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Figure 1. Teaser – LumiGauss reconstructs environment maps and object surfaces from in-the-wild images. Our model decouples the

scene color and its normals (second and fourth column in the top row). At inference, it can synthesize novel views (bottom row) and

realistic lighting (first and third columns in the bottom) with high-fidelity shadows (second and fourth columns in the bottom).

Abstract

Decoupling lighting from geometry using unconstrained

photo collections is notoriously challenging. Solving it

would benefit many users as creating complex 3D assets

takes days of manual labor. Many previous works have at-

tempted to address this issue, often at the expense of output

fidelity, which questions the practicality of such methods.

We introduce LumiGauss - a technique that tackles 3D re-

construction of scenes and environmental lighting through

2D Gaussian Splatting. Our approach yields high-quality

scene reconstructions and enables realistic lighting syn-

thesis under novel environment maps. We also propose a

method for enhancing the quality of shadows, common in

outdoor scenes, by exploiting spherical harmonics prop-

erties. Our approach facilitates seamless integration with

game engines and enables the use of fast precomputed ra-

diance transfer. We validate our method on the NeRF-OSR

dataset, demonstrating superior performance over baseline

methods. Moreover, LumiGauss can synthesize realistic im-

ages for unseen environment maps. Our code: https:

//github.com/joaxkal/lumigauss.

*Corresponding authors: joanna.kaleta.dokt@pw.edu.pl

1. Introduction

The colors emitted by objects are a combination of a

spectrum of the light hitting the object and the material

properties of that object. The light hitting the object’s sur-

face is a sum of the light scattered in the medium and

bounced from neighboring objects [35]. In computer graph-

ics, we often simplify this effect and decouple it into two

entities: an intrinsic object’s color or albedo and an om-

nidirectional texture representing the illumination [22]—

environment map. Acquiring those assets enables the de-

signing of realistic scenes in games or movies.

In many scenarios, creating realistic albedo textures and

environment maps requires skilled technicians and artists

to be involved in the process. To democratize it, the pre-

vious approaches [7, 23, 34] tried to use photographs taken

with commodity cameras and invert the capturing process to

recover albedo and an environment map. Given the abun-

dance of casual, in-the-wild photographs available on the

Internet, solving that issue is of high importance.

Recent advancements in reconstruction in-the-wild in-

clude NeRF-in-the-Wild [18] (NeRF-W). NeRF-W lever-

ages neural radiance fields [19] which reconstruct a scene

given its photos with calibrated cameras. NeRF-W can fur-

ther work in realistic scenarios where the pictures come

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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from the in-the-wild collections—the images in such may

differ in the lighting conditions or scene content. However,

NeRF-W and its follow-up works, HA-NeRF [3] and CR-

NeRF [39], cannot decouple the object’s albedo and the en-

vironment map, making it difficult to use in practice. NeRF-

OSR [23] approaches that problem, but its shading model

requires neural network execution at runtime, making inte-

gration with graphics engines difficult, and the reconstruc-

tion quality leaves space for improvement.

3D Gaussian Splatting [13] (3DGS) solves one of the

main bottlenecks of NeRF - the training speed and output

fidelity. In contrast to NeRFs, 3DGS models the scene as

a composition of 3D Gaussians attributed with colors and

opacity which are rasterized, or splatted, to render the out-

put image. Recovering an object’s surface from them re-

quires specialized training techniques [9]. On the other

hand, 2DGS [12] proposes reformulating 3D Gaussians as

their 2D alternative where one of the axes is collapsed. The

final scene representation ends up being composed of 2D

surfels which provide a flat surface crucial for our relight-

ing approach.

In this work, we propose LumiGauss, a method that uses

2DGS [12] to perform inverse graphics on images taken in

the wild. In contrast to past approaches, our method is im-

bued with fast training and inference speed while maintain-

ing high-quality renderings and being easy to integrate with

graphics engines. In our method, the light is modeled as a

combination of an environment map and a radiance trans-

fer function that represents which parts of the environment

map illuminate a given surfel—both are modeled by spher-

ical harmonics [22]. This approach allows for modeling

shadows, which is our main goal, but also has the poten-

tial to represent light reflected off of other objects. The out-

put from LumiGauss enables both novel view synthesis and

relighting using environment maps beyond those available

during training. Leveraging the possibilities offered by the

precomputed radiance transfer, our representation integrates

seamlessly into game engines, enabling fast and efficient re-

lighting.

Our contributions:

• We repurpose 2D Gaussian Splatting for an inverse

graphics pipeline in an in-the-wild setting. With our

approach, we recover high-quality albedo and environ-

ment maps.

• To enable shadows we learn the radiance transfer func-

tion for each 2D splat and represent it using spherical

harmonics.

• Finally, we demonstrate that our reconstructed envi-

ronment maps can be effectively used to relight arbi-

trary objects within graphic engines.

2. Related Works

Relighting. Relighting outdoor scenes is a key challenge

in computer graphics and VR/AR. Early works [1,5,10,14,

30, 31, 36] used training-free methods like statistical infer-

ence. Deep learning approaches, such as Yu et al. [40] with

a neural renderer, and Philip et al. [20] with proxy geome-

try, face limitations in reconstruction quality and viewpoint

flexibility.

NeRF-based methods [19] enabled simultaneous view-

point and lighting changes. However, methods like [27, 41,

44] handle a single illumination only or specific illumina-

tion setup during. Others are object-specific, such as for

faces [29]. Many unconstrained photo collection methods

focus on appearance, not lighting, complicating integration

with other graphical components [3, 15, 18, 39].

NeRF-based approaches, such as [21] and [11], focus

on inverse rendering for outdoor scenes, particularly in ap-

plications like autonomous driving. However, these meth-

ods are designed for single video sequences rather than un-

structured photo collections. Rudnev et al. [23] proposed a

method for relighting landmarks from unconstrained photo

collections, using NeRF with external lighting extraction.

Similarly, [16] compresses the per-image illumination into

a disentangled latent vector. Wang et al. [34] target static

scenes and works with unconstrained photo collections but

rely on costly mesh extraction. Some methods incorporate

additional priors, environmental assumptions, or regulariza-

tions [28, 38]. Gardner et al. [7] leverage externally trained

models to provide environmental lighting priors. Despite

their potential, these methods cannot be used in real-time

applications due to NeRF’s slow training and rendering

times.

In contrast, the TensoRF-based approach by Chang et

al. [2] aligns time information and sun direction with im-

ages for relighting, eliminating the need for external light-

ing models. While this method is faster than NeRF, it still

lacks seamless integration with graphics engines and is un-

suitable for synthetic light integration.

Notable Gaussian Splatting works designed for uncon-

strained photo collections [4, 13, 32, 37, 42] focused on ap-

pearance editing, not seamless graphical component inte-

gration. Relightable Gaussian approaches, like [6, 17, 25],

tackle material decomposition but are not adapted to han-

dle varying lighting conditions of in-the-wild training setup.

Radiance transfer properties, employed in a similar way to

LumiGauss, are utilized in [24, 43]. However, these meth-

ods rely on a burdensome dataset setup, restricting their ap-

plicability to specific use cases.

Gaussian Splatting. Kerbl et al. [13] introduced a notion of

using learnable 3D Gaussian primitives from point clouds.

Those Gaussians are parametrized with 3D covariance ma-
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trix Σk and their location tk:

  \gaussians (\translation ) = \exp (\frac {1}{2}(\translation - \translation _k)^\top \Sigma _k^{-1}(\translation - \translation _k)),  






   (1)

where the covariance matrix is factorized into a scal-

ing diagonal matrix sk and a rotation matrix Rk as

Σk=Rksks
⊤
k R

⊤
k . An image is rendered with a splatting

operator S(·) which projects Gaussians into the camera co-

ordinates with a world-to-camera matrix and then to image

plane with a local affine transformation [45]:

  \label {eq:splatting-op} \splatting (\camera _c\;|\;\gaussians ) = \sum _{k=1}^K\radiance _k\opacity _k\gaussians _k\prod ^{k-1}_{j=1}(1 - \opacity _j \gaussians _k).   











  (2)

The operator produces an RGB image, given a calibrated

camera matrix Cc and their additional Gaussians’ attributes:

their colors c and opacities o. Attributes are learned using a

stochastic gradient descent.

Huan et al. [12] argues that 3DGS although producing

high-quality images, the implicit surface representation is

noisy, limiting its applicability in relighting scenarios. They

propose using 2D Gaussians instead to create smooth, co-

herent meshes thanks to their exact 2D surfel projection.

We leverage that representation in our LumiGauss—a re-

lightable model that decouples albedo, environment light

and shadows thanks to our proposed physical constraints.

3. Method

3.1. Preliminaries on Radiance Transfer

The rendering equation, in its simplified form [8], is an

integral function that represents light L(x,ωo) exiting point

x along the vector ωo:

  \label {eq:brdf} L(\bx , \direction _o)\!=\!\int _{s} f_r(x, \direction _o, \direction _i) L_i(\bx , \direction _i) \transferfun (\bx , \direction _i) d\direction _i 





 (3)

where fr(·) is a BRDF function, Li(·) an incoming light

along the vector ωi, and D(·) is a radiance transfer function.

Intuitively, fr(·) represents the surface material, Li(·) rep-

resents the intensity and color of the illumination, and D(·)
is a term that takes into account shadows or light reflections

from other surfaces. Depending on the formulation of those

functions, the rendering equation can range from a straight-

forward and inaccurate light model to a highly complex and

accurate one.

Unshadowed model. One example of a reflection model

that can be represented with Eq. (3) is the diffuse surface

reflection model, also known as dot product lighting. A

diffuse BRDF reflects light uniformly, making the lighting

view-independent and simplifying the BRDF as follows:

  \label {eq:dotillum} L_{D}(\bx ) = \frac {\rho (\bx )}{\pi } \int _{s} L_i(\bx , \direction _i) \max (\mathbf {n}(\bx ) \cdot \direction _i, 0) d\direction _i 








    (4)

where ρ(·) is the surface albedo, n(x) a surface normal at

the point x. Shadows are neglected.

The incoming light Li(x,ωi) can be represented in sev-

eral ways. In this work, we assume that the scene is illu-

minated with an omnidirectional environment map that is

parametrized using spherical harmonics (SH) of degree n

with (n+1)2 coefficients. Because the environment map is

positioned infinitely far from the scene, the light is position-

independent, and thus, the rendering equation is further sim-

plified:

  \label {eq:unshadowed} \light _{U}(\bx ) = \frac {\rho (\bx )}{\pi } \int _{s} \light _i(\direction _i) \max (\mathbf {n}(\bx ) \cdot \direction _i, 0) d\direction _i  








    (5)

With illumination parametrized with SH, we can evaluate

the integral in Eq. (5) using a closed-form solution from

Eq. (12) in [22]. From this point onward, we refer to ren-

dering with Eq. (5) as unshadowed.

Shadowed model. In addition to the unshadowed lighting

model, we propose a shadowed model, where D(x,ωi) is

parameterized using spherical harmonics (SH) and learned

from training data. In D(x,ωi), SH represents a spheri-

cal signal that quantifies the light arriving from each direc-

tion of the environment map to an associated point in space.

The shadowed model is derived by replacing the dot prod-

uct term in Eq. (5):

  \label {eq:shadowed} L_{S}(\bx ) = \frac {\rho (\bx )}{\pi } \int _{s} L_i(\direction _i) \transferfun (\bx , \direction _i) d\direction _i. 








 (6)

In addition to modeling shadows, this approach also has the

potential to model the interreflection of light between ob-

jects in the scene.

Using SH of the same degree for both the environment

map and transfer function allows efficient evaluation of the

rendering equation Eq. (6). A key SH property simplifies

the integral of two SH-based functions to a dot product of

their coefficients, thanks to SH orthogonality. With this

property Eq. (6) can be re-written as:

  \label {eq:shadowed_sh} L_{S}(\bx ) = \frac {\rho (\bx )}{\pi } \lightsh \cdot \transferfunsh , 



   (7)

where l ∈ R(n+1)2 are the SH coefficients of Li(ωi) and

d ∈ R(n+1)2 are the SH coefficients of D(x,ωi). Please

see [8, 26] for derivation. This property is commonly used

in real-time rendering where the radiance transfer function

is pre-computed and only Eq. (7) is evaluated at runtime.

3.2. LumiGauss

LumiGauss creates a 3D representation of a relightable

model using 2D Gaussians [12] from c ≤ C images

taken in-the-wild {Ic}
C
c=1 with associated calibrated cam-

eras {Cc}
C
c=1. Our goal is to find Gaussian parame-

ters G={tk,Rk, sk, ok,ρk,dk}
K
k=1 that after the rasteriza-

tion [13] recreate those images. We optimize Gaussians by
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calibrated

cameras from SfM

{Cc}

normal nk

albedo ρk

SH dk

shadowed

(Eq. (11))

unshadowed

(Eq. (10))

Unconstrained photo collection

{Ic}

Environment

map embedding

(Eq. (9))

Render image

with novel view and light

fixed operation learnable operation

S(·)

Raw 2D Gaussians [42] Relighted 2D Gaussians (Ours)

Figure 2. Pipeline – LumiGauss learns the relightable 2D Gaussian [42] representation from unconstrained photo collection with variable

camera parameters and lighting conditions. Each of k Gaussians holds: a normal nk, albedo ρk, and learnable transfer function dk. Our

contributed method composes the Gaussians in two modes—shadowed and unshadowed. The shadowed model reconstructs additional

shadows (see Fig. 1) on top of the unshadowed model thanks to our proposed use of a radiance transfer function. The Gaussians are

splatted [13, 42] to render the output image in a novel view and light.

minimizing the objective:

  \argmin _{\gaussians , \latents ,\params } \mathbb {E}_{\camera _c\sim \{\camera _c\}} \underbrace {\loss {rgb}\!\left (\splatting (\camera _c\;|\;\gaussians , \latents , \params ), \image _c\right )}_{\text {\cref {subsec:reconstruction}}} + \underbrace {\mathcal {R}(\gaussians )}_{\text {\cref {subsec:constraints}}}, 


     
 




 



 (8)

where E={ec}
C
c=1 is a set of scene-dependent, learn-

able environment embeddings, ℓrgb is a photometric objec-

tive that compares the rendered image from an operator

S(·) (Eq. (2)), and R are additional regularization terms.

In contrast to 2DGS [12], for each Gaussian we model the

base color ρ as diffuse1, and introduce SH coefficients for

the transfer function d
2. 2DGS provides smooth normals

that make relighting possible.

In what follows, we drop the dependence of functional

forms on the positions x we introduced in Sec. 3.1 for

brevity.

Relighting. To handle the diverse lighting conditions in in-

the-wild images, we associate each training image with a

learnable latent code ec that encodes its lighting conditions.

Using this embedding, we predict the environment map co-

efficients via an MLP:

  \label {eq:lightsh} \lightsh _\sceneindex = \text {MLP}(\embedding _\sceneindex | \params ),    (9)

where lc ∈ R
3×(n+1)2 represents the SH coefficients of

the environment map, and n=2 is the SH degree. As shown

in [22], second-order SH is sufficient to approximate envi-

ronment lighting in many scenarios.

1As per Sec. 3.1, view-dependent effects are not modeled in diffuse

reflections.
2These coefficients correspond to a single channel in practice.

The predicted illumination is used in the rendering pro-

cess in one of two ways: unshadowed and shadowed. Those

two approaches correspond to Eq. (5) and Eq. (7) respec-

tively, and are described below.

Unshadowed model. For the unshadowed scenario, we fol-

low Eq. (5), which integrates light over the hemisphere in

the direction of the surface normal. The color ck, radiance,

for each Gaussian Gk given its normal nk and the illumina-

tion parameters lc equates to:

  \label {eq:unshadowed-radiance} \radiance _k = \albedo _k \odot \underbrace {\normal _k^t M(\lightsh _k) \normal _k}_{\text {unshadowed irradiance}},    



 



 (10)

where M is a 4×4 matrix derived from the SH parameters

of the environment map. It is the closed form solution of the

integral in Eq. (5), please see Eq. (12) in [22] for details.

This simple yet effective model already imbues the

model with relighting capabilities. However, as described

in Fig. 3 it does not capture shadows correctly, limiting the

output’s fidelity.

Shadowed model. To effectively capture shadows in the

model, we redefine the output color of a Gaussian as

c̃k, a function of learnable radiance transfer function Dk

parametrized by spherical harmonics dk ∈ R
(n+1)2 , light lc

and albedo ρk. Using a learned radiance transfer function

(instead of fixing it to capture light from the hemisphere

above the normal as we do in unshadowed) allows for cre-

ating shadows, as described in Sec. 3.1. Overall, following
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n

ω1

ω2

n

ω1

ω2

n

ω1

ω2

d(ω1)=max(0, cos(n,ω1))

d(ω2)=max(0, cos(n,ω2))

d(ω1)=max(0, cos(n,ω1))

d(ω2)=max(0, cos(n,ω2))

d(ω1)=max(0, cos(n,ω1))

d(ω2)<max(0, cos(n,ω2))

c = c̃

(Eq. (10) & Eq. (11))

c does not incorporate

the light blocker

c̃ incorporates

the light blocker

Figure 3. Unshadowed c (Eq. (10)) and shadowed c̃ (Eq. (11))

may give the same output color if a Gaussian is fully exposed to

the environment light. In the case of any occluder, c does not

handle, and the color does not change. However, our proposed c̃

properly reacts to the occluder and makes the output color darker.

Target Image Reconstruction Novel View Relit Objects

Figure 4. Scene reconstruction and relightning – Reconstruction

and relighting capabilities of LumiGauss. LumiGauss reproduces

sharp and clean landmarks, and the learned environment lighting

enables accurate scene relighting. We use learned environment

maps to relight the scene from novel viewpoints and then relight

arbitrary objects within a graphics engine.

Eq. (7), the output shadowed color or radiance reduces to:

  \label {eq:shadowed-radiance} \shadowedradiance _{k} = \albedo _k \odot \underbrace {\sum _{i=1}^{(n+1)^2}{\mathbf {l}_c^i \cdot \mathbf {d}_{k}^i}}_{\text {shadowed irradiance}},   








 




 



 (11)

As we show later in the experiments, the addition of shad-

ows leads to more accurate relighting. Additionally, it does

not require learnable MLP to reconstruct shadows at the in-

ference stage, differentiating it from NeRF-OSR [23] and

making our approach applicable to rendering engines di-

rectly.

3.3. Physical constraints

The regularizations proposed in 2DGS [12] keep the

Gaussians close to the surface and smooth locally, which

is crucial in our relighting scenario. Aside from them, we

propose new loss terms based on the physical light prop-

erties that restrict the optimization from achieving degen-

erate, non-relightable cases. We restrict radiance transfer

Dk function to remain within the range of 0 to 1, where

0 indicates complete shadowing and 1 signifies full expo-

sure to lighting:

  \begin {split} \loss {0-1}&=\mathbb {E}_k\mathbb {E}_{\direction _i} [\|\max (\transferfun _k(\direction _i), 1)-1\|^2_2 \\ &\qquad \quad + \|\min (\transferfun _k(\direction _i), 0)\|^2_2], \end {split}  
 

 



(12)

and allow the environment light to remain in the R+ do-

main:

  \loss {+} = \mathbb {E}_k\mathbb {E}_{\direction _i}\|\min (\light _\sceneindex (\direction _i), 0)\|^2_2,  



 (13)

which allows the environment light to brighten the scene

arbitrarily.

The shadowed radiance transfer should remain close to

the unshadowed version. If not, the shadowed version might

include light from any direction, resulting in degenerate so-

lutions and incorrect relighting. We visualize the shadowed

and unshadowed transfer functions in Fig. 3. To address this

issue, we propose the following loss function:

  \loss {\moon {8}$\leftrightarrow $\moon {16}} = \mathbb {E}_k\mathbb {E}_{\direction _i}\|\max (\normal _k \cdot \direction _i, 0) - \transferfun _k(\direction _i)\|^2_2,  
  


 (14)

The applied transfer function inherently accounts for

shadows and interreflections. To focus specifically on mod-

eling shadows and restrict the use of Eq. (11) for other

cases, we impose a loss function ensuring that shadowed

radiance should not be brighter than unshadowed one:

  \loss {\moon {8}} = \mathbb {E}_k\mathbb {E}_{\direction _i}\| \max (\transferfun _k(\direction _i) -\max (\normal _k \cdot \direction _i, 0), 0) \|^2_2, 
  


 (15)

Those losses are weighted with scalars {λ1,...,4} fixed

across experiments and contribute to our regularization

term:

  \mathcal {R}(\gaussians ) = \lossweight {1}\loss {0-1} + \lossweight {2}\loss {+} + \lossweight {3}\loss {\moon {8}$\leftrightarrow $\moon {16}} + \lossweight {4}\loss {\moon {8}}           (16)

Calculating it exactly requires us to compute the expecta-

tion over the hemisphere S
2. Instead, we approximate the

expectations over directions ωi with a Monte Carlo estima-

tor by randomly sampling the SH lobe with N samples at

each training step.

3.4. Reconstruction

We render images using the splatting algorithm S(·) pro-

posed in 2DGS [12]. We compare the rendered images with

ground-truth {Ic} taken with {Cc} cameras. Our method

builds on 2DGS [12] and therefore our reconstruction loss

ℓrgb follows the following term:

  \loss {rgb} &= \lossweight {rec}(\shadowed )\loss {rec}(\shadowed ) + \lossweight {rec}(\unshadowed )\loss {rec}(\unshadowed ),\\ \loss {rec}(\{\shadowed , \unshadowed \}) &= \loss {1}(\{\shadowed , \unshadowed \}) + \lossweight {}\loss {D-SSIM}(\{\shadowed , \unshadowed \}),        

           (18)

where the ℓ1 is the L1 loss comparing either the image

rendered from our shadowed or unshadowed models and

ℓD-SSIM is a differentiable D-SSIM [33] further improv-

ing the quality. We use λ=0.2 throughout all the experi-

ments. Our proposed ℓrec( ) resembles a pretraining stage.
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Table 1. Quantitative results – Comparison between our LumiGauss and selected baselines for two different . We report the reconstruction

quality regarding PSNR, MSE, MAE, SSIM on full and 4x downsampled image resolutions. u/s denotes using upsampled, d/s downsampled

images for the evaluation, and the last delimited area presents the ablation study on downsampled data. We denote NeRF-OSR [23] results

reproduced by FEGR [34] with *. We use † to further annotate our approach where we remove loss terms ℓ ↔ , ℓrec( ) from the second

training stage. In ‡, we omit the first training stage. Compared to the baselines, LumiGauss achieves reconstructions of high fidelity.

It reliably produces smooth surfaces and sharp edges, reflected in its high SSIM values. Additionally, our proposed components either

enhance reconstruction or preserve physical accuracy without negatively impacting the results. Please note, that NeuSky [7] is a concurrent

work, published prior to the WACV’s deadline at ECCV 2024.

Method
Landwehrplatz Ludwigskirche Staatstheater

PSNR ↑ MSE ↓ MAE ↓ SSIM ↑ PSNR ↑ MSE ↓ MAE ↓ SSIM ↑ PSNR ↑ MSE ↓ MAE ↓ SSIM ↑

Yu et al. u/s [40] 15.17 0.033 0.133 0.376 17.87 0.017 0.097 0.378 15.28 0.032 0.138 0.385

Philip et al. [20] 12.28 0.062 0.179 0.319 16.63 0.023 0.113 0.367 12.34 0.065 0.200 0.272

NeRF-OSR [23] 16.65 0.024 0.114 0.501 18.72 0.014 0.090 0.468 15.43 0.029 0.133 0.517

NeRF-OSR* [23] 15.66 0.029 - - 19.34 0.012 - - 16.35 0.027 - -

SR-TensoRF [2] 16.74 0.024 0.093 0.653 17.30 0.021 0.096 0.542 15.43 0.030 0.111 0.632

FEGR [34] 17.57 0.018 - - 21.53 0.007 - - 17.00 0.023 - -

SOL-NeRF [28] 17.58 0.028 - 0.618 21.23 0.008 - 0.749 18.18 0.019 - 0.680

NeuSky [7] 18.31 0.016 - - 22.50 0.005 - - 16.66 0.023 - -

Ours 18.01 0.017 0.096 0.778 19.59 0.012 0.085 0.700 17.02 0.021 0.107 0.729

Yu et al. [40] 15.84 0.028 0.123 0.392 18.71 0.014 0.088 0.400 15.43 0.031 0.136 0.363

Philip et al. d/s [20] 12.85 0.054 0.169 0.164 17.37 0.019 0.105 0.429 11.85 0.070 0.210 0.184

NeRF-OSR d/s [23] 17.38 0.021 0.106 0.576 19.86 0.011 0.080 0.626 15.83 0.026 0.128 0.556

Ours d/s 18.40 0.016 0.094 0.746 20.13 0.011 0.080 0.727 17.24 0.020 0.105 0.715

Ours † 15.03 0.034 0.139 0.58 19.34 0.015 0.094 0.693 16.09 0.028 0.124 0.665

Ours ‡ 17.59 0.019 0.100 0.733 19.05 0.016 0.097 0.680 16.83 0.022 0.110 0.694

Ours \ ℓ0-1 18.30 0.016 0.095 0.744 20.15 0.010 0.080 0.734 17.25 0.020 0.105 0.712

Ours \ ℓ+ 17.35 0.020 0.104 0.728 20.17 0.012 0.081 0.729 17.10 0.020 0.106 0.703

Table 2. Performance comparison – Training time and inference

speed comparison between the baselines and our LumiGauss.

Method Training time FPS

NeRF-OSR [23] 31h 0.003

NeuSky [7] 14h 0.004

Ours 1h 20min 20.7

As the more complex shadowed model lands in local min-

ima if trained from scratch, we initiate the training with

λrec( )=0.0 and λrec( )=1.0. Once the simpler model con-

verges, we switch λrec( )=1.0 and λrec( ) to a small value

so as not to deteriorate the quality of the model. In short,

the shadowed model explains the parts of an image with

shadows, which the unshadowed could not with its simpler

lighting model.

4. Experiments

4.1. Datasets and baselines

To evaluate our approach, we followed the protocol from

NeRF-OSR [23] using ground truth environment maps. We

use the official data split for Staatstheatert, Landwehrplatz,

and Ludwigskirche. We use segmentation masks for test

images provided in the OSR dataset and calculate MSE,

MAE, SSIM and PSNR on masked regions only. We com-

pare LumiGauss against several NeRF-based baselines3 and

TensoRF baseline. We provide the implementation details

in Supplementary.

4.2. Scene reconstruction and relightning

We present the qualitative results in Tab. 1 and quanti-

tative in Figs. 4 and 5. As Yu et al. [40] evaluates their

model on downsampled images, we show the metric values

on downsampled (d/s), and upsampled (u/s) to identify the

quality differences. As we can see, LumiGauss performs

better or on par with the baselines. NeuSky [7] is a concur-

rent work which models the environment maps and the sky

using a prior, pretrained model.

As our backbone, 2DGS [12] incorportates priors to pro-

duce sharp edges and smooth surfaces, our model inherently

performs better as expressed by SSIM. Please also see the

zoom-ins in Fig. 5. Those shape reconstruction qualities

allow us to relight the scene with high fidelity. We demon-

strate that in Fig. 7 where one can see that our method effec-

tively relights landmarks under various lighting conditions.

We finally visualize the rendered shadows produced thanks

to our proposed physical constraints at training time. Since

3We include the concurrent NeuSky [7] which has been published offi-

cially after the WACV deadline.
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Figure 5. Qualitative comparison of albedo, normals, and relighting under similar lighting conditions on Trevi Fountain. LumiGauss

produces albedo with fewer baked-in shadows, sharp normals, smooth surfaces, and more accurate novel lighting compared to the baselines.

Results for NeuSky originally reported in [7]. Please, zoom in for details.

Model without shadowsShadowed model

Figure 6. Effects of shadowed training – We show the compari-

son of albedo between the shadowed (left) and unshadowed (right)

models. The albedo in the shadowed training is brighter with fewer

shadows. The shadowed model recovers more accurate normals.

LumiGauss does not predict shadows explicitly, we visual-

ize them as grayscaled difference of output irradiances be-

tween the unshadowed (Eq. (10)) and shadowed (Eq. (11))

to approximate shadow effects:

  \max (\mathfrak {g}(\radiance _k \oslash \albedo _k - \shadowedradiance _k \oslash \albedo _k), 0),         (19)

where ⊘ is an element-wise division and g(·) converts from

the RGB space to the grayscale space.

We also display the illumination in Fig. 7 to differentiate

between shadows and dark illumination from the environ-

ment map. Additional detailed results on scene reconstruc-

tion, relightning and more comparisons to other works are

included in Supplementary.

4.3. Ablations

We prioritize enhancing relighting capabilities over ac-

curate appearance recreation during the optimization pro-

cess, contrasting with recent Gaussian splatting methods

that target novel view synthesis based on unconstrained

photo collections [4, 37, 42]. Consequently, our ablation

study primarily focuses on the degradation of relighting ca-

pabilities when removing any of the proposed components.

We compare shadowed and unshadowed modeling and in-

vestigate the contributions of each loss term. We present the

results in Tab. 1.

Gaussians can optimize to shadowed surfaces and repre-

sent shadows as normals and albedo colors (effect known

as albedo/illumination ambiguity). Therefore, gains from

separating shadows from lightning are not visible in met-

rics computed on a limited data subset. We noticed that

adding a shadowed version can help restore proper albedo

7
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Figure 7. Environment map rotation – The top row shows the illumination entering the scene. The second and third rows display the

shadowed and unshadowed renderings, respectively. The last row represents the approximate predicted shadows. Please zoom in for details.

and normal vectors of surfaces that during the training were

distorted or had low brightness (see Fig. 6).

4.4. Performance comparison

We compare LumiGauss’ efficiency with two NeRF

baselines. Our method achieves plausible relightning re-

sults while being orders of magnitudes faster both in terms

of training and inference as shown in Tab. 2.

4.5. Limitations

We identify the following limitations of our approach.

Notably, surface albedo and normals may attempt to sim-

ulate shadows in scenarios with hard and frequent shad-

ows. This can pose challenges for shadow training, es-

pecially when shadows are visible in several training im-

ages, potentially hindering the accurate representation of

surface normals. Incorporating priors for environment light

and shadowing could further enhance disentanglement and

light transport modeling as presented in the concurrent

NeuSky [7]. While we assume diffuse albedo, valid for

most outdoor cases, shadows can appear unnaturally on re-

flective surfaces such as windows. Separate background op-

timization could enhance the synthesis of scenes with exten-

sive sky areas. Finally, our shadow modeling baked-in the

spherical harmonics representations is non trivial to extend

to dynamic applications, such as autonomous driving.

5. Conclusions

We present LumiGauss—the method capable of decou-

pling environment lighting and albedo of objects from im-

ages in-the-wild. To this end, we apply 2DGS [12] to recon-

struct the object’s surface accurately and then use our pro-

posed training components that correctly disentangle light

properties from the rendered colors. As we show in the ex-

periments, our approach achieves better reconstruction re-

sults than the baselines. We also present that one of our

contributions—modeling shadows via leveraging Spherical

Harmonics properties—provides shadows of high fidelity

that react appropriately to changing environment light. Lu-

miGauss is a novel approach in the direction of inverting the

rendering process from images in-the-wild, reconstructing

high-quality scene properties without sacrificing the fidelity

of the output.
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