motion infilling. In 2020 International
Conference on 3D Vision (3DV), pages 918–927. IEEE,
2020. 3

[19] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 1

[20] Taeryung Lee, Gyeongsik Moon, and Kyoung Mu Lee. Mul-
tiact: Long-term 3d human motion generation from multiple
action labels. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 37, pages 1231–1239, 2023. 3

[21] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang,
Ling-Yu Duan, and Alex C Kot. Ntu rgb+ d 120: A large-
scale benchmark for 3d human activity understanding. IEEE
transactions on pattern analysis and machine intelligence,
42(10):2684–2701, 2019. 1, 3, 5, 6

[22] Shuangjun Liu, Michael Wan, and Sarah Ostadabbas.
Heuristic weakly supervised 3d human pose estimation.
arXiv preprint arXiv:2105.10996, 2021. 11

[23] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang,
and Wanli Ouyang. Disentangling and unifying graph convo-
lutions for skeleton-based action recognition. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 143–152, 2020. 2, 6

261



[24] Thomas Lucas, Fabien Baradel, Philippe Weinzaepfel, and
Grégory Rogez. Posegpt: Quantization-based 3d human mo-
tion generation and forecasting. In European Conference on
Computer Vision, pages 417–435. Springer, 2022. 3

[25] Julieta Martinez, Michael J Black, and Javier Romero. On
human motion prediction using recurrent neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2891–2900, 2017. 3

[26] Lucia Migliorelli, Sara Moccia, Rocco Pietrini, Vir-
gilio Paolo Carnielli, and Emanuele Frontoni. The babypose
dataset. Data in brief, 33:106329, 2020. 3

[27] Mathis Petrovich, Michael J Black, and Gül Varol. Action-
conditioned 3d human motion synthesis with transformer
vae. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 10985–10995, 2021. 1

[28] Trevor Powers, Elaheh Hatamimajoumerd, William Chu,
Vishakk Rajendran, Rishi Shah, Frank Diabour, Marc Vail-
lant, Richard Fletcher, and Sarah Ostadabbas. Vision-based
treatment localization with limited data: Automated docu-
mentation of military emergency medical procedures. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1819–1828, 2023. 2

[29] Abhinanda R Punnakkal, Arjun Chandrasekaran, Nikos
Athanasiou, Alejandra Quiros-Ramirez, and Michael J
Black. Babel: Bodies, action and behavior with english la-
bels. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 722–731, 2021.
3

[30] Arun V Reddy, Ketul Shah, William Paul, Rohita Mocharla,
Judy Hoffman, Kapil D Katyal, Dinesh Manocha, Celso M
de Melo, and Rama Chellappa. Synthetic-to-real domain
adaptation for action recognition: A dataset and baseline per-
formances. arXiv preprint arXiv:2303.10280, 2023. 3

[31] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recog-
nizing human actions: a local svm approach. In Proceedings
of the 17th International Conference on Pattern Recognition,
2004. ICPR 2004., volume 3, pages 32–36. IEEE, 2004. 1

[32] Xiaolin Song, Sicheng Zhao, Jingyu Yang, Huanjing Yue,
Pengfei Xu, Runbo Hu, and Hua Chai. Spatio-temporal con-
trastive domain adaptation for action recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9787–9795, 2021. 3

[33] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 1

[34] Fatma M Talaat and Hanaa ZainEldin. An improved fire de-
tection approach based on yolo-v8 for smart cities. Neural
Computing and Applications, 35(28):20939–20954, 2023.
11

[35] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,
Daniel Cohen-Or, and Amit H Bermano. Human motion dif-
fusion model. arXiv preprint arXiv:2209.14916, 2022. 1,
3

[36] Jiang Wang, Xiaohan Nie, Yin Xia, Ying Wu, and Song-
Chun Zhu. Cross-view action modeling, learning and recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2649–2656, 2014. 1

[37] Liang Xu, Ziyang Song, Dongliang Wang, Jing Su, Zhicheng
Fang, Chenjing Ding, Weihao Gan, Yichao Yan, Xin Jin, Xi-
aokang Yang, et al. Actformer: A gan-based transformer
towards general action-conditioned 3d human motion gener-
ation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 2228–2238, 2023. 2

[38] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In Proceedings of the AAAI conference on arti-
ficial intelligence, volume 32, 2018. 1, 2

[39] Xueying Zhan, Huan Liu, Qing Li, and Antoni B Chan.
A comparative survey: Benchmarking for pool-based active
learning. In IJCAI, pages 4679–4686, 2021. 1

[40] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondif-
fuse: Text-driven human motion generation with diffusion
model. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024. 1, 6

[41] Shaotong Zhu, Amal Mathew, Elaheh Hatamimajoumerd,
Michael Wan, Briana Taylor, Rajagopal Venkatesaramani,
and Sarah Ostadabbas. Cribnet: Enhancing infant safety in
cribs through vision-based hazard detection. In 2024 IEEE
18th International Conference on Automatic Face and Ges-
ture Recognition (FG), pages 01–08. IEEE, 2024. 3

[42] Shaotong Zhu, Michael Wan, Sai Kumar Reddy Manne, Ela-
heh Hatamimajoumerd, Marie J Hayes, Emily Zimmerman,
and Sarah Ostadabbas. Subtle signals: Video-based detection
of infant non-nutritive sucking as a neurodevelopmental cue.
Computer Vision and Image Understanding, 247:104081,
2024. 3

262



A. Supplementary Materials
A.1. InfantAction Dataset Creation

We recruited infant subjects and collected clips from home-based monitoring sessions, capturing moments when the
infants were either playing or sleeping. This process was conducted with IRB approval and parental permission. Our infant
participants ranged in age from 3 to 12 months, which introduced significant variation in their motion capabilities. To create
the final InfantAction dataset, we undertook the following steps:

• Video Clips Cropping: We reviewed lengthy video recordings to extract short clips (each approximately 4-5 seconds)
that showcased predefined actions such as “Sitting”, “Standing”, “Crawling”, and “Rolling”.

• Video Selection: We selected clips that were of high quality and displayed clear action movements, ensuring a variety
of movements for each subject. Each clip was manually assigned an action class label.

• Object Detection: Using YOLOv8 [34], we automatically detected bounding boxes for each subject. We employed
object tracking algorithms to maintain consistency in the bounding boxes, manually correcting any inaccuracies.

• 3D Pose Estimation: As our videos were solely RGB with no motion capture data, we applied the HW-HuP [22] infant
3D pose estimation model to determine joint locations in each frame.

• Error Filtering: After pose estimation, we visualized the predicted 3D poses and removed any clips with incorrect
estimations.

Following these processing steps, we compiled a dataset of 273 video clips. The class distribution of these clips is detailed
in Tab. 1.

A.2. Implementation Details

Experiments on InfActPrimitive Dataset We deployed our InfAGenC framework on a transformer-based VAE model
integrated with a ST-GCN. This model leverages the 6D rotations of SMIL model [14] 24 joints’ as the joints representation,
offering a detailed and comprehensive depiction of the dynamic interactions between joints. Each video clip was processed to
consist of 60 frames. During the training phase, we utilized the Adam optimizer with a learning rate set to 0.0001 and a batch
size established at 16 for epochs. Initially, to ensure accurate performance evaluation, our action recognition component
underwent training for 15 epochs using the InfActPrimitive dataset.

To ensure effective evaluation of generated samples, we pre-train an action recognition model. However, it’s essential
to strike a balance in training this model. Over-training can reduce synthetic data diversity due to overfitting, while under-
training may lead to inaccurate action classification. To address this, we halt the pre-trained model’s training once it achieves
85% accuracy, ensuring both model performance and synthetic data quality.

For the action generation component, we adjusted the loss term weights—λKL, λrec, and λvel—to 1.0, 1.0, and 0.001,
respectively. This component was pre-trained for 1100 epochs on the training set of InfActPrimitive, aiming to enrich the
generated samples with temporal details beyond mere static poses. Subsequently, we initiated the synthetic data recycling
phase for an additional 200 epochs. In our strategy for filtering and selecting generated samples, we set the confidence
threshold (θ) at 0.75 and the weights for within-class distance (wwithini ) and between-class distance (wbetweeni ) at 0.6 and
0.4, respectively.

Upon completing the training of our infant action generative model, we successfully generated 1275 synthetic samples,
which were then incorporated into the training set for the action recognition models. This synthetic data was further incorpo-
rated into the training set for training the action recognition models up to 100 epochs but ceasing upon model convergence,
specifically targeting the infant action recognition task.

Experiments on InfantAction Dataset For the experiments conducted on the InfantAction dataset, we followed a similar
configuration to that of the InfActPrimitive dataset, with the main difference being the adjustment of the number of frames
per video clip to 90 instead of 60. This adjustment was made to accommodate the longer duration required to capture complex
actions accurately. The remaining settings, including the model architecture, optimizer, loss term weights, training duration,
and synthetic data recycling strategy, remained consistent. Following the training process, we successfully generated 816
synthetic samples, which were seamlessly integrated into the training set for action recognition models.
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Experiments on Prepared NTU Dataset We adopted a different data representation due to the availability of relatively
accurate joint location annotations of NTU data. Instead of relying on 24 joints’ 6D rotations, we directly utilized the 25
joints’ 3D coordinates as the data representation for both the generative and recognition models. The duration of videos in
this dataset was set to 90 frames as well. Similar to the previous experiments, we generated synthetic samples during the
training process. Upon completion, we successfully generated 1288 synthetic samples, which were then incorporated into
the training set for further analysis and evaluation of the action recognition models.

All the experiments utilize a robust compute environment featuring the NVIDIA v100-pcie GPU from the Volta generation.
This GPU comes equipped with 32GB of memory, enabling substantial data processing capabilities.

Subject ID Supine Prone Sitting Standing All-fours Total
D01 23 75 0 0 0 98
D02 1 1 34 21 22 79
D03 0 6 138 37 70 251
D04 0 45 0 0 0 45

Table S1. The distribution of action classes within the “in-the-wild” segment of InfActPrimitive varies for each infant participant.

Figure S1. Sample Sequences of Generated Actions. Each sample’s frames are extracted from a generated action sequence spanning 3 seconds. The
actions, displayed sequentially from top to bottom, are: Sitting, Crawling, Standing.
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Figure S2. Snapshots of Generated Adult Action Samples. The generated samples are produced by trained our generative model on our prepared small
NTU Dataset with four action classes: Falling, Jumping, Sitting, and Standing. Each row shows one action class samples.
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