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Abstract

Regressing text in natural scenes with polygonal repre-
sentations is challenging due to shape prediction difficul-
ties. To address this, we introduce Text Polygon Detec-
tion with Split Transformers (TPD-STR), which directly re-
gresses polygonal points. TPD-STR incorporates the De-
coder Split (DS) architecture to separate polygonal point
regression and textness classification, and the Positional In-
formation Propagation (PIP) module to enhance classifica-
tion. Both modules are effective and compatible with ex-
isting methods. TPD-STR achieves state-of-the-art (SOTA)
performance among regression-based methods, surpassing
segmentation-based methods on MSRA-TD500 without ex-
ternal data. Adding DS and PIP to existing models fur-
ther improves performance. Experiments demonstrate the
model’s ability to detect text instances effectively.

1. Introduction

Scene text detection is one of the important tasks in com-
puter vision, acting as a foundation technology for many
practical applications such as character recognition, instant
translation, scene parsing, blind navigation, alt text1 and so
on. Like other computer vision fields, scene text detection
has made great progress by the introduction of deep learning
methodologies. In particular, the emergence of transform-
ers [20] has driven a new paradigm of scene text detection
by showing outstanding performances. DEtection TRans-
former (DETR) [3] is a detector built upon a transformer.
Its competitive performance without using any anchor has
allowed many derivatives of DETR in the field of scene text
detection [17, 19, 27]. However, most DETR-based meth-
ods do not directly yield polygonal predictions but focus
on finely refining the structure of arbitrary texts [27] or
partially use only a few components of DETR [17, 19] to
achieve the desired performance indirectly. Unfortunately,

*Equal contribution.
†Corresponding author.
1https://en.wiktionary.org/wiki/alt text

(a) w/ Recognition Branch (b) w/o Recognition Branch (c) Ours

Figure 1. Example of lowered textness classification scores when
the recognition branch is removed from TESTR [30] (See the num-
bers). Although TESTR architecturally enabled polygonal detec-
tion, without character annotation, making the character recogni-
tion branch unavailable, the performance degrades seriously (a)
(b). On the other hand, without the recognition branch, our pro-
posed TPD-STR detects polygons very well (c).

rectangular-shaped bounding box detection is not enough to
cover the complexity of scene text detection data since they
contain various samples with deformed, multi-directional,
and curved shapes. Furthermore, it is structurally challeng-
ing for neural network models to get good polygonal pre-
dictions for the texts in the wild.

Recent studies [25,30] have proposed a regression-based
method using D-DETR [32] to directly regress polygonal
points. However, these methods have limitations as scene
text detectors. Text Spotting TRansformers (TESTR) [30]
is a spotter that simultaneously learns detection and recog-
nition, which is different from the general detector settings
as it uses additional recognition labels. DPText-DETR [25]
used a structure similar to [30] and proposed a method
that better predicts curved text by using additional labels
for point positions. Although these two studies report the
state-of-the-art performance on some detection benchmark
datasets, it is not a fair comparison as they use additional
data. In fact, we observed that using only polygonal ground
truth for the detection task, without additional data such as
recognition labels or point positional labels, seriously de-
grades performance of these models compared to official
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results. This is shown in Tab. 1 (Compare 2nd to 3rd rows
of ‘Regression-based’ (reproduced) and 5th to 6th rows of
‘Regression-based’ (official)).

In particular, the performance degradation in TESTR
[30] originates from the malfunction of the classification
head, which determines the presence of texts (textness).
While the polygonal point regression head works well
enough, as shown in Fig. 1, the textness confidence score
significantly drops when the recognition branch is removed.
In other words, putting the classification and regression
head together is not a desirable strategy for text detection.
This phenomenon has also been described in many pre-
vious studies, and various solutions have been suggested
[1, 2, 5, 6, 11, 19, 24, 27, 33]. CRAFT [1], a CNN-based
bottom-up method, utilizes a confidence map by matching
the text length included in the text recognition data with the
feature map. However, this method has limitations because
it requires additional text recognition data. In the recent
transformer-based method such as [19] and [27], the con-
fidence score is calculated using a rough text segmentation
mask. This approach has also been applied to many pre-
vious works [2, 5, 6, 11, 24, 33], but additional training of
the segmentation branch requires pre-processing with addi-
tional data, making the whole procedure more complex.

In this paper, we propose a simple yet effective
transformer-based text detector that can directly regress
polygonal points without any need for additional data, data
processing, or additional modules other than the basic D-
DETR [32] components. To tackle the performance degra-
dation of regression-based methods, first, we separate the
two tasks of ‘polygonal point regression’ and ‘textness clas-
sification’ by splitting the decoder. Through various analy-
ses and studies that will be discussed later, we verify that
the performance degradation is caused by the problem of
‘shared suboptimal features’ that occurs while performing
two tasks with different characteristics using shared fea-
tures. In other words, if the ‘polygonal point regression’
(reg) branch and the ‘textness classification’ (cls) branch
of the D-DETR [32] structure are trained upon the same
attention modules, it is impossible to find the optimal so-
lution for each task. Therefore, we design the ‘Decoder
Split (DS)’ to prevent each branch (reg, cls) from sharing
attention weights, ultimately finding better respective fea-
tures rather than sharing suboptimal features. Secondly,
unlike the regression branch, the classification branch can
benefit from the information from the regression branch
since structural information can be a clue for determining
the textness. Therefore, we design the ‘Positional Infor-
mation Propagation (PIP)’, which propagates positional in-
formation from the regression branch to the classification
branch. Through benchmark experiments that will be pre-
sented later, it is confirmed that PIP works better on curved
text datasets composed of complex polygons. Our contribu-

tions can be summarized as follows:

• To tackle the performance degradation of regression-
based methods, we propose ‘Decoder Split (DS)’
which splits the decoder in half and lets each part con-
duct polygonal point regression and textness classifi-
cation, respectively.

• We also introduce the ‘Positional Information Propa-
gation (PIP)’ module, which transfers positional infor-
mation from the regression branch to the classification
branch. This enables the classification branch to better
utilize the geometric information of polygonal points
from the regression branch to accurately determine the
corresponding textness.

• Our TPD-STR, which directly regresses polygo-
nal points, achieves SOTA among regression-based
methods and shows SOTA or competitive perfor-
mance against segmentation-based methods on stan-
dard benchmarks.

• Furthermore, we demonstrated that the DS and PIP
modules can be easily incorporated into other methods
to further boost performance.

2. Related Work

2.1. Scene Text Detection

Segmentation-based methods [6, 11, 14] create segmen-
tation maps from text boundaries, roughly indicating text
regions in images. As scene text shapes vary, these methods
effectively handle the problem using segmentation maps.
Although the segmentation map is valuable in covering the
arbitrary shape of scene texts, model inference requires a bi-
nary map with a specific threshold, introducing heuristics.
To address arbitrary text shapes, TextSnake [14] predicts
score maps of text regions and text center lines with geom-
etry attributes. On the other hand, DB [11] adaptively se-
lects thresholds for binarization to simplify post-processing.
FreeReal [6] adopts a student-teacher framework and em-
ploys DB [11] as a baseline model.

Regression-based methods [26, 31] directly detect text
bounding points, still relying partly on segmentation maps.
Though they streamline network architecture, effectively
handling scene texts with diverse shapes is still challeng-
ing. Using text score maps for thresholding, EAST [31]
predicts quadrilateral bounding boxes with diverse orienta-
tions. LOMO [26] employs regression to generate quadran-
gle text proposals, refining and reconstructing text represen-
tations including region, center line, and border offsets.
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Figure 2. The overall architecture of our method is based on D-DETR [32], and the subquery proposed in [30] is applied for polygonal
point regression. Specifically, we propose a decoder split (DS) architecture and positional information propagation (PIP). For visualization,
among N = 16 polygonal points, four detected points for each polygon are colored in the output image, and the corresponding subqueries
are colored accordingly. The double slash sign (//) means preventing gradient flows from the textness classification branch to the polygonal
point regression branch.

2.2. Transformers in Scene Text Detection

Recently, there has been growing interest in transformer-
based architectures for scene text detection, leading to
methods like [2, 19, 27] These approaches use rough text
segmentation to regress text instance polygonal points.
Specifically, [19] employs score maps for text point fea-
tures, grouping, and regressing polygonal points. Mean-
while, TextBPN++ [27] refines multiple segmentation maps
to regress polygonal points. SRFormer [2] incorporates seg-
mentation branches to its decoder layers. However, these
methods need additional segmentation maps for accurate
regression of arbitrarily shaped text instances, indicating a
need for research in detectors handling such texts without
extra maps.

Initially designed for object detection, Deformable
DETR (D-DETR) [32] enhanced DETR [3] with a de-
formable attention mechanism, excelling in small ob-
jects. Building on D-DETR’s advantages, transformer-
based scene text detectors [17, 25, 30] regress polygonal
points. However, they have limits. For instance, [17]
struggles with curved or complex-shaped text, and DPText-
DETR [25] falters without the use of point positional la-
bels. Unlike these, TESTR [30] relies on recognition labels
for detection but it degrades without them. In contrast, we
propose an effective scene text detector that identifies text
instances without needing segmentation maps, point posi-
tional labels, or recognition labels.

3. Method

We first introduce the overall architecture of our TPD-
STR and then explain our two contributions, Decoder Split
(DS) and Positional Information Propagation (PIP) in detail.
The overall architecture of our TPD-STR is shown in Fig. 2.

3.1. Overall Architecture

Encoder and Decoder. Our TPD-STR encoder is built
upon the D-DETR model [32], and incorporates the de-
coder’s approach of [30] that utilizes subqueries to esti-
mate the polygon coordinates. Our method can detect
objects in an arbitrary shape since each subquery corre-
sponds to an individual point that surrounds the text. Given
K initial queries P = {P 1, · · · , PK}, each query P =
(p1, · · · , pN ) represents a text instance by holding N sub-
queries to predict N bounding points (N = 16 is used in our
experiments.). After the encoder E of D-DETR encodes an
image x into features, the decoder D turns P into textness
confidence B̂ and predicted coordinates P̂:

(B̂, P̂) = FFN(D(E(x),P)). (1)

Note that B̂ and P̂ share the same queries P .
Meanwhile, in our method, we separate the prediction

of textness and regression, as will be discussed later, and
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Figure 3. Illustration of various attention split architectures. Tab. 2
shows that our Decoder Split (c) performs best among the three.

Eq. (1) can be rewritten as below:

B̂ = FFNc(Dc(E(x),B)), (2)

P̂ = FFNr(Dr(E(x),P)), (3)

where B refers to the query used for textness classifica-
tion and Dc and Dr respectively represent decoders from
classification and regression branches. Accordingly, both
branches are followed by their own feed-forward networks
FFNc and FFNr. Once the points are predicted, they are
connected in a clockwise order starting from the left most
corner resulting in the final polygonal prediction.
Guidance Generator. In our method, the guidance gen-
erator module is utilized to support polygon estimation by
detecting text instances as bounding boxes using the en-
coder output. This concept was first introduced in D-DETR
and later used similarly in [8, 30]. In this paper, we fol-
low the implementation of [30] as it is. Encoder E is fol-
lowed by a linear layer and a normalization layer, producing
C = {(cx, cy, cemb)

1, · · · (cx, cy, cemb)
K)}. Then, cemb is

used to make initial queries as follows:

P k = ckemb + (p1, · · · , pN ), k ∈ [K], (4)

and cx and cy are utilized later as reference point coordi-
nates for deformable attention.

3.2. Task Separation with Decoder Split (DS)

In general, locating scene texts has been quite challeng-
ing, and many works have proposed additional methods to

enhance localization accuracy. In the field of object de-
tection, one of the best working methods is separating the
task using an additional branch. For example, DESTR [8]
separates the classification and regression branches apart,
and this brings a performance gain. This also means that
using shared suboptimal features instead of focusing on
their own better respective features results in performance
degradation. Furthermore, detecting polygonal-shaped ob-
jects demands more sophisticated representations than sim-
ple bounding box prediction, and it is natural to assume that
splitting the task into classification and regression would
make better features for each task. Inspired by this, we
try to solve the problem of performance degradation in
regression-based methods with a transformer by applying
the concept of task separation. With this simple yet effec-
tive idea, we have tackled the performance limitations of
existing methods. Note that, unlike other existing methods,
our method does not require complex architectures or addi-
tional data such as segmentation masks [2, 5, 6, 19, 27], text
recognition labels [30], or point positional labels [25].

Finally, based on the task separation hypothesis, we pro-
pose a dual decoder architecture that splits the decoder for
polygonal point regression (Dr in Eq. (3)) and text classifi-
cation (Dc in Eq. (2)) as shown in Fig. 2. In the text polygon
detection problem, different features should be attended to
the polygonal point regression task and the textness classi-
fication task. In this respect, our proposed method is ex-
pected to be quite effective. To confirm this quantitatively
and qualitatively, we conduct experiments on various de-
coder split architectures shown in Fig. 3 and the results will
be discussed in Sec. 4.4.1.

3.3. Positional Information Propagation (PIP)

As described in the previous section, task separation
with decoder split allows the regression and classification
branches to find their own respective features. In our ex-
periment, which will be described later, we have verified
that this helps improve the detection performance. How-
ever, unlike the regression branch, the classification branch
can benefit from the information from the regression branch
since structural information can be a clue for determining
the textness.

Based on this, we formulate the features from the polyg-
onal point regression branch to be transferred to the fea-
tures from the textness classification branch using element-
wise addition, as shown in Fig. 2. After extracting fea-
tures hr and hc from Dr and Dc, we substitute hc with
h′
c = hc + hr. In this simple way, the classification branch

can receive abundant polygonal structural information from
the regression branch and make a better prediction of the
textness classification score, resulting in better detection
performance. The related benchmarks and visualizations
are shown in Tab. 2 and Fig. 4, respectively.
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Method Backbone Additional Data
Multi-Oriented Dataset Curved Datasets

ICDAR 2015 MSRA-TD500 Total-Text CTW1500
P R F P R F P R F P R F

Se
gm

en
ta

tio
n-

ba
se

d

TextSnake [14] VGG16 Seg. Mask 84.9 80.4 82.6 83.2 73.9 78.3 82.7 74.5 78.4 67.9 85.3 75.6
CRAFT [1] VGG16 Seg. Mask 89.8 84.3 86.9 88.2 78.2 82.9 87.6 79.9 83.6 86.0 81.1 83.5
PAN [21] Res18 Seg. Mask 84.0 81.9 82.9 84.4 83.8 84.1 89.3 81.0 85.0 86.4 81.2 83.7
DB [11] Res50 Seg. Mask 91.8 83.2 87.3 91.5 79.2 84.9 87.1 82.5 84.7 86.9 80.2 83.4
ContourNet [22] Res50 Seg. Mask 87.6 86.1 86.9 - - - 86.9 83.9 85.4 84.1 83.7 83.9
DRRG [28] VGG16 Seg. Mask 88.5 84.7 86.6 88.1 82.3 85.1 86.5 84.9 85.7 85.9 83.0 84.5
MOST [9] Res50 Seg. Mask 89.1 87.3 88.2 90.4 82.7 86.4 - - - - - -
TextBPN [29] Res50 Seg. Mask - - - 86.6 84.5 85.6 90.7 85.2 87.9 86.5 83.6 85.0
Tang et al. [19] (RBox, Bezier) Res50 Seg. Mask 90.9 87.3 89.1 - - - 90.7 85.7 88.1 88.1 82.4 85.2
RFN [5] Res50 Seg.Mask - - - 88.4 87.8 88.1 - - - - - -
TextBPN++ [27] Res50 Seg. Mask - - - 89.2 85.4 87.3 85.3 91.8 88.5 83.8 87.3 85.5
SRFormer [2] Res50 Seg. Mask, Pos. Label - - - - - - 92.2 87.9 90.0 91.6 87.7 89.6
FreeReal [6] Res50 Seg. Mask, LSVT+ - - 90.0 - - 90.1 - - 88.9 - - 87.9

R
eg

re
ss

io
n-

ba
se

d Raisi et al. [17] Res50 - 89.8 78.3 83.7 90.9 83.8 87.2 - - - - -
TESTR (Polygon) - w/o Rec. Label (Reproduced*) Res50 - 90.9 82.6 86.5 (-3.5) 88.9 82.7 85.7 88.7 82.1 85.3 (-1.6) 88.6 84.2 86.3 (-0.8)
DPText-DETR - w/o Pos. Label (Reproduced*) Res50 - - - - - - - 88.9 83.2 86.0 (-3.0) 89.5 86.3 87.9 (-0.9)
TPD-STR (Ours) - w/o additional data Res50 - 91.1 87.7 89.4 93.0 88.8 90.9 88.0 89.3 88.7 89.4 87.7 88.5
TESTR [30] (Polygon) - w/ Rec. Label (Official) Res50 Rec. Label 90.3 89.7 90.0 - - - 93.4 81.4 86.9 92.0 82.6 87.1
DPText-DETR [25] - w/ Pos. Label (Official) Res50 Pos. Label - - - - - - 91.8 86.4 89.0 91.7 86.2 88.8
DPText-DETR + Ours (DS, PIP) Res50 Pos. Label - - - - - - 89.4 89.0 89.2 90.6 87.5 89.0

Table 1. Quantitative results of scene text detection on ICDAR 2015, MSRA-TD500, Total-Text, and CTW1500. The best results are in
bold. Reproduced* means the result reproduced through learning without additional data such as segmentation masks, text recognition
labels, and point positional labels. Negative numbers in red indicate performance degradation when reproduced without using additional
data. LSVT+ denotes the use of additional pre-training datasets, including the 430K LSVT [18] dataset.

Note that our proposed method propagates information
only from the regression branch to the classification branch.
Therefore, the gradient flow in the opposite direction (from
classification branch to regression branch) is blocked dur-
ing the backpropagation process. If the gradient flows in the
opposite direction, the information of each branch would be
blended through the backprop, and the effect of task separa-
tion (with Decoder Split) may be weakened. We verify this
hypothesis through the result in Tab. 2.

3.4. Point Regression and Textness Classification

In this section, we provide a detailed explanation about
the overall training process. Given a set of ground truth
text polygons Y = {Y 1, · · · , Y M}, each consisting of N
points, i.e. Y i = (yi1, · · · , yiN ), a query P finds its own
match by minimizing the following cost of the Hungarian
algorithm:

Ci(Y
i, Pσ(i)) = λclsFL(bσ(i)) + λcoord

N∑
n=1

∥yin − p
σ(i)
n ∥1 (5)

where FL(x) = −α(1− x)γ log(x) + (1− α)xγ log(1− x). (6)

Here, σ(i) is an injective function that represents bipartite
matching for the i-th ground truth while bj represents the
confidence of textness for the j-th query. Focal loss FL is
adopted from [30] to efficiently handle the classification re-
sult. Although bσ(i) and p

σ(i)
n come from different branches,

they can still be included in Eq. (5) at the same time since
cx and cy are constantly fed to the offset of deformable at-
tention modules from both branches.

Using the Hungarian algorithm, we can obtain a set of
query indices that match to the M ground truths, Ω =
{σ(1), · · · , σ(M)}. Accordingly, we can compute the re-

gression loss of positive instances as below:

Li
reg =

N∑
n=1

∥yin − pσ(i)n ∥1. (7)

Similarly, we can get the textness classification loss using
focal loss, and indices from Ω are utilized as follows:

Lj
cls = −1{j∈Ω}α(1− b̂j)γ log(b̂j)

− 1{j /∈Ω}(1− α)(b̂j)γ log(1− b̂j),
(8)

where 1 is the indicator function, and α and γ are the hy-
perparameters. Finally, the total loss function is defined as
follows:

Ltotal = λreg

M∑
i=1

Li
reg + λcls

K∑
j=1

Lj
cls (9)

where λreg and λcls are the weighting factors for polygo-
nal point regression and textness classification, respectively.
Note that M and K are the numbers of ground truth text
polygons and the number of queries, respectively.

4. Experiments
4.1. Datasets

SynthText 150k is a synthesized text dataset created in
ABCNet [12]. Out of 149,050 images, 94,723 images in-
clude straight text instances, while the remaining 54,327
images contain curved text instances. MLT 2017 [16] is a
multi-lingual (9 languages) and multi-oriented text dataset.
It consists of 7,200 training, 1,800 validation, and 9,000
test images. This dataset exposes the model to characters
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CAS DS PIP Detach ICDAR 2015 MSRA-TD500 Total-Text CTW1500
P R F P R F P R F P R F

- - - - 90.9 82.6 86.5 88.9 82.7 85.7 88.7 82.1 85.3 88.6 84.2 86.3
✓ - - - 91.2 85.3 88.2 91.5 85.1 88.2 89.1 86.5 87.8 89.8 85.5 87.6
✓ - ✓ - 89.9 86.6 88.2 91.9 85.7 88.7 88.3 87.2 87.7 89.0 85.5 87.2
✓ - ✓ ✓ 90.8 85.4 88.0 91.4 85.7 88.5 89.1 86.4 87.7 89.7 85.9 87.8
- ✓ - - 91.1 87.7 89.4 90.6 89.0 89.8 87.9 88.6 88.3 89.1 86.0 87.5
- ✓ ✓ - 90.4 85.7 88.0 93.2 86.4 89.7 87.9 87.2 87.5 86.9 84.8 85.9
- ✓ ✓ ✓ 92.5 86.0 89.2 93.0 88.8 90.9 88.0 89.3 88.7 89.4 87.7 88.5

Table 2. Overall ablation of split architectures and PIP. CAS and DS mean Cross-Attention Split architecture and Decoder Split architecture,
respectively. ‘Detach’ means blocking gradient flows from the classification branch to the regression branch during backpropagation.

with unique appearances. ICDAR 2015 [10] and MSRA-
TD500 [23] are both multi-oriented text datasets. The for-
mer contains 1,000 training and 500 testing images, while
the other contains 300 training and 200 testing images.
Total-Text [4] and CTW1500 [13] are both curved text
datasets. Total-Text includes 1,255 training and 300 testing
images, while CTW1500 includes 1,000 training and 500
testing images.

As in [30], we first pretrain our models with training
images of SynthText 150k, MLT17, and Total-Text. After
that, we train the models with one of ICDAR 2015, MSRA-
TD500, Total-Text, and CTW1500 as a fine-tuning step.

4.2. Implementation Details

In all experiments, ResNet-50 [7] is used as the back-
bone network. The transformer encoder E and decoders
Dc, Dr have 6 layers, and utilize the multi-head deformable
attention with 8 heads, capturing 4 sampling offsets. Text
instances are represented with 100 queries (K = 100) and
each query consists of 16 subqueries (N = 16). We use
ADAMW [15] optimizer with a learning rate of 1 × 10−4

for pre-training, and a learning rate of 1 × 10−5 for fine-
tuning with a batch size of 8. The focal loss parameters α
and γ are set to 0.25 and 2, respectively. λreg is fixed at 5.0
for all experiments, while λcls is determined through hyper-
parameter tuning. We use 4 NVIDIA A100 (80G) GPUs for
training and 1 GPU for testing.

4.3. Comparison with State-of-the-Art Methods

We evaluate the performance of our proposed method on
four standard scene text detection datasets: ICDAR 2015,
MSRA-TD500, Total-Text, and CTW1500, comparing it
against several state-of-the-art (SOTA) methods. As shown
in Tab. 1, our TPD-STR achieves SOTA performance across
all datasets without relying on additional data in regression-
based methods. Notably, our method surpasses spotter-
based models like TESTR, which rely on recognition labels,
especially in curved datasets like Total-Text and CTW1500.
Moreover, it performs exceptionally well without segmen-
tation masks, which are commonly used in other methods.
Even when compared to segmentation-based methods, our
approach demonstrates competitive performance, achieving

DS PIP (w/ Detach) Total-Text CTW1500
P R F P R F

DPText-DETR
(Official) - - 91.8 86.4 89.0 91.7 86.2 88.8

DPText-DETR
(Reproduced)

- - 92.1 85.6 88.7 89.3 88.0 88.6
✓ - 90.2 87.7 89.0 89.6 88.3 88.9
✓ ✓ 89.4 89.0 89.2 90.6 87.5 89.0

Table 3. Results of applying DS and PIP to DPText-DETR, with
all parameters and datasets set identically as the official implemen-
tation.

the best results on MSRA-TD500 with an F-score of 90.9%,
and consistently delivering strong results on ICDAR 2015,
Total-Text, and CTW1500 without the need for extra data.

Additionally, we validate the effectiveness of our DS and
PIP modules by integrating them into an existing method,
DPText-DETR, which uses additional data. Incorporat-
ing our modules leads to performance improvements on
all datasets, as shown in the last block of Tab. 1, with
detailed ablation studies in Tab. 3. These results con-
firm that DS and PIP can be easily integrated into other
methods, offering significant performance gains. Despite
the simplicity of the D-DETR-based structure, our method
achieves SOTA performance across various datasets (curved
and multi-oriented), demonstrating its robustness and versa-
tility.

4.4. Ablation Studies

4.4.1 Split Architectures.

In place of our decoder split architecture, there can be sev-
eral candidates as shown in Fig. 3. Accordingly, we eval-
uate all the candidates for performance comparison. In
Tab. 2, ‘Cross-Attention Split’ (CAS) means an architec-
ture in which only cross-attention is divided in half: polyg-
onal point regression and textness classification module, as
shown in Fig. 3 (b). It has been proposed in DESTR [8], and
shows a comparable performance. ‘Decoder Split (DS)’ is
our proposed architecture using two entirely separate de-
coders for regression and classification tasks, respectively,
as shown in Fig. 3 (c). ‘Baseline’ denotes an architecture
using shared decoders, as shown in Fig. 3 (a) and its detec-
tion score is reported in the first row of Tab. 2. Our method
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Figure 4. Qualitative results for scene text detection on ICDAR 2015, MSRA-TD500, Total-Text, and CTW1500.

(DS) tends to outperform CAS in all datasets in terms of F-
score. It is noticeable that the more separated architecture
within the decoder (DS) generally leads to better perfor-
mance, with the performance order being Baseline ≤ CAS
≤ DS, as shown in the first, second, and fifth rows of Tab. 2.

We believe these results are reasonable because the task
of polygon detection is more complex than that of box de-
tection. Due to the complexity of polygon detection, we
believe that separating decoders for polygonal point regres-
sion and textness classification helps each branch focus
more on its own task.

4.4.2 Overall Ablation and Discussion.

In Tab. 2, an overall ablation study was conducted for each
component we proposed in the previous section.

4.4.3 Information Flow Restriction.

As hypothesized in Sec. 3.3, blocking gradient propagation
(Detach) between the classification and regression branches
stabilizes the model by focusing the regression branch on
localization, while the propagated positional information
improves textness prediction in the classification branch.
The last two rows in Tab. 2 validate this hypothesis.

4.4.4 Split Architectures and PIP.

As demonstrated in Tab. 2, the Decoder Split architec-
ture combined with PIP regularly outperforms the Cross-
Attention Split architecture across all datasets. Notably,
PIP shows a more significant impact when paired with De-
coder Split on datasets like MSRA-TD500, Total-Text, and
CTW1500, highlighting the importance of task separation
in leveraging positional information effectively.

In ICDAR 2015, where text instances are typically
smaller, the Decoder Split proves particularly effective, but
the benefits of PIP are less pronounced due to the limited
ability to fully exploit positional information, as shown in
Fig. 4 (a). This suggests that Decoder Split alone is bet-
ter suited for small text detection, while the combination
of Decoder Split and PIP excels in handling multi-oriented,
curved and larger text instances, such as those in MSRA-
TD500, Total-Text, and CTW1500.

4.4.5 Effects of Modules on Different Datasets.

As shown in Tab. 2, Decoder Split (DS) improves F-score
by 2.9%p in ICDAR 2015, while PIP (with detach) shows
a greater impact on Total-Text (3.4%p) and CTW1500
(2.2%p). In MSRA-TD500, DS achieves a 4.1%p increase,
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with the combination of DS and PIP further boosting it to
5.2%p, indicating that PIP is beneficial for both curved and
multi-oriented datasets.

These differences are attributed to dataset characteristics.
For example, ICDAR 2015, with its small text instances,
sees less impact from PIP, whereas MSRA-TD500 benefits
from both DS and PIP, as it contains larger text and multi-
oriented structures. This shows that PIP is especially ef-
fective for datasets containing larger or curved text, such as
MSRA-TD500, Total-Text, and CTW1500.

4.4.6 Pluggability of DS and PIP.

To assess the pluggability of our proposed DS and PIP mod-
ules, we integrated them into DPText-DETR [25], a D-
DETR-based text detector. We kept all the parameters and
datasets identical to the official implementation, except for
those required for the operation of the DS and PIP modules.
As shown in Tab. 3, our method achieves better performance
across all datasets when applied to DPText-DETR. Notably,
although the best performance reported by DPText-DETR
could not be fully reproduced (compare the first two rows
in Tab. 3), our results represent the state-of-the-art perfor-
mance among regression-based methods, as indicated in
Tab. 1. However, since DPText-DETR uses additional data,
we reported the results in the last block for a fair compari-
son in Tab. 1. These results demonstrate the flexibility and
effectiveness of our proposed modules for improving the
performance of existing text detectors.

4.5. Qualitative Results

4.5.1 Detection Performance.

We visualize scene text detection results for multi-oriented
and curved text instances from ICDAR 2015, MSRA-
TD500, Total-Text, and CTW1500. To highlight the im-
provement, we compare them with results from the base-
line model (shared decoder in Fig. 3), which achieves F-
scores of 86.5%, 85.7%, 85.3%, and 86.3%, respectively.
As shown in Fig. 4, both models regress the boundaries
of multi-oriented and curved text. However, the baseline
struggles to detect blurry and small text in ICDAR 2015,
while our method successfully detects them. Similarly, for
MSRA-TD500, the baseline misses some smaller or less
prominent instances, whereas our method accurately iden-
tifies them. In Total-Text and CTW1500, the baseline en-
counters difficulties with curved text due to lower confi-
dence, but our method consistently detects all instances. By
separating regression and classification tasks, our method
exhibits greater robustness, particularly in handling both
multi-oriented and curved text, as seen in MSRA-TD500,
Total-Text, and CTW1500.

Figure 5. Visualization of deformable attention of the last layer
in decoders. Baseline has a single composite decoder conducting
regression and classification (reg + cls). Our method has two de-
coders for regression (reg) and classification (cls). A darker color
implies a stronger attention value.

4.5.2 Attention Visualization.

We utilize deformable attention from D-DETR [32] to ef-
fectively handle multi-scaled text instances. This enables us
to visualize the sampling locations and attention weights in
the final layer of the transformer decoder for both branches,
as shown in Fig. 5, where we compare them with the base-
line model. In our method, the sampling locations for reg
are more densely distributed along the text boundaries than
in the baseline, and the attention intensity is more dispersed,
clearly distinguishing text from non-text instances. Interest-
ingly, the sampling locations for cls are coarser and more
widely spread compared to the regression branch, highlight-
ing how the two tasks perceive text context differently.

5. Conclusion
Our proposed method, TPD-STR, achieves state-of-the-

art performance among regression-based methods across all
benchmark datasets without requiring additional data, such
as positional labels or segmentation maps. It also delivers
competitive performance, achieving SOTA on MSRA-
TD500, against segmentation-based methods. The Decoder
Split (DS) architecture separates the tasks of polygonal
point regression and textness classification, while the
Positional Information Propagation (PIP) module improves
classification by transferring geometric information. Unlike
other methods that degrade without extra data, TPD-STR
consistently delivers strong performance, and both DS
and PIP can be easily integrated into other models. We
believe TPD-STR has strong potential for practical applica-
tions in scene text detection without additional labeled data.
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