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Abstract

The conventional modus operandi for adapting pre-
trained vision-language models (VLMs) during test-time in-
volves tuning learnable prompts, i.e., test-time prompt tun-
ing. This paper introduces Test-Time Low-rank adaptation
(TTL) as an alternative to prompt tuning for zero-shot gen-
eralization of large-scale VLMs. Taking inspiration from re-
cent advancements in efficiently fine-tuning large language
models, TTL offers a test-time parameter-efficient adap-
tation approach that updates the attention weights of the
transformer encoder by maximizing prediction confidence.
The self-supervised confidence maximization objective is
specified using a weighted entropy loss that enforces con-
sistency among predictions of augmented samples. TTL in-
troduces only a small amount of trainable parameters for
low-rank adapters in the model space while keeping the
prompts and backbone frozen. Extensive experiments on
a variety of natural distribution and cross-domain tasks
show that TTL can outperform other techniques for test-
time optimization of VLMs in strict zero-shot set-
tings. Specifically, TTL outperforms test-time prompt tuning
baselines with a significant improvement on average. Our
code is available at https://github.com/Razaimam45/TTL-
Test-Time-Low-Rank-Adaptation.

1. Introduction

In recent years, foundational vision-language models
(VLMs) such as CLIP [5] have significantly transformed the
landscape of computer vision by demonstrating remarkable
proficiency in encoding diverse tasks and concepts. Trained
on extensive datasets comprising millions of image-text
pairs, these models exhibit decent generalizability across a
spectrum of tasks. However, the process of adapting these
models for specific downstream tasks through fine-tuning
often results in a compromise on their inherent generaliza-
tion capabilities [29, 47]. To address this challenge, recent
works propose the incorporation of learnable prompts into
the CLIP model, either in the textual [25, 52, 53] or visual
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Figure 1. (a) Entropy corresponding to 8 different octiles result
in different performance for Flowers102. (b) TTL implicitly align
features such that the mean embeddings of test samples better align
with that of source data (LAION) on which CLIP [39] is trained.

[24] branch, or both [26, 27]. This allows for fine-tuning
only the added prompts using a few samples from the tar-
get distribution, while keeping the rest of the model frozen.
While this approach has been quite effective, fine-tuning on
domain-specific data inevitably diminishes the VLM’s abil-
ity to generalize to unseen domains.

It would be ideal if the pre-trained VLMs could be
adapted to the target task at test-time without using any ac-
cess to target domain data/statistics, few-shot learning, or
external model assistance. We refer to this scenario as strict
zero-shot setting. Test-Time Prompt Tuning (TPT) [41] is
an example of this approach, where the prompts are updated
dynamically on the fly for each test sample. However, TPT
overlooks the distribution shift between the training data of
the CLIP model and the test samples, resulting in a sub-
par performance. To address the distribution shift, Promp-
tAlign [17] attempts to align the first-order statistics of test
sample with the training data of the CLIP model. However,
this approach necessitates access to a proxy dataset mim-
icking the distribution of CLIP training data and the use of
pre-trained prompts for initialization, both of which violate
the strict zero-shot assumption. Moreover, the token align-
ment achieved by PromptAlign is not as precise as that of
our method, as illustrated in Figure 1b.

To address the above limitations of existing test-time
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Figure 2. TTL vs. other zero-
shot optimization methods. (a)
Current methods [12, 17, 41] up-
date prompts during inference us-
ing self-entropy. (b) TTL intro-
duces low-rank learnable weight
matrices at the attention layer
of the vision encoder to update
the model weights using weighted
entropy. (c) TTL outperforms
existing baselines across Out-
of-Distribution and Cross-Dataset
while using less than 0.1% of all
model parameters.

adaptation methods, we introduce Test-Time Low-rank
adaptation (TTL), a parameter-efficient test-time adapta-
tion strategy for VLMs like CLIP. TTL eliminates the need
for source data distribution during adaptation or pre-trained
weights for initialization (Figure 2). Originally designed for
adapting Large Language Models (LLMs) to new domains,
low rank adaptation (LoRA) [22] has been extensively ap-
plied in various multi-modal and generative computer vi-
sion tasks [2, 4, 7, 10, 15, 30, 32, 38, 46, 49]. LoRA has two
main advantages compared to prompt tuning [6]. Firstly,
LoRA is generally more effective in low-resource (limited
data availability) settings. During test-time adaptation, we
have only a single unlabeled test sample available to update
the model. Moreover, to minimize the overall time required
for inference, only a very limited number of model updates
(typically only one) are possible during test-time. Again,
LoRA is known to be more stable than prompts in this sce-
nario. It must be highlighted that our work marks the first
exploration of LoRA for test-time adaptation based on a sin-
gle test sample for zero-shot generalization.

Additionally, we introduce a confidence maximization
objective that replaces the conventional entropy loss used
in [17,41] with a new weighted entropy loss. Existing stud-
ies [1,13,51] highlight the tendency of deep neural networks
to leverage both spurious and semantically meaningful fea-
tures, leading to diminished performance when spurious
correlations are prevalent. Hence, relying solely on entropy
for confidence estimation may not be consistently reliable
under distribution shifts, as it cannot distinguish whether the
model is focusing on spurious features. As shown in Figure
1a, a low entropy value is not a guarantee for correct predic-
tion. Hence, in this work, we propose a weighted entropy
loss that assigns relative weights to the different augmen-
tations, while encouraging consistent high-confidence pre-
dictions for these augmentations. Through empirical vali-
dation, we demonstrate the sub-optimality of using standard
entropy loss to update parameters at test-time and showcase
the advantages of optimizing our weighted entropy loss. In
summary, our contributions are as follows:

• We introduce Test-Time LoRA (TTL), a parameter-
efficient scheme for low-rank adaptation of VLMs at
test-time without relying on source data statistics or pre-
trained prompts.

• We propose a weighted entropy loss that introduces a con-
fidence maximization objective for updating parameters
at test-time, showcasing its superior performance com-
pared to the conventional entropy loss.

• We conduct extensive experiments and show that TTL
achieves 7.49% improvement on average over the base-
line CLIP and 2.11% over the best baseline for domain
generalization. For cross-dataset transfer, TTL exhibits
1.40% improvement over the baseline.

2. Related Work
Test-Time Adaptation (TTA): TTA [33, 43, 44] aims to
bridge the distribution gap between the train and test data
distributions at test time. While TPT [41] and CALIP [16]
first explored zero-shot enhancement of pre-trained VLMs,
TPT relies on test-time prompt tuning, struggling with ex-
plicit alignment of pre-training and test data distributions.
CALIP utilizes a parameter-free attention module for cross-
modal features. PromptAlign [17] builds on TPT and aligns
distribution statistics by pre-training the learnable prompts
using training data, deviating from the strict zero-shot as-
sumption. DiffTPT [12] employs an external diffusion
model for diverse data augmentation but is impractical due
to complexity of dependence on external diffusion model.
In contrast, our approach efficiently updates model parame-
ters in a single step, focusing on adapting the visual encoder
of CLIP with out-of-distribution samples at test time, with-
out relying on pre-trained weights or external sources.
Fine-tuning for Large Vision-Language Models: Hav-
ing been pre-trained in a self-supervised manner on vast
image-text pairs, VLMs like CLIP [39] and ALIGN [23]
have demonstrated good generalizability. However, effi-
ciently adapting them to downstream tasks with limited
data remains challenging. CoOp [53] proposes to fine-tune
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CLIP by learning a set of prompts in the text encoder. Co-
CoOp [52] highlights the inferior generalization capability
of CoOp and conditions the text prompt tokens on image
embeddings on the fly. MaPLe [26] jointly learns deep
prompts at both vision and text encoders. Despite these
advancements, existing methods often rely on pre-trained
weights, posing challenges in real-world scenarios where
no such training data from the target domain is available.
In contrast, our work utilizes LoRA [22], initialized from
scratch, to adapt attention layers of the visual encoder at
test time for addressing distribution shifts.

Entropy Minimization: The primary challenge of TTA is
limited access to samples from the test dataset during on-
line updates, which causes error accumulation. To mitigate
this issue, TTA methods have utilized the entropy of model
predictions as a confidence metric. TPT [41] attempts to
select the augmented samples that have minimum entropy.
The need to have a batch of samples by generating multiple
views via augmentations at test time is eliminated in [50].
Motivated by TENT [44] and EATA [36], recently [31]
shows that entropy alone as a measure of confidence is in-
sufficient for TTA, and propose DeYO which leverages a
confidence metric called PLPD and entropy together. While
effective for natural datasets, the cross-dataset performance
is still a unresolved problem, which we attempt to solve us-
ing the weighted entropy loss.

3. Methodology

3.1. Preliminaries

Contrastive Language-Image Pre-training (CLIP):
CLIP comprises of two encoders: the visual encoder Fθv

which maps visual input X to a fixed-length representation
fv , and the text encoder Fθt , which processes text inputs
and generates latent textual feature ft. The pre-trained
parameters for CLIP, represented as θCLIP = {θv, θt},
are associated with the respective encoders. Both the
encoders process the input through a sequence of L
transformer blocks to produce a latent feature represen-
tation. For zero-shot inference, each text feature with
class labels y ∈ 1, 2, · · · , C is paired with the image
feature. The prediction probability on X can be expressed
as p(yi|X) = exp(τsi)∑C

j=1 exp(τsj)
, where s denotes the co-

sine similarity and τ represents the softmax temperature
parameter.

LoRA Adaptation: Low Rank Adaptation (LoRA) [22]
enables parameter efficient training by freezing the model
weights and integration of trainable rank decomposition
matrices into each layer of the transformer architecture.
This results in a substantial reduction in the number of train-
able parameters for the downstream adaptation. We denote
the pretrained query WQ, key WK , and value WV pro-

jection matrices in the self-attention module jointly by W
such that W = {WQ,WK ,WV } and ∆W signifies its ac-
cumulated gradient update during adaptation. Assuming a
low intrinsic rank, the pre-trained attention weight matrix
W ∈ Rd×k undergoes a low-rank decomposition, expressed
as W + ∆W = W + BA, where B ∈ Rd×r, A ∈ Rr×k,
and the rank r ≪ min(d, k). During inference, W is frozen
and does not receive gradient updates, while A and B con-
tain trainable parameters. The modified forward pass for
any arbitrary input h across the attention module yields h̃
such that,

h̃ = Wh+ γ ·∆Wh = Wh+ γ ·BAh, (1)

where γ = r
α and α is the scaling factor.

3.2. Proposed Approach: TTL

Overview: Although current methods [17, 41] for prompt-
tuning during test time have demonstrated notable success
in enhancing CLIP adaptation, the optimal choice between
prompt-tuning and alternative approaches remains unex-
plored. The existing test-time adaptation schemes, as ex-
emplified by [41] and [17], focus on optimizing prompts
for each test sample during inference through entropy min-
imization. While effective, these approaches have certain
limitations. 1). Adaptation using standard entropy min-
imization is sub-optimal at test time [31], 2). Prompt
tuning is challenging to optimize and its performance ex-
hibits non-monotonic changes in trainable parameters, as
observed by [22] and 3). Some works [17] necessitate ac-
cess to pre-trained prompt weights and source data statis-
tics, which may not be practical at the test-time scenario.
As a solution, illustrated in Figure 3, we propose integrating
LoRA (Low-Rank Adaptation) parameters directly inside
the CLIP’s visual encoder model to account for the domain
shift due to out-of-distribution test sample. As opposed
to prompts, LoRA parameters are easier to optimize [22]
and do not require pre-trained weights for initialization or
source data for alignment, resulting in improved general-
ization. For confidence maximization, we employ weighted
entropy loss, as opposed to the standard self-entropy used
by [17, 41]. The proposed weighted entropy objective re-
sults in overall higher average prediction confidence which
is beneficial for optimal parameter update, resulting in bet-
ter prediction accuracy. Empirical evidence supporting the
advantages of weighted entropy loss over standard self-
entropy is presented in Table 3.
Low-Rank Adaptation at Test-Time: For parameter ef-
ficient adaptation at test-time, we integrate LoRA parame-
ters inside the attention layers of the CLIP’s visual encoder.
As indicated by [22], over-parameterized models exhibit
low intrinsic dimension, and the change in weights during
model adaptation has a low intrinsic rank. We extend this
hypothesis to test-time adaptation, where only a single test
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Figure 3. Working of Test-Time Low-Rank Adaptation (TTL). We integrate parameter efficient low rank matrices into the self-attention
module of the image encoder. We adapt these low rank weights on the fly given a single test sample, without the need for pre-trained
weights or source data. Maximizing confidence via weighted entropy minimization, TTL updates the low rank weights to optimize the
VLM to adapt a test sample in a single update step.

sample is available, implying that updating only a few pa-
rameters is sufficient for efficient and effective adaptation.
Given a test sample X ∈ Dtest, we take N randomly aug-
mented views using transformation function H such that we
get a batch of images denoted as H(X). Low rank weight
matrices are introduced in the query (WQ) and value (WV )
projection layers inside the self-attention module and are
jointly parameterised by Φ. Let hl

∗ be the input features to
the self-attention module of lth encoder block and h̃l

∗ be the
corresponding output, then the forward pass (Eq. 1) can be
expressed as,

h̃l
Q = W l

Qh
l
Q+γ ·∆W l

Φ;Qh
l
Q = W l

Qh
l
Q+γ ·(Bl

QA
l
Q)Φh

l
Q

h̃l
V = W l

V h
l
V +γ ·∆W l

Φ;V h
l
V = W l

V h
l
V +γ ·(Bl

V A
l
V )Φh

l
V

At the test-time, we optimize the rank decomposition ma-
trices corresponding to query and value projection matrices
in the self-attention module while keeping the pre-trained
weights of CLIP frozen. In general, the optimization ob-
jective for a randomly augmented view x̃ ∈ H(X) can be
constructed as,

Φ∗ = argmin
Φ

L(FθCLIP ,Φ, x̃) (2)

Since LoRA parameters directly influence the model at-
tention, it leads to better predictions by concentrating the
model attention on the object of interest. Standard optimiza-
tion objective such as self-entropy loss gives equal weight
to all the augmented views leading towards sub-optimal
optimization, while as confidence selection ignores certain
views which may be beneficial for the correct prediction. To
this end, we propose to update the parameters with weighted
entropy objective which gives variable weight to each view.

Weighted Entropy Minimization: Instead of discarding
majority of crops of test sample based on confidence selec-
tion as done in previous works [17, 41], we take a slightly
different approach and utilize all the crops for optimiza-
tion. As discussed in Sec. 1, relying solely on entropy
for confidence selection is not consistently reliable due to
model focusing on unwanted elements in the input. Our
analysis in Figure 1a reinforces this observation, highlight-
ing a weaker correlation between confidence selection and
the true model prediction during test-time. This signifies
that predictions from augmented views in the highest con-
fidence quartile may not consistently contribute favorably
to model updates (Figure 1a) as further validated by [31].
Therefore, we introduce weighted entropy loss which en-
compasses all the augmented views at test-time and assigns
variable weights to model’s prediction of each view result-
ing in overall higher average confidence. For each aug-
mented view x̃ ∈ H(X), we map its visual features to the
class labels and compute a standard self-entropy loss across
L encoder blocks represented as,

LΦ(x̃) =

C∑
i=1

p̃Φ(yi|x̃) log p̃Φ(yi|x̃), (3)

where p̃Φ(yi|x̃) represents the vector class probabilities
produced by the model. The final objective is thus the
weighted sum of the individual entropy losses correspond-
ing to each augmented view x̃. The final objective function
for parameter update is given as,

argmin
Φ

− 1

N

∑
x̃∈H(X)

βΦ(x̃) · LΦ(x̃) (4)

Here βΦ(x̃) is the weight coefficient of the augmented view
corresponding to x̃ and is expressed as,
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βΦ(x̃) =
1

exp(LΦ(x̃)− ε)
, (5)

where ε is a normalization factor. The resulting objective
function in Eq. 4 maximizes the average confidence and
enhances the model’s prediction of test sample.

4. Experiments and Results
4.1. Experimental Setup

Implementation Details: We initialize trainable LoRA ma-
trices with random Xavier initialization [14] and set rank
r = 16 and α = 32. Optimization of the LoRA weights oc-
curs in layers 10 to 12 within the vision branch, involving
a single-step update using a single test sample. We obtain
63 augmented views of input sample using random resized
crops and horizontal flip augmentations to construct a batch
of 64 images including the original image to mimic the set-
ting of TPT. We utilize all the 64 crops to compute the aver-
age prediction probability and optimize the LoRA parame-
ters to minimize the weighted version of combined average
prediction entropy loss using the AdamW optimizer. We
use a learning rate of 5e-3 for all the cases and set the nor-
malization constant E equal to 0.4. A fixed prompt template
”a photo of a” is used with the classnames. The entire setup
runs on a single NVIDIA A100 40GB GPU.

Datasets: We assess the performance of our
proposed method in two cases i.e. Natural
Distribution Shifts (C1) and Cross-Datasets
Generalization (C2) in accordance with [17, 41].
For C1, we utilize four datasets—ImageNet-V2 [40],
ImageNet-A [21], ImageNet-R [20], and ImageNet-
Sketch [45]—as out-of-distribution (OOD) data for
ImageNet [9], to assess the effectiveness of our method.
For C2, we utilize 10 image classification datasets covering
a diverse range of visual recognition tasks. This set in-
cludes the generic-objects dataset Caltech101 [11] and five
fine-grained datasets: OxfordPets [37], StanfordCars [28],
Flower102 [35], Food101 [3], and FGVC-Aircraft [34].
These fine-grained datasets encompass images of animals,
flowers, and transportation. Additionally, four datasets cov-
ering scenes, textures, satellite imagery, and human actions
are considered: SUN397 [48], DTD [8], EuroSAT [19], and
UCF101 [42].

Baselines: To evaluate our proposed approach, we adopt
two groups of VLM methods: M1, which perform strict
zero-shot classification, i.e. without any form of few-shot
pre-training or external model support, for fair comparison;
and M2, standard baselines followed in the recent state-of-
the-art methods.

• For M1: TPT [41], a state-of-the-art test-time prompt
tuning method optimizing learnable prompts across
multiple augmented views; CALIP [16], introduces

parameter-free attention to enhance the exchange of in-
formative features between images and text in CLIP; and
standard zero-shot CLIP is included with default config-
urations.

• For M2: CoOp [53], a few-shot prompt tuning method
that adjusts a template prompt for each downstream task;
CoCoOp [52]: an enhanced method for few-shot prompt-
tuning that generates input-conditional prompts using a
lightweight neural network; and zero-shot CLIP with
an Ensemble [39] of 80 specially crafted prompts; and
PromptAlign [17], an extension of TPT that incorporates
multi-modal prompt learning for explicit alignment of
feature distributions.

Reproducibility: All baselines are reproduced on our sys-
tem to ensure fairness. PromptAlign [17] does not use
pre-trained prompts and PromptAlign† uses pre-trained
prompts. DiffTPT [12] is not considered due to impracti-
cality in replicating the method, given the extensive time
required for generating diffusion-based samples during in-
ference. Additionally, their reported scores with 4 update
steps would not offer a fair comparison.

4.2. Main Results

Natural Distribution Shifts: Table 1 summarizes the
evaluation of our method comparing M1 and M2 base-
line methods under Case 1 with ViT-B/16 backbone under
strict zero-shot settings. We can see that: Our ap-
proach outperforms all M1 and M2 baseline methods,
across all four out-of-distribution (OOD) datasets, demon-
strating a substantial increase in OOD generalization per-
formance. TTL achieves significant in-domain performance
gain compared to M1 methods like CLIP, TPT, CALIP.
However, its in-domain performance is suboptimal com-
pared to M2 methods like CoOp and CoCoOp. This is
due to TTL operating in strict zero-shot settings without ex-
ternal weights, while CoOp and CoCoOp benefit from pre-
training on ImageNet with few-shot prompt tuning, provid-
ing better initialization and a degree of overfitting to the Im-
ageNet distribution. Across the average OOD dataset, TTL
shows consistent performance gain in handling natural dis-
tribution shifts compared to CLIP, TPT, CALIP (M1 meth-
ods), Ensemble, CoOp, CoCoOp, and PromptAlign (M2

methods) improving from 55.31, 60.69, 57.16, 57.53, 58.51,
58.41, and 52.65 to 62.80, respectively. Supporting our ini-
tial hypothesis that low-rank attention weight adaptation for
a single test sample improves the generalization, this high-
lights the superior adaptability of our method in handling
OOD domain shifts. This establishes TTL as a go-to choice
over SOTA M1 methods like TPT and PromptAlign, which
update learnable prompts during inference.
Generalization to Cross-Dataset Transfer: To evaluate
the generalization performance of our proposed method and
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Table 1. Top 1 accuracy % of state-of-the-art baselines (i.e., M1 and M2) under strict zero-shot settings, where ImageNet-
Sk. indicates the ImageNet-Sketch dataset, OOD Avg. indicates the OOD average results. bs. indicates the baseline, i.e.,CLIP-ViT-B-16.
The arrow ↑ and ↓ indicate improvements and decrements compared with bs.. Detailed analyses are provided in Sec. 4.2.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sk. Average OOD Avg.

CLIP-ViT-B/16 67.30(bs.) 47.14(bs.) 59.90(bs.) 71.20(bs.) 43.00(bs.) 57.71(bs.) 55.31(bs.)
Ensemble 68.50(1.20) ↑ 48.44(1.30) ↑ 62.70(2.80) ↑ 73.50(2.30) ↑ 45.50(2.50) ↑ 59.73(2.02) ↑ 57.53(2.22) ↑
CoOp2021 72.30(5.00) ↑ 49.25(2.11) ↑ 65.70(5.80) ↑ 71.50(0.30) ↑ 47.60(4.60) ↑ 61.27(3.56) ↑ 58.51(3.20) ↑
CoCoOp2022 71.40(4.10) ↑ 50.05(2.91) ↑ 63.80(3.90) ↑ 73.10(1.90) ↑ 46.70(3.70) ↑ 61.01(3.30) ↑ 58.41(3.10) ↑
PromptAlign2023 60.02(7.28) ↓ 45.52(1.62) ↓ 54.53(5.37) ↓ 72.84(1.64) ↑ 37.72(5.28) ↓ 54.13(3.58) ↓ 52.65(2.66) ↓
TPT2022 68.90(1.60) ↑ 54.59(7.45) ↑ 63.13(3.23) ↑ 77.05(5.85) ↑ 47.99(4.99) ↑ 62.33(4.62) ↑ 60.69(5.38) ↑
CALIP2023 66.74(0.56) ↓ 47.76(0.62) ↑ 60.76(0.86) ↑ 73.99(2.79) ↑ 46.12(3.12) ↑ 59.07(1.36) ↑ 57.16(1.85) ↑
TTL (Ours) 70.23(2.93) ↑ 60.51(13.37) ↑ 64.55(4.65) ↑ 77.54(6.34) ↑ 48.61(5.61) ↑ 64.29(6.58) ↑ 62.80(7.49) ↑

Table 2. Top 1 accuracy % of state-of-the-art baselines (i.e., M1 and M2) under strict zero-shot settings, where Average
indicates average accuracies of the Cross-Datasets Generalization. The arrow ↑ and ↓ indicate improvements and decrements of our
method against the CLIP method, i.e., CLIP-ViT-B/16. Detailed analyses are provided in Sec. 4.2.

Method Flower102 [35] DTD [8] OxfordPets [37] UCF [42] Caltech101 [11] Aircraft [34]

CLIP-ViT-B/16 67.94(bs.) 44.10(bs.) 85.71(bs.) 63.37(bs.) 90.29(bs.) 24.70(bs.)
Ensemble 67.65 44.87 86.20 64.36 90.89 24.40
CoOp2021 [53] 66.08 42.17 89.00 66.04 91.69 18.00
CoCoOp2022 [52] 70.88 44.78 88.71 68.42 92.49 24.20
PromptAlign2023 [17] 51.60(16.34) ↓ 27.60(16.50) ↓ 75.82(9.89) ↓ 57.31(6.06) ↓ 87.18(3.11) ↓ 6.96(17.74) ↓
PromptAlign†2023 [17] 70.56 45.57 88.96 69.10 92.86 23.70
TPT2022 [41] 69.31(1.37) ↑ 46.23(2.13) ↑ 86.49(0.78) ↑ 66.44(3.07) ↑ 92.49(2.20) ↑ 24.90(0.20) ↑
CALIP2023 [16] 67.64(0.30) ↓ 44.44(0.34) ↑ 87.82(2.11) ↑ 64.05(0.68) ↑ 93.27(2.98) ↑ 24.12(0.58) ↓
TTL (Ours) 70.48(2.54) ↑ 46.69(2.59) ↑ 88.72(3.01) ↑ 69.20(5.83) ↑ 93.63(3.34) ↑ 23.82(1.78) ↓

Method EuroSAT [19] StanfordCars [28] Food101 [3] SUN397 [48] Average

CLIP-ViT-B/16 40.64(bs.) 66.58(bs.) 85.05(bs.) 61.88(bs.) 63.03(bs.)
Ensemble 47.01 67.60 85.35 64.65 64.30
CoOp2021 [53] 35.36 63.44 85.15 61.54 61.85
CoCoOp2022 [52] 39.23 65.22 86.53 64.65 64.51
PromptAlign2023 [17] 35.57(5.07) ↓ 58.70(7.88) ↓ 82.23(2.82) ↓ 57.84(4.04) ↓ 54.08(8.95) ↓
PromptAlign†2023 [17] 34.91 67.43 86.85 67.73 64.76
TPT2022 [41] 37.15(3.49) ↓ 66.50(0.08) ↓ 86.93(1.88) ↑ 63.48(1.60) ↑ 63.99(0.96) ↑
CALIP2023 [16] 42.27(1.63) ↑ 65.80(0.78) ↓ 82.76(2.29) ↓ 62.52(0.64) ↑ 63.47(0.44) ↑
TTL (Ours) 42.02(1.38) ↑ 67.96(1.38) ↑ 85.05(0.00) ≈ 66.32(4.44) ↑ 65.39(2.36) ↑

baselines on the 10 C2 datasets, we analyze the results
within the strict zero-shot settings, as shown in Ta-
ble 2. We can see that: Our method outperforms all seven
baselines on average across all C2 datasets, individually
surpassing six out of ten C2 datasets. Among the M1 meth-
ods, TTL exhibits consistent improvements, outperform-
ing CLIP, TPT, and CALIP, with average improvements
of +2.36, +1.40, and +1.91, reaching up to 65.39 average
accuracy. Additionally, compared to M2 methods, TTL
achieves average improvements of +1.09, +3.53, +0.88, and
+11.31 when compared to Ensemble, CoOp, CoCoOp, and
PromptAlign respectively. These results affirm that our pro-
posed TTL, which combines the effect of weighted entropy
minimization and low-rank adaptation, achieves superior
distribution alignment compared to all baselines, includ-

ing CLIP. This indicates that our method is a promising
approach for zero-shot adaptation and demonstrates robust-
ness to cross-data distributional variations.
Low-Rank Adaptation vs. Prompt Tuning: We as-
sess TTL’s performance against various prompt tuning ap-
proaches in strict zero-shot scenarios, categorizing
these approaches into Text Prompt Tp, Visual Prompt Vp,
and Multi-Modal Prompt Np. As illustrated in Figure 4,
text prompt-tuning approaches Tp like TPT [41] is effective
for test-time zero-shot adaptation as it learns a text prompt
instead of a standard template. However, approaches uti-
lizing visual Vp and multi-modal prompts Np at test-time
without pre-training not only fail to improve but also show
reduced generalization compared to base CLIP across di-
verse domain shifts.
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Table 3. Effect of Weighted Entropy under strict zero-shot settings, where Average indicates average accuracies of the
Cross-Datasets Generalization. ’TTL w/o Wt. Ent.’ indicate TTL without weighted entropy approach

Method Flower102 [35] DTD [8] OxfordPets [37] UCF [42] Caltech101 [11] Aircraft [34]

CLIP-ViT-B/16 67.94(bs.) 44.10(bs.) 85.71(bs.) 63.37(bs.) 90.29(bs.) 24.70(bs.)
TPT2022 [41] 69.31(1.37) ↑ 46.23(2.13) ↑ 86.49(0.78) ↑ 66.44(3.07) ↑ 92.49(2.20) ↑ 24.90(0.20) ↑
TPT w Wt. Ent. 69.56(1.62) ↑ 46.69(2.59) ↑ 88.58(2.87) ↑ 69.18(5.81) ↑ 93.55(3.26) ↑ 23.14(1.56) ↓
TTL w/o Wt. Ent. 68.78(0.84) ↑ 45.57(1.47) ↑ 88.91(3.20) ↑ 68.09(4.72) ↑ 94.04(3.75) ↑ 24.72(0.88) ↓
TTL (Ours) 70.48(2.54) ↑ 46.69(2.59) ↑ 88.72(3.01) ↑ 69.20(5.83) ↑ 93.63(3.34) ↑ 23.82(1.78) ↓

Method EuroSAT [19] StanfordCars [28] Food101 [3] SUN397 [48] Average

CLIP-ViT-B/16 40.64(bs.) 66.58(bs.) 85.05(bs.) 61.88(bs.) 63.03(bs.)
TPT2022 [41] 37.15(3.49) ↓ 66.50(0.08) ↓ 86.93(1.88) ↑ 63.48(1.60) ↑ 63.99(0.96) ↑
TPT w Wt. Ent. 41.96(1.32) ↑ 66.37(0.21) ↓ 84.92(0.13) ↓ 64.96(3.08) ↑ 64.89(1.86) ↑
TTL w/o Wt. Ent. 42.07(1.43) ↑ 66.75(0.17) ↑ 83.65(1.40) ↓ 62.59(0.71) ↑ 64.52(1.40) ↑
TTL (Ours) 42.02(1.38) ↑ 67.96(1.38) ↑ 85.05(0.00) ≈ 66.32(4.44) ↑ 65.39(2.36) ↑
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Figure 4. Test-time performance of zero-shot methods. CLIP
vs. Textual Prompt Tuning (TPT) vs. Visual Prompt Tuning vs.
Multi-modal Prompt Tuning vs. TTL (Ours) (See Figure 13).

Supporting our observation, the Np method PromptAl-
ign [17], which appends prompts to both text and image
encoders, shows that explicitly aligning visual feature dis-
tributions with an alignment loss enhances CLIP’s general-
ization. However, this effectiveness relies on few-shot pre-
trained multi-modal prompts for test-time adaptation. With-
out pre-training, PromptAlign underperforms base CLIP.
When pre-trained, PromptAlign surpass zero-shot methods,
but at the expense of eliminating the essence of zero-shot
generalization, essential for real-world scenarios (See Ta-
ble 4). This reliance on pre-trained prompts indicates that
without embedded prior knowledge, PromptAlign struggles
with distribution shifts and meaningful representation learn-
ing. In contrast, TTL outperforms all Tp, Vp, and Np

approaches, achieving higher performance with respective
gains of +2.11, +8.98, and +10.00 in C1 and C2 cases with-
out any pre-training (Figure 7).

5. Analysis and Ablation

We conduct a range of empirical analyses and ablation
studies to assess the impact of different design choices in
our method. Unless specified otherwise, we present the
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Figure 5. Test-time Low-Rank Adaption across (a) (left) differ-
ent combinations of trainable model components (b) (right) differ-
ent combinations of query, key, and value of image encoder.

analyses using the ImageNet-A dataset with ViT-B/16 back-
bone, opting for the smallest domain generalization variant
for simplicity.

Optimizing Different Parameter Groups: We investi-
gate the effectiveness of optimizing different components
within TTL framework for test-time adaptation. We com-
pare four different parameter groups for optimization at
test-time: Text Encoder + TTL, Text Encoder +
Prompt, Image Encoder + Prompt, and Image
Encoder + TTL. From Figure 5a, we notice that simply
optimizing TTL in the Text Encoder achieves higher
performance than prompt tuning methods. Additionally,
utilizing TTL inside Image Encoder achieves the max-
imum performance gain compared to other groups.

Optimizing Different Attention Groups: We investigate
the impact of optimizing different combinations of attention
weight groups (WQ, WK , and WV ) within the self-attention
module. The results, as depicted in Figure 5b, indicate that
optimizing LoRA parameters in WQ+WK+WV produces
maximum performance gains. However, there is a trade-off
as the inclusion of more weight groups results in linear in-
crement of trainable parameters. Therefore, to ensure com-
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Figure 6. Analysis of compute resource constraints on perfor-
mance across Cross-domain data on average.

putation efficiency while maintaining decent performance,
we optimize LoRA parameters within WQ and WV projec-
tion layers.
Analysing the Effect of Weighted Entropy: We observe
that instead of discarding the low entropy augmented views
and assigning variable weights to the self-entropy of the
predictions from each augmented view is advantageous for
test-time optimization. Specifically, it is important to rec-
ognize that a model predicting a test sample with high con-
fidence i.e. low entropy, does not necessarily indicate a cor-
rect prediction (Figure 1a). Table 3 illustrates a notable
+0.87 average performance gain achieved by our method
when using weighted entropy, surpassing the performance
without weighted entropy. This integration effectively con-
siders the contribution of both low and high entropy samples
during optimization, enhancing test-time adaptation and im-
proving generalization across both C1 and C2 datasets as
shown in Table 1 and 2.

(a) TPT [41] (b) PromptAlign [17] (c) TTL (Ours)

Figure 7. t-SNE visualizations of the final class embedding from
the test sets of C1 dataset: ImageNet-A, following Table 1. TTL
could produce linearly separable features for zero-shot generaliza-
tion baselines TPT, and PromptAlign.

Trade-off between Inference Efficiency and Perfor-
mance: We analyze three factors influencing TTL’s effi-
ciency and performance: the cutoff percentile ρ for con-
fidence selection, the number of augmented views N at
test-time, and the number of update steps S. As shown
in Figure 6a, TTL achieves maximum performance when
ρ = 1 i.e. incorporating the entropy contribution from
all the augmented views through our weighted entropy ap-
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Figure 8. Computational Efficiency. (a) Trainable Parameters
vs. Accuracy. Total number of parameters in base CLIP-ViT-B/16
is 124.32 M (b) Number of optimization steps per sample vs. the
Inference time (in seconds).

proach. Figure 6b shows a performance gain with increas-
ing N , plateauing around N = 64. Figure 6c shows that
with additional update steps, TTL consistently adapts better
to the test sample, in contrast to TPT, whose performance
trajectory is lower than TTL and exhibits optimal perfor-
mance with S=1, and further updates do not enhance the
performance. This suggests that a few optimization steps
suffice for optimal generalization.
Trade-off Between Computational Cost and Perfor-
mance: TTL introduces trainable parameters (TP) for the
attention matrices of the Image Encoder. In comparison,
prompt tuning involves 2K TP, and multi-modal tuning em-
ploys 1.18M TP, while TTL utilizes only 36K TP for up-
dates during inference. This signifies a subtle trade-off be-
tween the number of TP and efficiency, as depicted in Fig-
ure 8a. Notably, this additional TP in TTL, compared to
TPT and CLIP, does not adversely impact or introduce ex-
tra latency during test-time optimization. In fact, as illus-
trated in Figure 8b, TTL achieves slightly lower inference
time with an increasing number of update steps, showcasing
superior performance with higher parameter efficiency.

6. Conclusion
We present Test-Time Low-rank adaptation (TTL), a

novel parameter-efficient strategy for achieving zero-shot
generalization in vision-language models (VLMs). TTL
provides an efficient alternative to traditional test-time
prompt tuning methods by updating the attention weights
of CLIP’s visual encoder using Low-Rank adapters, thereby
adapting the model for downstream recognition tasks with-
out any fine-tuning or pre-training. Additionally, TTL in-
corporates a confidence maximization mechanism through
the utilization of weighted entropy loss derived from aug-
mented sample predictions. Notably, TTL achieves superior
performance without the requirement of a source dataset or
pre-trained prompts, outperforming current state-of-the-art
CLIP zero-shot generalization methods in both domain gen-
eralization and cross-dataset evaluation scenarios.
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