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Abstract

Photometric Stereo (PS) estimates surface normals by
analyzing images lit from different angles. Enhancing PS
with spectral imaging, known as multispectral photometric
stereo (MPS), uses varying light source colors for simul-
taneous image capture. As in traditional PS, obtaining a
unique solution is challenging in MPS when the reflectance
properties of the object are unknown. This paper presents
an approach utilizing the spatial arrangement and color of
light sources to solve the MPS problem in the condition of
spatially varying reflectance from a minimum of seven spec-
tral images without spatial smoothness constraints. A ro-
bust optimization technique is introduced to manage real
data. Experiments on synthetic and real scenes validate
the method’s effectiveness, including for non-Lambertian
surfaces. The method can contribute to advanced digital
archiving that simultaneously records surface normal and
spectral reflectance.

1. Introduction

Multispectral image measurement is known as one of
the effective methods in various fields for understanding the
real world. Its applications range from aerospace, agricul-
ture, and production technology to the study of art and cul-
tural heritage [14,16,18,25,26]. The 3D measurement from
multispectral images that can record the spectral reflectance
and shape of objects in detail, as proposed in this study, is
a very important application that could be extensively ex-
tended to quality inspection and digital archiving.

Photometric stereo, introduced by Woodham [31] and
Silver [28], captures detailed 3D surface geometry by an-
alyzing radiance variations in images taken under different
light sources. Color photometric stereo [2, 3, 17, 23] and
multispectral photometric stereo (MPS) [6,9,22] techniques
achieve simultaneous image capture using color or spectral
channels instead of time multiplexing to achieve simultane-
ous capture of images under different light sources at differ-
ent locations. Some extensions [11,21] have been proposed

to handle a wider range of objects by performing multiplex-
ing while switching colored light sources in time while ac-
quiring images from multiple channels. One major advan-
tage of the photometric stereo technique with color/spectral
channel multiplexing is that the images needed to compute
the shape can be acquired simultaneously in only one ac-
quisition. However, such single-shot color/multispectral
PS is generally ill-posed without additional constraints on
the normal or spectral reflectance of the surface due to
the limited number of spectral channels compared to the
number of unknown variables. Challenges of single-shot
color/multispectral photometric stereo include the follow-
ing. Traditional photometric stereo can recover the shape
from a three-channel color image if the target surface is
white with a flat spectral reflectance. For monochromatic
surfaces, methods to compensate for surface normal esti-
mation errors using integrability constraints were initially
proposed [5, 17] and later relaxed [3, 23]. Solving MPS
problems for surfaces with varying albedo and chromaticity
often requires extra knowledge like initial shape [1, 2, 22],
spectral reflectance basis [6, 1 0], surface clustering [3,9,23],
or surface continuity constraints [22]. These methods rely
on the quality of additional measurements or clustering,
which can negatively affect results when additional infor-
mation is insufficient.

In this paper, we present a method that leverages the
spatial layout and color characteristics of light sources to
address PS challenges with spatially varying and unknown
spectral reflectance, without enforcing spatial smoothness
constraints on surface normals or color distributions. Fig-
ure | shows our proposed lighting configuration, where
three light sources with slightly different wavelengths are
arranged to ensure their directions are linearly independent.
Two additional light sources with intermediate wavelengths
are placed at the midpoint between the first three. This setup
allows us to use the linear dependence of light direction vec-
tors as an additional constraint. Moreover, since it is known
that the spectral reflectance of most common objects in the
visible light range varies smoothly [8], we assume the lo-
cal linearity in the spectral reflectance of the target surface.
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As the result of the combination of the linear dependence
of light direction vectors and the local linearity of the spec-
tral reflectance, we derive the equation of the relationship
between the input image and the surface normal. By an-
alyzing the spectral reflectance database [12], we identify
wavelength ranges where spectral reflectance variation can
be modeled linearly. Our solution estimates surface nor-
mals and spectral reflectance independently for each pixel,
avoiding spatial continuity constraints from a minimum of
7 channel spectral images. Additionally, we introduce a
method to minimize the impact of specular reflections for
accurate estimation.

Our contribution is threefold:

* We propose an effective acquisition setup with strate-
gically designed positions and spectral distributions of
light sources to solve photometric stereo under vary-
ing, unknown reflectance conditions without spatial
smoothness constraints.

* Our carefully designed lighting configuration cancels
the spectral component for MPS problem by ensur-
ing local linear dependence and global linear indepen-
dence of multispectral light source vectors, assuming
smooth spectral reflectance of the target surface.

* Our approach achieves high-accuracy recovery of sur-
face normals and spectral reflectances in both syn-
thetic and real scenes, without needing segmentation
or external datasets, and performs well even on non-
Lambertian surfaces.

2. Related Works

Color photometric stereo has been proposed as a fast im-
age acquisition normal estimation method that combines an
RGB camera and several colored light sources. Drew et
al. [5] showed that surface normals can be recovered by
finding ellipsoids in the color space to which the colors of
the target surface are mapped. Kontsevich et al. [17] real-
ized a shape-independent color image segmentation method
by focusing on the rank-3 regions of the matrix. Both ap-
proaches require the integrability of the surface as a con-
straint to estimate the surface normal. Taking advantage of
the fast image acquisition capability of RGB cameras, sev-
eral methods have been proposed to perform normal esti-
mation from multiple captured images. Rahman et al. [27]
proposed a method of normal estimation in objects contain-
ing multi-colored non-Lambertian surfaces by performing
multiple imaging with an RGB camera while switching be-
tween colored light sources whose color schemes were care-
fully designed. Hernandez et al. [13] proposed a technique
to robustly capture non-rigid object shapes by tracking pixel
value and shape changes in color photometric stereo for a

deformable single-color cloth. Janko ef al. [15] proposed a
method for estimating the normals of dynamic surfaces us-
ing optical flow from surface texture tracking. Gotardo et
al. [7] proposed a method that further combines multiview
stereo to improve the quality of the obtained shape, color,
and motion. As methods for dealing with unique objects,
Vogiatzis et al. [30] introduced a fast shape estimation tech-
nique, including light source direction estimation, for real-
time human face recovery. More recently, Chen et al. [4]
proposed a method for acquiring the 3D shape of a face with
high accuracy under a group of uncalibrated near-point light
sources, incorporating a 3D morphable model and semantic
segmentation of face parts.

Numerous methods address MPS with spatially varying
spectral reflectance under certain assumptions. Anderson et
al. [1, 2] improved color segmentation and shape estima-
tion by combining rough target shape acquisition with ad-
ditional depth maps from other modalities or stereo cam-
eras. Miyazaki et al. [22] used multi-channel multispectral
input and assumed spatially smooth normals and spectral
reflectance, but their method needs an initial shape for sta-
bility. To reduce the number of unknowns about spectral
reflectance, dimensionality compression methods are often
used by expressing reflectance in terms of a linear com-
bination of several spectral bases [|1,24]. Some methods
use the spectral basis to obtain 3D geometry and spectral
reflectance [19]; for the MPS problem, methods using pre-
calibration [0] or external datasets [ 10] have been proposed.
Trying to obtain a spectral basis from a captured scene in
MPS is not easy because only images illuminated from dif-
ferent positions at each observed spectral channel are avail-
able. Some studies cluster the target surface’s spectral re-
flectance and estimate surface normals within each clus-
ter. Chakrabarti et al. [3] assumed constant albedo maps
within clusters, using polynomial approximation for local
shape. Ozawa et al. [23] clustered surfaces based on dis-
tinct color features, assuming finite and shared reflectance
curves. Guo et al. [9] leveraged multispectral cameras to
capture four or more distinct wavelength images, demon-
strating a unique solution for scenes where multiple points
share the same chromaticity and applied their method to
non-uniform chromaticity scenes using region mask.

Our goal is to offer a practical pixel-by-pixel MPS solu-
tion without relying on machine learning, external datasets,
segmentation, or spatial continuity constraints. To achieve
this, we assume spectral continuity of the target’s spectral
reflectance and design the light source’s location and spec-
tral distribution based on a physical model, ensuring no spa-
tial constraints on normals or color distributions.

3. Method

We propose a physics-based, pixel-by-pixel solution for
multispectral photometric stereo without smoothness con-
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Figure 1. Overview of the single-shot MPS framework. We have devised a method to cancel unknown spectral reflectance and achieve shape
estimation by strategically placing narrowband light sources during image acquisition. Five consecutive light sources in the wavelength
domain are considered as one subset, and the three odd-numbered light sources are spatially linearly independent of each other, and the two
even-numbered light sources are spatially linearly dependent on both neighboring light sources. By utilizing this light source arrangement
and the local linear approximation (LLA) of the spectral reflectance, we derive a formulation that cancels the unknown spectral reflectance.

straints on spatial distribution of spectral reflectance, illus-
trated in Figure 1. In our approach, with B channels in the
multispectral image providing observations, the problem in-
volves B + 2 unknowns—2 for surface normals n and B for
target spectral reflectance. We address this by considering
three spatially linearly independent and two linearly depen-
dent spectral sources. We then assume the spectral local
linearity in the spectral reflectance. Since these configura-
tions allow us to cancel the unknown spectral reflectance
in MPS problem, we derive an equation of the relationship
between the input image and surface normals. Our method
includes robust optimization for simultaneous estimation of
surface normals and spectral reflectance with smooth spec-
tral constraints. In addition, we introduce a pixel-by-pixel
outlier removal method for non-Lambertian surfaces and a
technique to remove specular reflections.

3.1. Problem

We employ a multispectral imaging camera featuring a
linear radiometric reflectance to capture the multispectral
image I composed of B spectral channels. Each spectral
channel of I is taken with spectral light sources aligned with
the number of spectral channels with their respective light
directions denoted as L. In this setup, I is formulated as fol-
lows on a Lambertian surface where the spectral reflectance
of the object is 7:

I=n-L-diag(r). ()

The ¢-th channel of the captured image, denoted as I;, can
be expressed using the channel-specific surface spectral re-
flectance r; and the corresponding light direction 1;:

Here we model the surface spectral reflectance r; as:

Ei(AR(A)Si(A)dA. 3)
A€EA;

Ty =

In this context, A; represents the wavelength range of the
i-th spectral channel, F; signifies the known spectra of the
i-th light source, S; denotes the given camera spectral sen-
sitivity at the ¢-th channel, and R corresponds to the mate-
rial’s spectral reflectance at the observed point.

In this paper, we show that we can eliminate the spec-
tral reflectance r term from the MPS equation by assum-
ing linearity across five contiguous observed spectral chan-
nels, while also carefully designing positions and spec-
tral distributions of light sources for solving photometric
stereo under spatially varying, unknown reflectance condi-
tions. Finally, the surface normal n can be estimated from
a 7-channel spectral image. Our assessment indicates that
this approximation yields enough smaller regression errors
when the spectral reflectance is observed at about 10 to 20
nm intervals at the visible light range. Detailed insights into
the validation process are presented in Section 3.5.

3.2. Derivation for the Surface Normal

Figure 1 illustrates an example of the light’s layout that
we discuss in this section. We start the discussion with
T = {I1,...,I5} to represent a subset of the input multi-
spectral image I (shown as a large circle in Figure 1) en-
compassing five contiguous spectral channel images to de-
rive an equation of the relation that pertains to the surface
normal n. Here the light direction vectors {l1,13,15} are
linearly independent each other (shown as green lines in
Figure 1), and conversely, light direction vectors {11, 12,13}
and {l3,14, l5} are linearly dependent in each group (shown
as yellow boxes in Figure 1). A local linear constraint then
assumed to the spectral reflectance function within 7" at the
spectral domain, the equation Equation (2) can be reformu-
lated using the gradient Ar and the constant term C' of the
linear function representing the spectral reflectance:

I =((z—-3)Ar+C)n-1l,, v €[1,2,3,4,5]. (4
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Note that we subtract 3 from x as the median of indices to
simplify the following formulation. While the local linear-
ity of the spectral reflectance at the spectral domain helps
decrease the number of unknowns in the model, the pres-
ence of degrees of freedom in determining both the sur-
face normal and spectral reflectance complicates achieving
a precise solution.

We then discuss the arrangement of the position and
color distribution spectral light source to derive a solution of
the recovering surface normal n. As we mentioned above,
the light direction vectors at the middle channels (I and
l,) are positioned along the direction formed by the linear
combination of the light direction vectors of the neighbor-
ing channels. We place the light sources in these middle
channels exactly halfway between both adjacent channels.
Then light direction vectors I, and I, can be expressed as
the sum of two adjacent light direction vectors, given the
Lambertian surface assumption [20]:

L=U0+L)/L+1], lu=Is+1:)/[ls+ 5], (5)

Substituting I and 1, in Equation (4) with the corre-
sponding vectors in Equation (5) the unknowns associated
with the spectral reflectance (Ar, C) can be removed by
straightforward calculations on input images:

I, = [l + 13| Lo + U3 + 15| 1 — 213 ©6)
(=Ar+C)n-li+ (Ar+C)n - 1s.

Then,
Ib:2Ia—(I1+I5):Cn~(l1 +l5). 7

Note that I, and [}, are the variables for convenient notation.
We finally get the equation for the normal n and observed
image I by dividing I}, by I5:

Iy n-(Li+ls)
137 TL'l3

: (8)

Hence, the normal n was represented by the input images
in a subset T" with corresponding light direction vectors.

3.3. Optimization

We then discuss optimization techniques to solve the
MPS problem based on our setup. In addition to a straight-
forward approach for multispectral images taken under
ideal conditions, we present a more robust optimization
method for multispectral images affected by unmodeled
factors such as camera, light, and scene-dependent noises.

We first establish the objective function concerning the
surface normal from Equation Equation (8) as a fundamen-
tal equation. The objective function E,, for the surface nor-
mal n corresponding to the j-th subset T'; (shown as each

of large circle in Figure 1) composed of five consecutive
spectral channel images, is expressed as follows:

E, = |n-{Lily — I5(1) +15)}], )

Here, the symbol " indicates that the variable is a function or
parameter with T'; as its argument. To solve the problem, at
least two distinct subsets (j > 2) from the input images are
necessary, due to the presence of two unknowns regarding
the surface normal n. Since each subset T'; comprises
five spectral images taken under lights with three linearly
independent {l1, 13,15} and two linearly dependent {l5,14}
light direction vectors, acquiring images in seven spectral
channels (¢ > 7) suffices to solve the problem.

Individual Optimization
In an ideal situation, the surface normal of the object can
be computed for each pixel by minimizing the equation (9).

A =arg min Y w,(T;)En(n, T;). (10)
no

In practice, we employ the intensity value of I3 from each
subset T'; as the weighting factor w,,(T';). This weight
helps to downplay the influence of calculations performed
on low-intensity values. Once the surface normal 7 is de-
termined by equation (10), the remaining unknown is the
spectral reflectance r of the object’s surface. Given that
the effect of surface color has been eliminated during the
surface normal estimation, the error function E,. for spec-
tral reflectance estimation is formulated based on the MPS
model in equation (1).

E,=|I—#n-1-diag(r)|. (11)

Under the regular light sources that has the broad spectral
property, the spectral reflectance observed at the surface of
an object tends to show a smooth signal in the spectral di-
rection. Based on the findings of previous studies [21,29],
we employ a smoothness constraint in the spectral domain
to improve the robustness and accuracy of the spectral re-
flectance estimation:

7 =arg min{E,.(I,n,r) + v|rT|}. (12)
r

Here, the last term represents a smoothness constraint of
the spectral reflectance 7, and v denotes the weight of the
smoothness constraint.

Robust Simultaneous Optimization

Particularly in real-world scenarios, the captured image
may deviate from ideal conditions due to a variety of factors
that are not modeled, such as camera noises and/or ambient
lights. The independent optimization with Equations (10)
and (12) is expected to have unstable solutions due to the
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effects of these factors. Therefore, we propose an optimiza-
tion method to obtain a more robust MPS solution by com-
bining the error functions of the surface normal n and spec-
tral reflectance r of the target surface into a single function
with smoothness constraint of surface’s spectral reflectance
in the spectral domain. This approach aims to achieve ro-
bust results without encountering singular solutions, by si-
multaneously estimating all unknowns (n and r) using the
integrated objective function:

N, 7 = arg min{z Wy (Tj)En(n, T;)+aE. (I, n,7)+7y|rT|}.
nr <

(13)
The weight « is chosen empirically to ensure that the er-
rors in both surface normal and spectral reflectance are on a
comparable scale. I" denotes a matrix that gives smoothness
from the difference between the neighbor elements.

3.4. Outlier Detection for Non-Lambertian Surface
based on spectral reflectance

Non-Lambertian surfaces complicate computer vision
tasks, as photometric stereo methods assume Lambertian
surfaces. However, MPS can handle specular reflections
differently at each spectral channel due to varying light
source directions. We address non-Lambertian surfaces by
using an outlier detection algorithm to identify specular re-
flections in multispectral images and then optimize by ig-
noring these regions. To achieve a pixel-wise MPS solution,
we detect outliers based on spectral statistics of each pixel,
using a moving median method to identify values that de-
viate from the median within a local spectral window. In
addition, this method can deal with shadows caused by oc-
clusions that occur in only a few observed spectral channels.

By using outlier mask M as a weight in the objective
function, we achieve outlier-neglected estimation of surface
normals and spectral reflectance. We generate this mask for
each pixel and spectral channel of the input multispectral
image by the following method. For the surface normal ob-
jective function, the logical sum of the mask subsets M ;
for each multispectral image subset T'; serves as the outlier
mask. If a subset contains an outlier, it is excluded from the
estimation process. For the spectral reflectance objective
function, the outlier mask M directly weights F,..

3.5. Validation on LLA of spectral reflectances at
the Spectral Domain

To validate the applicability of the local linear approxi-
mation (LLA) to various reflectance spectra, we conducted
a regression error analysis using the Munsell Color Matt
dataset [1 2], which comprises 1269 spectral reflectances of
Munsell color samples. Figure 2 shows a selection of spec-
tra and the corresponding regression errors across observed
wavelength intervals. From Figure 2 (b), it’s evident that

within the visible light range, the regression error generally
stays below 0.05 for observation wavelength intervals up to
approximately 20 nm. These regression errors are calcu-
lated as the sum of each five consecutive wavelengths. Our
experiments used multispectral images captured within the
visible light range at 10 nm and 20 nm intervals.

o
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Figure 2. Validation of the local linear approximation (LLA) for
surface spectral reflectance. (a) Spectral reflectance samples ex-
tracted from the Munsell Color Matt dataset [12]. (b) Correlation
between the LLA regression error and the interval of observation
wavelengths. The plotted line represents the mean of all samples,
while the error range indicates the standard deviation of samples.

4. Evaluation

In this section, we assess the effectiveness of our pro-
posed method in solving the MPS problem by conducting
evaluations in both ideal synthetic scenes and real world
scenarios. We also compare the performance of our method
with the SoTA approach [9]. The number of spectral light
sources and images required for the proposed method men-
tioned in Section 3.3 is a minimum for simple scenes, and
more complex scenes require more light sources and im-
ages as well, as is a requirement of the PS method. We em-
ploy the MAE (mean angular error) and RMSE (root mean
squared error) as evaluation metrics for the estimated sur-
face normals and spectral reflectances. To address the in-
herent bias towards spectral reflectances associated with re-
gions of low albedo, we concentrate on measuring the chro-
maticity error within the RMSE assessment. To establish
a reference ground truth for surface normals, we illuminate
both synthetic and real scenes using white light sources and
apply traditional PS techniques. We initialize the normal
ny with the result obtained from traditional PS under the
assumption of a white surface, and we initialize the spectral
reflectance ry with the observed multispectral intensity I in
optimization. Note that optimization with random or fixed
initial values has very little change in our estimation results.

4.1. Synthetic Scene

To create the evaluation image sets, we employed
Blender 2.93 with the Eevee rendering engine. We simu-
lated Lambertian reflection properties of the surfaces and
generated separate images for each light source. Two spec-
tral reflectances were simulated randomly (shown as "R1
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and R2” in Figure 3) and combined multiple spectral re-
flectances into a single scene using segmentation masks
(shown as cluster mask” in Figure 3) for each scene. We
used 19 spectral light sources for testing. Then we used
traditional PS under 100 white light sources to obtain the
ground truth of surface normal because they provide ref-
erence values at the same scale, coordinate system, and
unit system as the experimental results without any conver-
sion. We compared the estimation accuracy of our proposed
MPS method with the SOTA method HG [9]. To evalu-
ate HG’s accuracy in multi-color scenes, we introduced a
chromaticity-based region mask only used for HG.

The outcomes of surface normal and spectral reflectance
estimation in selected synthetic scenarios are depicted in
Figure 3. Corresponding evaluation metrics for each
scene are shown in Table 1. Although HG relies on a
chromaticity-based region mask, the accuracy of the surface
normal estimation of the proposed method was comparable
to their method for both individual and robust optimization.
For surface chromaticity estimation, our robust optimiza-
tion method shows the best results. The robust error func-
tion used in the proposed method focuses on the smoothness
of spectral reflectance in the spectral dimension, and we be-
lieve that it also contributes to improving the accuracy of
spectral reflectance estimation even if the accuracy of sur-
face normal estimation is similar.

MAE of | Ours indiv. | Ours robust | HG+mask
Bunny 0.085 0.106 0.108
Dragon 0.1045 0.110 0.1046
RMSE of # | Ours indiv. | Ours robust | HG+mask
Bunny 0.502 0.304 0.527
Dragon 0.510 0.342 0.562

Table 1. Evaluation scores on synthetic scenes. The best scores of
MAE and RMSE are shown in bold. Let *+mask’ denote that the
method requires the spatial mask.

4.2. Real Scene

Our experimental setup, manufacturers, and models of
equipment used in the evaluation experiments in real scenes
are described in supplementary material. The inputs for
MPS are prepared under two conditions: one was a 25-band
multispectral image taken at 10nm intervals over a wave-
length range of 430nm to 670nm, and the other was a 13-
band multispectral image taken at 20nm intervals over the
same wavelength range. We capture the multispectral image
in situations where the illumination direction is close to the
camera axis as a ground truth because the reference value
can be obtained at all points on the surface of the object
without the influence of shadows.

The camera, tunable bandpass filter (BPF), and stage
controller are connected to a computer, and the series of
experiments are automated. Details of equipment are de-

scribed in the supplementary material. We used this sys-
tem for proof-of-principle of the proposed method, but as
with other methods, a set of multispectral cameras and spec-
tral LED light sources could be used to acquire a set of
MPS images in a single acquisition. As with other exist-
ing MPS methods, crosstalks between spectral channels are
expected to affect estimation accuracy negatively. About
10-20 channels are available for the visible light range for
current common spectral camera and spectral source com-
binations without much influence of crosstalk. To facilitate
accurate region segmentation for HG [9], we use the im-
age captured under this spectral reflectance as the basis for
applying the k-means algorithm to create a segmentation
mask. The value of k is determined to yield the most rea-
sonable estimation results for HG’s method. Note that their
results significantly depend on the value of k, and it is not
easy to select the best value of % in actual MPS scenarios.

Figure 4 illustrates surface normal and spectral re-
flectance estimation results for several real scenes. The cor-
responding evaluation metrics for each scene are presented
in Table 2. Our experimental scenes were chosen to encom-
pass diverse conditions, including color gradients (Gradient
Bunny) and multi-colored objects (Colorful Bears). It was
demonstrated that the proposed method with robust simul-
taneous optimization consistently provides more accurate
surface normal and spectral reflectance for almost all cases.
The estimation error of the spectral reflectance shows that
our robust optimization method is particularly effective in
real scenes, similar to synthetic ones. Furthermore, we can
confirm that our method works well in scenes such as Col-
orful Bears, which contains a variety of colors. The SoTA
method is difficult to apply to objects for which color-based
clustering is difficult, as is evident in the Gradient Bunny
example. Results for additional examples are shown in the
supplementary material.

Our assumption of local linearity in spectral reflectance
is related to the observed wavelength interval of the multi-
spectral image. When the wavelength interval is 10nm, the
proposed method is superior to HG. Even when the wave-
length interval is 20nm, the accuracy of the surface normal
estimation is comparable to HG, and the accuracy of the
spectral reflectance estimation is superior to HG.

In the Colorful Bears example, specular reflection com-
ponents are seen in various locations, so the accuracy eval-
uation of the normal map using the traditional photometric
stereo as the ground truth may not necessarily be appro-
priate. Figure 5 shows that the effect of specular reflec-
tion components in Colorful Bears on surface normal esti-
mation is reduced by our specular removal method. Since
our method estimates the normals without the influence of
these specular reflections through outlier removal, we ob-
tain a more continuous depth map, even though we do not
apply surface continuity constraints.
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Figure 3. Results on synthetic scenes, Bunny and Dragon. From left to right of the top row: synthesized scene appearance, spatial
assignment of simulated spectral reflectances, estimated surface normals by the traditional PS, Guo’s method (HG) [9], proposed method,
and the ground truth of surface normals. From left to right of the bottom row: simulated spectral reflectances (R1 and R2) for scene
synthesis, error maps of estimated normals by traditional PS, HG, proposed method, and error maps of estimated chromaticity by HG and
proposed method. Let *+m’ denote it requires a spatial mask. Our results shown here are estimated using individual optimization.

Lights 25 light sources, 10nm wavelength interval 13 light sources, 20nm wavelength interval
Metrics MAE of 7 RMSE of # MAE of 7 RMSE of #
Ours rob. | HG+mask | Ours rob. | HG+mask | Ours rob. | HG+mask | Ours rob. | HG+mask
Bunny 0.094 0.174 0.345 0.537 0.147 0.156 0.343 0.527
Bears 0.110 0.290 0.357 0.625 0.160 0.172 0.364 0.544
Otter 0.070 0.110 0.333 0.500 0.119 0.154 0.337 0.443
Dog 0.083 0.114 0.367 0.651 0.135 0.126 0.384 0.642
Uncle 0.105 0.159 0.357 0.583 0.138 0.151 0.374 0.535

Table 2. Evaluation scores on real scenes. Notations are same as Table 1.

5. Conclusion

We have introduced an innovative multispectral photo-
metric stereo system that can simultaneously estimate the
surface normal and spectral reflectance of each pixel from
a multispectral image based on the designed arrangement
of spectral light sources and the reasonable local linear ap-
proximation of the spectral reflectance of the target surface

at the spectral domain. Unlike other SOTA methods [9, 10],
our approach does not rely on additional information such
as datasets or segmentation, which can impact its accuracy.

Our approach has demonstrated that by adjusting the
arrangement of light sources within the MPS setup, it
is possible to accurately reconstruct surface normals and
spectral reflectances. This achievement is made possible
through the incorporation of a local linearity approxima-
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Figure 4. Results on real scenes. The order of the figures is the same as for the synthetic scene results (Figure 3) except for the second
from the left in the top row and the first from the left in the bottom row. The second from the left in the top row shows the region clustering
results based on the spectral reflectance, and the first from the left in the bottom row shows the center-of-gravity spectrum of each cluster.
Let ’+m ’* denote it requires the spatial mask. Our results shown here are estimated using robust simultaneous optimization.

(b) Traditional PS

(a) Scene (c) Our MPS

Figure 5. The effectiveness of our specular reflection removal.
Figures (b,c) are depth maps generated from the normal. Our result
(c) has a smoother depth distribution than the result of traditional
PS at the regions that the specular reflection has observed.

tion in the target’s spectral reflectance at the spectral do-
main. Experimental results showcased the effectiveness of
our method, which yielded superior estimation outcomes
for both synthetic and real scenes, even when compared to a
method equipped with a spatial segmentation mask. Rather
than simple 3D shape acquisition, the proposed method is
suitable for advanced digital archiving that simultaneously
records detailed shape and spectral reflectance.

One limitation of our method is the assumption of local

linearity in the spectral reflectance of the target surface at
the spectral domain. Our evaluation showed that the pro-
posed method works well when the wavelength interval of
the multispectral image is 10nm, and even when the wave-
length interval is 20nm, it works as well as or better than
state-of-the-art. The large number of required images could
be an obstacle to building a real-time system at this time.
Still, we hope that technological advances will enable us to
acquire multichannel multispectral images at high speed.
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