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Abstract

Traditional dataset distillation primarily focuses on im-
age representation while often overlooking the important
role of labels. In this study, we introduce Label-Augmented
Dataset Distillation (LADD), a new dataset distillation
framework enhancing dataset distillation with label aug-
mentations. LADD sub-samples each synthetic image, gen-
erating additional dense labels to capture rich semantics.
These dense labels require only a 2.5% increase in storage
(ImageNet subsets) with significant performance benefits,
providing strong learning signals. Our label-generation
strategy can complement existing dataset distillation meth-
ods and significantly enhance their training efficiency and
performance. Experimental results demonstrate that LADD
outperforms existing methods in terms of computational
overhead and accuracy. With three high-performance
dataset distillation algorithms, LADD achieves remarkable
gains by an average of 14.9% in accuracy. Furthermore,
the effectiveness of our method is proven across various
datasets, distillation hyperparameters, and algorithms. Fi-
nally, our method improves the cross-architecture robust-
ness of the distilled dataset, which is important in the appli-
cation scenario.

1. Introduction

Dataset distillation, also called dataset condensation, cre-

ates a small synthetic training set to reduce training costs.

The synthesized dataset enables faster training while main-

taining a performance comparable to that achieved with the

source dataset. For example, FrePo [45] attained 93% of

full dataset training performance using merely one image

per class in MNIST [6]. Dataset distillation can be applied

in various fields. These include privacy-free training data

generation (e.g., federated learning [12,31,46], medical im-

age computing [20, 31]), fast training (e.g., network archi-

tecture search [41–43]), or compact training data generation

(e.g., continual learning [41–43]).

*Equal contribution

The efficacy of distilled datasets is typically evaluated

based on the test accuracy achieved by models trained

by these datasets. The distilled dataset must maximally

encapsulate essential information of the source dataset

within a limited number of synthetic samples. Prior re-

search [2, 21, 22, 33, 36, 42, 43] has refined the optimization

objective within the bi-loop nested meta-learning frame-

work for dataset synthesis. Some methods have further ex-

plored optimization spaces beyond image [3,9] and efficient

ways to utilize pixel-space [17]. Additionally, several ap-

proaches [4, 34, 45] develop algorithms to reduce the com-

putational cost induced by the bi-loop optimization. How-

ever, these efforts mostly focus on data representation in

images, overlooking the important roles of labels.

Labels, pivotal in supervised learning, pair with images

to provide strong learning signals. In contrast to images,

labels provide highly compressed representations because

they are defined in a semantic space. For instance, in the

ImageNette-128 [16], representing a “cassette player” re-

quires 49,000 scalars (128 × 128 × 3) for the image, but

only ten scalars for its one-hot vector label. This substantial

difference between image and label suggests a new perspec-

tive to dataset distillation, emphasizing the potential of har-

nessing more information from labels rather than images.

Addressing the overlooked potential of labels in dataset

distillation, we introduce Label-Augmented Dataset Distil-

lation (LADD). LADD effectively exploits labels in a dis-

tilled dataset. Our approach comprises two main stages:

distillation and deployment, as depicted in Fig. 1. In the

distillation stage, we first generate synthetic images us-

ing existing distillation algorithms. Subsequently, we ap-

ply an image sub-sampling algorithm to each synthetic im-

age. For each sub-image (termed a local view), we generate

a dense label, sub-image’s soft label, which encapsulates

high-quality information. During the deployment stage,

LADD uniquely merges global view images with their orig-

inal labels and local view images with the corresponding

dense labels, delivering diverse learning signals.

LADD presents three key benefits over prior methods:

(1) enhanced storage efficiency with smaller increments in

dataset sizes, (2) reduced computational demands, and (3)
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Figure 1. Overview of LADD. Once the distilled dataset D is synthesized by baseline, LADD initiates label augmentation. It divides each

image in D into N × N sub-images, as illustrated in Fig. 1 (N = 3). Then, N2 soft labels are computed using the labeler g to produce

the dense label. Label augmented distilled dataset DLA consists of images, labels, and dense labels; it is utilized in the deployment stage

to train the evaluation model.

improved performance and robustness across different test-

ing architectures. First, LADD employs a fixed-parameter

sampling rule for sub-image generation, ensuring minimal

memory overhead (e.g., only 2.5% regardless of IPC (im-

ages per class)). Second, the computational demands are

significantly lowered as the label augmentation process only

involves dense label predictions. Lastly, rich information

encoded in labels serves as effective and robust training sig-

nals at the deployment stage. In this way, LADD leverages

the diverse local information obtained from dense labels.

Experimental results validate these key advantages of

our LADD. At 5 IPC, LADD consistently surpasses the

6 IPC baseline while consuming 87% less memory. This

underscores the memory efficiency of our method. Addi-

tionally, in this setup, LADD only requires an extra 0.002

PFLOPs for label augmentation compared to the 5 IPC

baseline. This is notably lower than the additional 211

PFLOPs required by the 6 IPC setup. Furthermore, LADD

improves the performances of three baselines by an average

of 14.9%, validated across five test model architectures and

five distinct datasets. Finally, GradCAM [28] visualizations

show that LADD-trained models capture objects within im-

ages more accurately. This demonstrates the robustness of

our label-augmented distilled dataset approach.

Our contributions can be summarized as follows:

• We recognize the crucial role of labels in dataset dis-

tillation, an aspect neglected in existing research.

• We introduce a novel framework, label-augmented

dataset distillation, which utilizes dense labels for local

views of each synthetic image. We offer an effective

training method for the deployment stage to maximize

the use of the distilled dataset.

• Extensive experiments reveal that our method signif-

icantly improves computation efficiency, storage effi-

ciency, and cross-architecture robustness. Moreover,

our approach can be effectively integrated with exist-

ing image-focused distillation methods.

2. Related work

Preliminary: dataset distillation. Dataset distillation is

the process of synthesizing a dataset, denoted as D, which

comprises a small, representative subset of samples ex-

tracted from a larger source dataset Ds. With the number

of total classes C and the number of images per class (IPC),

the distilled dataset D contains C × IPC image-label pairs

(i.e., D = {(xi, yi)
C×IPC
i=1 }).

To achieve dataset distillation, algorithms employ a bi-

loop optimization strategy consisting of two phases: the

inner-loop and the outer-loop. The inner loop simulates
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the training of two models with the source dataset Ds and

the synthetic dataset D, respectively. In detail, two mod-

els f(xs, θs) and f(x, θ) with the same structure are trained

on Ds and D for one or several iterations from the identi-

cal initial weights θO. Subsequently, with pre-trained mod-

els, the outer loop updates the distilled dataset such that the

model trained on D approximates the model trained on Ds.

The optimization objective for the outer loop is to minimize

Lsim loss that measures the difference between two trained

models at the inner loop:

Lsim(Ds, D) = dist(f(·; θs), f(·; θ)). (1)

Then, the distilled dataset D is updated to reduce the dis-

similarity:

D := D − β∇DLsim(Ds, D), (2)

where β is the learning rate for the dataset.

We refer to the aforementioned process as the distilla-

tion stage. Subsequently, during the deployment stage, we

utilize the distilled dataset to train a model, represented as

y = h(x;φ). This model undergoes evaluation on the real

validation dataset Dval
s .

Trends in dataset distillation algorithm. Various distil-

lation methods have been proposed to define the similar-

ity loss, denoted as Lsim. Performance matching [36] and

distribution matching [26, 35, 39, 42, 44] utilize a distance

function to measure similarity in predictions or features,

respectively. Gradient matching [43] aligns gradients of

the network parameter θs and θ for increased efficiency by

reducing multiple inner-loop iterations. Trajectory match-

ing [2, 13] focuses on minimizing the parameter distance

between θs and θ after several inner-loop updates. This

approach captures the long-range relationship between pa-

rameters, an aspect that gradient matching does not address.

In contrast, DiM [34] and SRe2L [38] bypass bi-loop opti-

mization by using conditional GANs and reversing fully-

trained models for distilled data synthesis, respectively.

Other methods enhance the robustness or image rep-

resentation of the distilled dataset. DSA [41] utilizes an

augmentation-aware synthesis for diverse image augmen-

tations. ModelAug [40] increases the synthesis robustness

of D by diversifying the θ configuration during distillation.

AST [29] uses a smooth teacher in trajectory matching [2]

to emphasize essential trajectory for D and employs addi-

tive noise to augment the teacher while distillation. To im-

prove image representation, GLaD [3] and LatentDD [9]

regularize the manifold of D based on GAN [27] and Dif-

fusion Model [24]. IDC [17] enriches representation by em-

bedding multiple small images within a single image of D.

Our focus is on enriching label space information to

enhance distilled dataset quality. We emphasize that our

method is both compatible with and capable of synergizing

with other distillation methods in image synthesis.

A few methods draw focus to utilizing labels. FDD [1]

optimizes only labels while images are randomly selected

from the source dataset. FrePo [45] optimizes both images

and labels at once. TESLA [4] uses a soft label for each

image. These methods are limited to using a single label

per image. On the other hand, we augment a single label

into multiple informative labels, achieving enhancements in

both memory efficiency and performance.

3. Method

We propose Label-Augmented Dataset Distillation

(LADD), a specialized label augmentation method for

dataset distillation. During the dataset distillation stage,

LADD conducts a label augmentation process to images

distilled by conventional image-level dataset distillation

algorithms. For each image x, we produce additional

groups of soft labels, denoted dense labels, and create a

label-augmented dataset DLA. Specifically, to obtain DLA,

the label augmentation step goes through two processes:

(1) an image sub-division and (2) a dense label generation.

In the deployment stage, LADD uses both global (i.e., full

images with hard labels) and local data (i.e., sub-sampled

images with dense labels) to train the network effectively.

Fig. 1 depicts the overview of our method.

In the following section, we describe details of the label

augmentation process (Sec. 3.1) and the labeler acquisition

(Sec. 3.2). Finally, we demonstrate the training procedure

of the deployment stage (Sec 3.3).

3.1. Label Augmentation

We denote the image-level distilled dataset D =
{(xi, yi)|i ∈ [1, C × IPC]}, where C is the number of

classes in the source dataset Ds and IPC is the number of

images per class. In our framework, D is generated using

an existing image-level distillation algorithm. By preserv-

ing the effectiveness of the image-level distilled dataset, our

method synergizes with state-of-the-art dataset distillation

algorithms, leveraging their strengths.

Image Sub-Sampling. We define a function S that samples

synthetic image xi ∈ D into several sub-images. Consid-

ering the memory-constrained environment, dynamic sub-

image sampling is not an optimal choice because it requires

saving additional sampling parameters. Therefore, we re-

strict S to be a static strategy sampler. We sample N2 sub-

images from xi. Each sub-image covers R% of each axis.

To achieve a uniform sampling across xi, we maintain a

consistent stride (100%−R%)/(N − 1) for cropping. For

example, for xi of 128× 128 pixels, using R = 62.5% and

N = 5, we obtain 25 sub-images of 80×80 pixels each, ap-

plying a 12-stride. After the sub-sampling, we resize each

sub-image to match the dimension of xi. For clarity, we
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Algorithm 1 Label Augmentation

1: Input: Distilled dataset D = {(xi, yi)}, Labeler g,

Sub-sampling function S
2: Output: Label augmented dataset DLA

3: for each image xi in D do
4: for j = 1 to N2 do
5: xi,j ← Sj(xi) � Generate j-th sub-image

6: ydi,j ← g(xi,j) � Generate sub-image soft label

7: end for
8: Add (xi, yi, y

d
i ) to DLA

9: end for
10: return DLA

denote the sub-sampling function S as below:

xi,j = Sj(xi), (3)

where j ∈ [1, N2] is the index of sub-sampled image.

Dense Label Generation. Sub-images, derived from the

same original image, vary in visual content. In detail,

each sub-image exhibits distinct patterns, conveying differ-

ent levels of class information. We generate labels for each

sub-image xi,j , resulting in N2 labels for each synthetic im-

age xi. To capture rich information in these labels, we opt

for soft labeling. We develop the labeler ys = g(x), where

x denotes the image and ys is the corresponding soft label.

We train the labeler on the source dataset Ds from scratch.

Then, we obtain a dense label yd from each sub-image:

ydi,j = g(Sj(xi)). (4)

We will discuss how to train g in Sec 3.2.

After the dense label generation, we obtain the original

hard label yi and a dense label ydi containing N2 soft labels

for a synthetic image xi. We denote the label augmented

dataset as DLA = {(xi, yi, y
d
i )|i ∈ [1, C × IPC]}. The

synthesis process of DLA is illustrated in Algorithm 1.

One straightforward approach might involve optimizing

labels as part of the distillation process. However, it adds

complexity to an already complicated optimization process,

potentially leading to instability. Furthermore, it reduces

computational efficiency due to slower convergence and in-

creased operations per iteration. Instead, our LADD first

applies existing distillation methods for image-level distil-

lation. Subsequently, we perform a label-augmentation step

on the distilled data, producing final datasets with our gen-

erated labels. In this way, LADD enjoys significant perfor-

mance gains with minimal computational overhead.

Both LADD and knowledge distillation [15] use a

teacher model but differ in the medium of knowledge trans-

fer. Knowledge distillation transfers knowledge through an

online teacher during the evaluation stage. However, LADD

produces a dataset of images and augmented labels which

are fixed after the distillation. In other words, LADD do

not require any online model, such as a teacher, during the

deployment stage.

3.2. Acquiring Labeler g.

LADD employs a labeler g to generate dense labels, em-

ploying the same labeler across all evaluations for fairness.

To minimize overhead, we design g as a small network mir-

roring the distillation architecture (ConvNetD5). We train it

for 50 epochs with a learning rate of 0.015, saving param-

eters at epochs 10, 20, 30, 40, and 50. We use the model

trained up to 10 epochs as our early-stage labeler g, as it

provides general and essential information for sub-images.

This is well-aligned with existing dataset distillation meth-

ods [2, 13]. Although g is trained on a source dataset, it ap-

propriately predicts labels for distilled images because the

distilled dataset retains local structures of the source data.

Apart from our chosen method, classifiers trained on dif-

ferent data, including zero-shot models like CLIP [23], can

be used as g. However, they do not produce more effective

dense labels than our method. This is because these pre-

trained models are not trained on the distilled dataset and

have different architectures from those used in distillation.

3.3. Training in Deployment Stage

We closely follow the deployment stage from existing ap-
proaches. Given the dataset DLA and an optimized learn-
ing rate η, we conduct standard classification training on the
target network h(x, φ). Additionally, we modify the data in-
put and training loss to effectively utilize informative dense
labels in DLA:

Lcls = CE(h(xi, φ), yi) +
N2∑

j=1

CE(h(Sj(xi), φ), y
d
i,j), (5)

where CE(·, ·) is a cross-entropy loss. The dimensions of

yi (one-hot) and ydi,j (soft) are the same as RC , and the di-

mension of ydi is RN2×C . Through this process, we provide

diverse training feedback through augmented dense labels

beyond the signal provided by D.

4. Experiment

4.1. Implementation details

Image Sub-Sampling. The sub-sampling function is se-

lected as a uniform sampler S with R = 62.5% and N =

5; R and N are determined experimentally (experiments

are in Sup.A). Throughout the experiments, 25 sub-images

are generated per synthetic image, and each sub-image is

80× 80 in size when using 128× 128 source dataset.
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IPC Method MTT AST GLaD(MTT) Overhead

1

Baseline 38.3±0.9 39.0±1.2 34.3±1.0 -

Baseline++ 42.6±1.0 41.8±1.2 41.8±1.4 100.1%

LADD (ours) 40.9±1.3 41.9±1.6 40.7±1.2 2.5%

5

Baseline 49.5±1.4 51.4±1.2 48.0±1.1 -

Baseline++ 50.5±1.0 52.1±1.3 48.6±1.2 20.7%

LADD (ours) 52.6±0.8 60.1±0.9 58.4±0.9 2.5%

10

Baseline 54.6±1.3 53.2±0.9 52.3±1.1 -

Baseline++ 55.4±1.2 54.2±1.3 52.4±1.2 10.0%

LADD (ours) 55.6±1.2 62.0±0.5 62.8±0.9 2.5%

20

Baseline 58.2±1.2 55.5±1.5 53.3±1.2 -

Baseline++ 59.2±1.3 56.9±1.3 54.9±1.0 5.0%

LADD (ours) 59.6±0.5 59.4±1.0 66.5±0.8 2.5%

Table 1. ImageNette (128×128) Performance on Various IPC
(images-per-class). Each result reports an average of valida-

tion set accuracy of training ConvNetD5, AlexNet, VGG11, and

ResNet18 on synthetic datasets which are distilled using a Con-

vNetD5 (4-CAE, four cross-architecture evaluation). The numbers

after the ‘±’ symbol are the average standard deviation of five trials

per evaluation. The best performance is bolded, and the second-

best performance is underlined.

Dataset. Various high-resolution image datasets are

used as the source and evaluation datasets. They

include ImageNet [5] and its subsets, such as Ima-

geNette, ImageWoof [16], ImageFruit, ImageMeow, and

ImageSquawk [2]. Each subset contains 10 classes and

around 1,300 images per class. All images are center-

cropped and resized into 128× 128.

Baselines. We benchmark our method against a range

of notable dataset distillation methods. These include

MTT [2], AST [29], GLaD [3], DC [43], DM [42], and

TESLA [4]. We re-implement DC and DM within the

GLaD framework. For all distillation processes, we employ

the ConvNetD5, a 5-layer convolutional network [11], as

the standard distillation model architecture. For ImageNet-

1K, we compare TESLA [4], SRe2L [38], and RDED [32].

Labeler g. To ensure fairness, we use the same labeler g
for all experiments. We train g on each source dataset for

ten epochs using stochastic gradient descent (SGD) with a

learning rate of 0.01 and a batch size of 256, following [2].

Cross-Architecture Evaluation. To evaluate the ro-

bustness of distilled data across various architectures,

we use five different models [3] including four unseen

models (ConvNetD5 [2], AlexNet [19], VGG11 [30],

ResNet18 [14], and ViT [7]) except in Tab. 1. We refer

to this protocol as 5-CAE. The scores represent the aver-

age of five independent trainings for each model. Each

test model is trained for 1,000 epochs using the synthetic

dataset. We adhere to the learning rate and decay strategy

for each model as in [3]. Both baseline and LADD use the

same data augmentations [41].
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Figure 2. FLOPs-Accuracy Plot for Distillation. x-axis indi-

cates the total computational cost to obtain D in FLOPs. For

LADD, we compute FLOPs for both synthesizing D and creating

dense labels. Each result uses ImageNette.

4.2. Quantitative evaluation

We quantitatively evaluate LADD by benchmarking it

against representative distillation methods (MTT [2],

AST [29], and GLaD [3]) in various IPC settings. LADD in-

curs additional memory usage compared to the baseline
because of labeler training and label augmentation. For

fair comparison, we evaluate the baselines with incremented

IPC (i.e., IPC+1), labeled as baseline++. We focus on

4-CAE results in Tab. 1 since MTT and AST are not fully

compatible with heterogeneous architectures (e.g., several

experiments failed to converge on ViT architecture). The

additional memory overhead for both images (uint8) and

labels (float32) is calculated utilizing the Python zipfile
library [10], the standard compression method.

Tab. 1 presents the results for varying IPC on the Im-

ageNette. The quantitative analysis reveals that LADD
surpasses the baseline, showing an average improve-

ment of 15% at 5 IPC. Notably, our method outperforms

baseline++ in all cases except at 1 IPC. At 1 IPC,

baseline++ entails a 100.1% increase in memory us-

age. In contrast, LADD achieves comparable performance

with only a 2.5% storage overhead, resulting in 40 times

greater memory efficiency. For 5 IPC, baseline++ re-

quires 20.7% more memory to accommodate an extra im-

age per class. Conversely, LADD requires only an additional

2.5% memory while achieving, on average, a 13.2% better

performance than baseline++ across three models. Con-

sequently, we conclude that our approach shows impressive

performances in terms of accuracy and efficiency, creating

synergies with existing dataset distillation algorithms.

We evaluate the cross-architecture robustness of our

method. Tab. 2 shows results for five architectures during

the deployment stage. Notably, the baseline’s ViT exhibits

the weakest performance due to the architectural divergence
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MTT AST GLaD(MTT)
Baseline LADD Baseline LADD Baseline LADD

ConvNetD5 61.2±1.5 62.1±0.8 63.8±0.5 66.8±0.4 61.2±0.4 69.0±0.8
VGG11 49.6±1.8 50.6±1.5 48.3±1.4 58.1±0.7 49.0±1.0 60.0±1.3

ResNet18 57.3±1.9 59.0±1.6 54.9±0.7 63.6±0.6 55.6±1.9 65.5±0.7
AlexNet 46.4±0.6 51.0±0.6 45.6±1.1 59.4±0.3 43.3±0.9 56.7±0.8

ViT 35.9±0.8 37.8±0.5 31.0±1.3 32.6±2.2 32.6±0.2 42.5±1.2

Avg. 50.1±1.3 51.8±1.3 48.7±1.0 56.1±0.8 48.3±0.9 58.7±1.0

Table 2. Detail Results in Cross-Architecture Evaluation. All results are measured on ImageNette dataset at 10 IPC.
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Figure 3. FLOPs-Accuracy Plot at the Deployment Stage. x-axis indicates the total computational cost at the deployment stage in

FLOPs. Among the three algorithms, LADD shows the best performance. Each result uses ImageNette at 5 IPC.

Method Accuracy (%) Assumption compliance

TESLA [38] (ICML’23) 7.7±0.1 �

SRe2L [38] (NeurIPS’23) 21.3±0.6 �

RDED-I (H) 12.4±0.3 �

RDED-I (S) 23.6±0.3 �

LADD-RDED-I (ours) 28.8±0.5 �

RDED [32] (CVPR’24) 42.0±0.3 �

Table 3. Performance on ImageNet-1K Dataset. Each model

uses ResNet-18 [14] as a test model. IPC is set to 10.

between the models in the distillation and deployment

stages. Therefore, ViT’s performance is a key indicator of

the architecture robustness of the distilled dataset. LADD
enhances performance across various architectures, partic-

ularly boosting ViT performance by 31% in GLaD(MTT).

The dense label in LADD improves the representation qual-

ity and generalization within the distilled dataset.

Additionally, we show that LADD surpasses other

dataset distillation methods on the ImageNet-1K [5], as

shown in Tab. 3. ImageNet-1K presents significant chal-

lenges in dataset distillation due to high GPU consumption

and complex optimization. For RDED, we remove the la-

beling process that uses the teacher model at the deployment

stage. Using the teacher model at deployment stage vio-

lates the assumption of dataset distillation because it aligns

more with knowledge distillation (Sec. 3.1). We denote the

modified model as RDED-I (H or S), which consists of

the distilled image and either hard or soft labels. With-

out online knowledge transfer of the RDED, we observe

that RDED-I (H) only achieves 12.4% accuracy. RDED-I
(S) shows better accuracy at 23.6%, which is better than

SRe2L. Our method demonstrates the best performance.

We conclude that our approach improves the performance

on a large dataset. More details are described in the Sup.B.

We compute the FLOPs requirement to assess the com-

putational overhead for creating distilled data D and DLA.

Fig. 2 presents the total FLOPs necessary to distill D (�,•) and DLA (�). It also shows their corresponding de-

ployment stage accuracies for baseline, baseline++,

and LADD. Our observations indicate that LADD is more

resource-efficient and achieves higher accuracy than both

baseline and baseline++. There’s a noticeable off-

set between the trend lines of LADD and baseline. This

difference highlights our greater computational efficiency

compared to previous studies. According to Fig. 2, the

computational cost of LADD is slightly higher than that

of the baseline, but significantly lower than that of

baseline++. This is because LADD’s computation in-

cludes labeler training and label augmentation in addition

to the baseline distillation. However, these additional costs

are much smaller than those for baseline distillation. Thus,

it is a fair comparison of computational efficiency.

Furthermore, for an equitable comparison of the train-

ing cost, we conduct the experiments using the same batch

size and number of iterations during the deployment stage.

Fig. 3 depicts the accuracy of each model relative to the

training cost. LADD outperforms both the baseline and

baseline++ under the same training cost.

In Tab. 4, we report performances across various

1462



Method ImageNette ImageFruit ImageWoof ImageMeow ImageSquawk

MTT 45.3±1.1 31.7±1.8 28.3±1.2 33.0±1.1 41.5±1.0

LADD-MTT (ours) 49.2±0.9 35.5±1.2 31.0±0.8 36.4±0.7 48.2±0.8

AST 47.3±1.2 32.9±1.9 29.3±1.1 32.0±1.5 35.1±2.1

LADD-AST (ours) 53.4±1.1 40.3±1.4 33.0±1.1 36.0±1.0 43.2±1.0

GLaD(MTT) 44.2±1.0 27.5±1.0 24.5±0.9 30.0±0.8 34.0±1.3

LADD-GLaD(MTT) (ours) 53.9±0.9 32.5±1.2 26.1±0.6 33.7±1.1 42.1±0.8

Table 4. Performance Improvement on Various Datasets. All methods are trained on each dataset at 5 IPC. All values are 5-CAE results.

Baseline LADD

MTT 45.3±1.1 49.2±0.9
AST 47.3±1.2 53.4±1.1

GLaD(MTT) 44.2±1.0 53.9±0.9
GLaD(GM) 39.8±0.7 52.1±1.0
GLaD(DM) 37.2±1.2 49.9±1.0
TESLA 19.2±0.7 27.3±0.7

Table 5. Performance on Various Algorithms. All 5-CAE results

are measured in ImageNette dataset at 5 IPC.

datasets. These results consistently demonstrate that LADD
significantly enhances the performance of baselines across

different source datasets. For each baseline model, we cal-

culated the percentage improvement of LADD over the origi-

nal models for all five datasets and then averaged them. We

further averaged the improvements across the three base-

lines. This comprehensive calculation shows that LADD
achieves an average performance improvement of 14.9%

across the five datasets. This consistent improvement is a

strong indication of our method’s generalizability, regard-

less of the dataset. Tab. 5 presents the results from us-

ing various distillation algorithms. Analogous to the pre-

vious results, LADD significantly outperforms the various

baselines. TESLA depicts low accuracy in both Tab. 3

and Tab. 5 because it reduces computations by ignoring

training feedback. Detailed information is described in the

Sup.C. Based on the experiments, we conclude that LADD
demonstrates robustness and efficiency across a range of

IPC settings, datasets, and architectures.

In conclusion, our extensive experiments establish that

our method is effective in several key aspects. First, it

demonstrates resource efficiency, as illustrated in Fig. 2.

Second, it provides high compactness relative to its perfor-

mance, evidenced in Tab. 1. Third, it consistently delivers

superior training performance in diverse environments, as

shown in Tab. 4 and 5. These findings collectively con-

firm that LADD significantly improves the quality of dis-

tilled datasets via efficient label augmentation.

4.3. Impact of Dense Labels in LADD

In this section, we investigate the most efficient ways to uti-

lize a distilled dataset. We designate GLaD(MTT) as our

baseline model. Tab. 6 presents the deployment stage per-

Input image

Chain saw

French horn Parachute

Baseline LADD (ours) Input image Baseline LADD (ours)

English springer

Figure 4. Analysis on the Dataset Quality. The second and

third columns depict GradCAM [28] visualization of each predic-

tion from GLaD(MTT) (baseline) and LADD-GLaD(MTT)
(LADD), respectively.

formance using different combinations of datasets and la-

bels. We note that the performance differences are negligi-

ble when training each image in D with hard labels, soft la-

bels, or a mix of both. Additionally, using only sub-images

with hard labels yields results comparable to the baseline.

However, employing sub-images with corresponding dense

labels results in a significant performance improvement of

7%p. This underscores that the combined strategy of im-

age sub-sampling and dense label generation in LADD is

highly effective for label utilization. Furthermore, inte-

grating training with full images and their hard labels into

previous experiments leads to an extra 2.8%p boost. This

demonstrates that LADD, which leverages both local views

with dense labels and global views of distilled images, is

the most effective approach for label augmentation.

4.4. Dataset Quality Analysis

We employ GradCAM [28] to visually investigate the rea-

sons behind performance improvements from label aug-

mentation. Fig. 4 displays the GradCAM results for

GLaD(MTT) and LADD, both trained on ImageNette at 5

IPC. Our observations reveal that LADD more accurately

identifies objects than the baseline, which often focuses
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Images Labels
ConvNetD5 VGG11 ResNet18 AlexNet ViT Avg.

Full Sub-sampled Hard Soft

� � 58.7 45.5 50.6 37.0 29.4 44.2

� � 60.1 44.5 51.2 37.7 28.8 44.5

� � � 60.8 44.1 51.9 36.3 29.2 44.5

� � 54.3 49.7 49.5 37.3 29.6 44.1

� � 62.5 53.8 57.0 49.4 32.6 51.1

� � � 59.8 54.7 55.4 48.9 34.6 50.7

� � � � 66.5 55.7 61.2 50.2 35.9 53.9

Table 6. Performance Analysis on Image and Label Combinations. GLaD(MTT) is set to the baseline model. All results are 5-CAE

values measured on ImageNette at 5 IPC.
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Monotonous soft label

Figure 5. Analysis on the Labeler g. (a) The Blue line indicates

the labeler performance. The orange line depicts the accuracy of

the test model in the deployment stage where dense labels in the

distilled dataset are obtained from the labeler of each epoch. (b)

Each bar graph depicts the prediction probability of the example

image using the labeler for each epoch.

on surroundings rather than primary objects. For example,

LADD effectively concentrates on the main object, identify-

ing all three English springers. Another shortcoming of the

baseline is its tendency to detect only parts of an object,

while LADD captures entire objects for accurate classifica-

tion. Additionally, LADD excels at detecting small objects

like a miniature French horn and a Parachute, outperform-

ing the baseline. Overall, models trained with LADD
classify objects with diverse features better, regardless of

size, quantity, and structure. This demonstrates LADD’s

ability to learn multiple representations of a single object

using diverse dense labels with sub-images, significantly

enhancing classification accuracy. Challenging categories

like Chain saw, French horn, Gas pump, and Golf ball are

difficult to classify (accuracies ≤ 40%) due to variations in

size and quantity. LADD improves classification accuracies

from 32%, 36%, 32%, and 40% to 56%, 60%, 40%, and

56%, respectively, marking up to a 24% improvement.

4.5. Ablation Study
The ablation study on LADD-GLaD(MTT) using the Ima-

geNette at 5 IPC concentrates on identifying the ideal train-

ing steps for the labeler. The labeler creates soft labels

that encapsulate meaningful information for specific sub-

images. We evaluate the contribution of training labeler on

the source dataset to the distilled dataset. Fig. 5 (a) dis-

plays the performance of labeler and LADD across various

training epochs. Fig. 5 (b) shows that soft labels from less

extensively trained labelers exhibit greater diversity (indi-

cating less overconfidence) compared to those trained for

longer periods. This occurs as, during initial training stages,

the model primarily absorbs general information about the

source dataset. Subsequently, the model begins to memo-

rize the training data, leading to overconfident results. Con-

sequently, we employ a labeler trained only for ten epochs,

capitalizing on this early-stage learning.

5. Conclusion and Limitation
In this work, we highlight the overlooked role of labels in

distilled datasets. Addressing this limitation, we introduce

Label-Augmented Dataset Distillation (LADD), a method

that effectively utilizes labels. Our approach enriches labels

with useful information, orthogonal to the images. This

yields three major advantages: (1) enhanced efficiency in

distillation computation, (2) improved memory capacity ef-

ficiency, and (3) increased dataset robustness.

Extensive experiments demonstrate that LADD en-

hances various distillation methods with minimal extra

computational and memory resources. On five ImageNet

subsets and three baseline methods, LADD achieves an av-

erage performance improvement of 14.9% with only a 2.5%

memory increase. Remarkably, LADD surpasses baselines

with more images per class while using fewer computa-

tional resources and memory capacity. LADD with 5 IPC

delivers 12.9% more accuracy than a 6 IPC baseline while

using eight times less memory. We confirmed that datasets

distilled using LADD enable more robust training across

diverse architectures. Additionally, results from Grad-

CAM [28] visualizations show that models trained with our

dataset accurately and robustly capture object locations.
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