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Figure 1. Tumor synthesis results with proposed method. The image displays 2D planes of a volumetric image, with each plane labeled at

the bottom left. The x-y plane illustrates the axial view, while the z-y plane depicts the sagittal view. First row: Original images, second

row: Images with changed tumor texture, third row: Images with tumors removed, fourth row: Images with changed tumor shape and size.

Abstract

Due to privacy concerns, obtaining large datasets is chal-
lenging in medical image analysis, especially with 3D
modalities like Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI). Existing generative models, de-
veloped to address this issue, often face limitations in out-
put diversity and thus cannot accurately represent 3D med-
ical images. We propose a tumor-generation model that
utilizes radiomics features as generative conditions. Ra-
diomics features are high-dimensional handcrafted seman-
tic features that are biologically well-grounded and thus are
good candidates for conditioning. Our model employs a
GAN-based model to generate tumor masks and a diffusion-
based approach to generate tumor texture conditioned on
radiomics features. Our method allows the user to gen-
erate tumor images according to user-specified radiomics
features such as size, shape, and texture at an arbitrary lo-

cation. This enables the physicians to easily visualize tumor
images to better understand tumors according to changing
radiomics features. Our approach allows for the removal,
manipulation, and repositioning of tumors, generating var-
ious tumor types in different scenarios. The model has
been tested on tumors in four different organs (kidney, lung,
breast, and brain) across CT and MRI. The synthesized im-
ages are shown to effectively aid in training for downstream
tasks and their authenticity was also evaluated through ex-
pert evaluations. Our method has potential usage in treat-
ment planning with diverse synthesized tumors. Our code is
available at github.com/jongdory/TS-Radiomics.
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1. Introduction
In medical image analysis, obtaining large datasets can

be challenging due to privacy concerns [49,57]. To mitigate

this, extensive research has been conducted on data aug-

mentation based on generative models [10, 45, 55]. Train-

ing generative models, particularly those based on Gener-

ative Adversarial Networks (GANs) [18], faces significant

challenges, including difficulty in model stability and in-

terpretability of results in terms of their medical relevance.

A notable issue with GANs is mode collapse, leading to

a limited variety of outputs and reduced image diversity,

which is particularly problematic in medical settings where

accurate representation is vital. These challenges are further

heightened with 3D medical images, requiring more exten-

sive training samples for effective model training.

Early detection and prognosis diagnosis of tumors are

important. Medical imaging, such as Computed Tomogra-

phy (CT) and Magnetic Resonance Imaging (MRI), plays

a pivotal role in the detection, diagnosis, staging, treatment

response monitoring, and recurrence monitoring of tumors

[11, 26]. Radiologists can use medical imaging to under-

stand a patient’s condition and help select the best treatment

method. However, visually evaluating tumors is subjective

and can often miss subtle information due to the difficulty

in recognizing fine textures or patterns [8, 40].

Radiomics is the method of extracting hundreds to thou-

sands of handcrafted semantic features from routine medi-

cal images, enabling quantitative analysis of subtle changes

and complex patterns [2, 17, 36]. These features are based

on the shape, pixel value distribution, texture, and other pat-

terns of the region of interest. Radiomics extracts mean-

ingful information in medical scenarios such as cancer di-

agnosis, prognosis, and treatment response prediction for

various organs and scanners [36, 39]. With proven medi-

cal efficacy, radiomics features are considered biologically

well grounded [65] and thus could be rich bases for tumor

generation. This provides deep insights that are challeng-

ing to obtain through traditional manual analysis and can

complement the judgments of clinicians [22, 33, 36]. How-

ever, some radiomics features such as complex texture are

non-intuitive and challenge medical experts to grasp their

significance.

We propose a tumor image generation model con-

ditioned on radiomics features, leveraging the recent

diffusion-based generative models [20, 37, 51] and condi-

tioning techniques through the cross-attention mechanism

[68]. We demonstrate the ability to generate desired tumor

images by adjusting low-dimensional radiomics features.

This process involves manipulating intuitive radiomics fea-

tures such as size to produce 3D tumor images. By convert-

ing radiomics features into images, we can provide visual

insights. Furthermore, since our approach creates images

through adjustable radiomics features, the rationale behind

the outcomes for generation is clear. Our model facilitates

the simulation of tumor characteristics, including location,

size, shape, and texture in 3D medical imaging, enabling

the creation of diverse and rare samples as needed. Vali-

dated through experiments on tumors in four different or-

gans, it also allows for the generation of tumors with ad-

justable shapes and textures, as depicted in Figure 1. Our

model might have future usage in treatment planning and

prognosis prediction with diverse synthesized tumors lead-

ing to better personalized treatment options.

Contribution:

• We suggest a tumor shape generator that uses a con-

ditional GAN-based model using shape features and a

tumor texture generator based on the Diffusion model

to alter the texture of the tumor.

• We enable tumor synthesis through adjustable ra-

diomics features. We propose a diffusion-based model

capable of erasing tumors, changing their texture, and

manipulating their shape, offering a more comprehen-

sive approach to tumor analysis and simulation.

• We have validated our generative model on tumors

across four different organs using CT and MRI im-

ages, demonstrating our model’s effectiveness through

visual results.

• The synthesized images have been useful in aiding

downstream tasks and deemed realistic according to

expert evaluations.

2. Related Work and Backgrounds
Generative Adversarial Networks are generative models

with a structure where a generator and a discriminator learn

through competition [18, 29]. With the enhancement in

sampling quality and diversity of GANs, they have been

deployed across various computer vision applications such

as text-to-image synthesis [50, 64, 72, 76], image-to-image

translation [12, 23, 25, 35, 75], and image editing [46, 78].

They have rapidly advanced image generation and led to

various applications across different domains. They have

also been studied in medical image analysis to solve vari-

ous problems. [12, 35, 75]. For instance, GANs have been

utilized for image translation, converting MRI to CT or PET

images [7, 13], or facilitating modality transitions within

MRIs [12, 35, 75]. Moreover, they have been employed in

denoising low-dose CT images to enhance the quality [38].

Given the typical scarcity of data in medical image do-

mains, traditional training can be challenging. However,

research using GANs to augment data in medical imaging

has shown that training with the generated data can improve

performance [10,55]. Additionally, there are studies on syn-

thesizing tumors in 2D images using radiomics features in

GANs [45]. Nonetheless, GANs can have unstable learning

phases and issues like mode collapse, leading to generating

specific data only [56, 62].
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Figure 2. The pipeline of the proposed method. (a) Radiomics feature extraction illustrates the extraction of shape, histogram, and texture

features from 3D image and tumor mask. (b) Shape generator depicts training a GAN-based model conditioned on shape features to

generate a tumor mask. (c) Image compression into latents using VQ-GAN. (d) Texture generator demonstrates overlaying the generated

mask from (b) onto a 3D image to create a masked latent and training a diffusion-based model conditioned on texture features to generate

a tumor latent, illustrating the transition from masked domain A to tumor domain B.

Diffusion probabilistic models (DPMs) [20, 59, 61] aim

to learn the diffusion process that generates the probability

distribution of a given dataset. Unlike GANs, DPMs are

known for converging well even with fewer hyperparame-

ters and for producing sharp and detailed images [73]. They

have been applied in various domains including text-to-

image [48, 51, 77], image-to-image [32, 37, 53, 77], text-to-

video [58, 70], data augmentation [16, 66], super-resolution

[21,54,79], image inpainting and outpainting [41,51,53,77].

Additionally, they have been utilized in the medical do-

main for various task-specific tasks such as generation, seg-

mentation, translation, anomaly detection, and registration

[30–32, 44, 47, 69, 71]. The Latent Diffusion Model (LDM)

[51] uses the latent space for high-resolution image genera-

tion with efficient computation compared to traditional dif-

fusion models. It utilizes the Vector Quantized GAN (VQ-

GAN) [15] to effectively quantize and compress the latent

space, aiding in representing and manipulating image fea-

tures. LDM has shown potential in various image synthesis

tasks, demonstrating its ability to handle diverse generation

tasks efficiently [9, 27, 47, 51].

Brownian Bridge Diffusion Model (BBDM) assumes the

diffusion process as a probabilistic Brownian bridge process

in image-to-image translation tasks [37]. By constructing a

direct mapping between the source and target domains, it

provides a potentially more efficient and generalized model

for image-to-image translation tasks, showcasing its appli-

cability across a range of domains. In BBDM, Given the

source domain x0 and target domain y, the forward process

is defined as:

q(xt|x0,y) = N (xt; (1−mt)x0 +mty, δtI) (1)

, where mt = t
T with T representing the total steps of the

diffusion process and δt is a fixed variance. The intermedi-

ate state xt is defined in a discrete form as follows:

xt = (1−mt)x0 +mty +
√

δtεt (2)

, where εt ∼ N (0, I) is the Gaussian noise. Then, BBDM

is trained to approximate the reverse process:

pθ(xt−1|xt, y) = N (xt−1;μθ(xt,y, t), δ̃tI) (3)

, where μθ(xt, t) represents the predicted mean value of the

noise and δ̃t denotes the variance of noise at each step. μt

is a mean parameterized by the noise predictor εθ:

μθ(xt,y, t) = cxtxt + cyty + cεtεθ(xt, t) (4)

, where cxt, cyt, cεt are constants varying with respect to

time step t. In the translation process, the sample can be

obtained from the Gaussian noise by iterative reverse pro-

cess: xt−1 = μθ(xt,y, t) +
√
δ̃tz, where z ∼ N (0, 1)

In this study, we utilize radiomics texture features as con-

ditioning in the BBDM to perform the translation task from

tumor-masked images to tumor images.
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Figure 3. Two generation paths within the texture generator. Blue

path: the tumor synthesis path, where texture features are used

as key and value for cross-attention, generating the synthesized

tumor image. Red path: tumor removal path, where self-attention

is performed to generate the removed tumor image.

3. Method
We generate tumor images by utilizing radiomics fea-

tures extracted using the tumor mask and the underlying

3D medical images. The entire pipeline of our proposed

method is depicted in Figure 2. To effectively synthesize

tumors, we generate the shape and texture separately. The

shape generator and texture generator are trained indepen-

dently. First, the shape is generated and masked onto the

desired image location, then the texture is generated using

radiomics features. For normal tissue generation, the tumor

area is masked out, and the texture is generated without us-

ing radiomics features. Details on the shape generator are

in Section 3.1, and the texture generator in Section 3.2.

3.1. Tumor Shape Generator

We employed a GigaGAN [28] with cross-attention [68]

for our shape generator, adapting it to a 3D method. We

use radiomics features rather than text for feature-to-image

generation, focusing on shape-feature conditioning. Since

shape masks are relatively easy to generate, we used a sim-

ple GAN instead of a complex diffusion model. Traditional

convolution filters are limited to their receptive fields [3]

and this limitation is significant in the context of tumor

shape, where features like volume, surface area, spheric-

ity, and diameter are influenced by long-range relationships.

Therefore, integrating these relationships using attention

layers is essential. We utilize self-attention to assimilate

long-range relationships and cross-attention to enable the

generation of tumor shapes with texture features, as de-

picted in Figure 2 (b). Our shape generator G, generates

the shape M, in conjunction with a latent z ∼ N (0, 1), and

shape feature rsh.

M = G(z, rsh) (5)

, where shape is M ∈ R
H×W×D and shape feature is

rsh ∈ R
dsh . We can obtain a masked image IM by ap-

plying a mask at the desired location for tumor generation

using shape M.

3.2. Tumor Texture Generator
In contrast to the shape generator, to create complex tu-

mor texture patterns in 3D medical images like CT and

MRI, we use BBDM [37], which applies a Brownian Bridge

process to a diffusion model. This generates texture from

the masked image to synthesize the tumor image. Un-

like DDPM, which generates the target image from noise,

BBDM is specialized for Image-to-Image translation, gen-

erating the target domain image from a source domain im-

age. We employ this to translate from the masked domain

A to the tumor domain B, as illustrated in Figure 2 (d). Due

to the large dimensions of the original 3D volume, we use

image compression with VQ-GAN [15, 51] and then con-

ducted the diffusion process in the latent space, as shown in

Figure 2 (c). Similar to previous studies [20, 37], we utilize

time conditioning UNet [20, 52] εθ as the backbone. We

enable the generation of tumor images corresponding to the

given texture condition by utilizing texture features. We fol-

low the standard training object for BBDM and use texture

feature rtx as conditioning:

Ex0,y,ε[cεt||mt(y − x0) +
√

δtε− εθ(xt, t, rtx)||2]. (6)

To allow more flexibility in adjusting tumors, we train both

tumor synthesis and tumor removal simultaneously. This

method uses self-attention when texture features are not

provided as conditions and switches to cross-attention when

texture conditions are provided. This approach not only

helps the model learn the characteristics of surrounding the

organ but also eliminates the need to train separate mod-

els for tumor generation and removal. This process is il-

lustrated in Figure 3. Similar to previous studies [51],

the conditioning mechanisms through cross-attention in the

intermediate layers of the UNet are defined as follows:

Attention(Q,K, V ) = softmax(QKT

√
d

· V ) with

Q = W
(i)
Q · q,K = W

(i)
K · k, V = W

(i)
V · v (7)

, where W
(i)
Q ∈ R

d×di
q ,W

(i)
K ∈ R

d×di
k and W

(i)
V ∈ R

d×di
v

are learnable projection matrices. q, k, v depend on the ex-

istence of an input texture feature rtx:{
q = ϕi(zt), k, v = rtx if rtx is given,

q, k, v = ϕi(zt) otherwise
(8)

, where ϕi(zt) ∈ R
N×di

ε denotes an intermediate repre-

sentation of the UNet implementing εθ. Therefore, when

texture features are not provided, we can reconstruct the

masked area and by utilizing this, we can also remove the

tumor, allowing for flexible alteration of the tumor shape.

When training the tumor removal path, it creates a masked

image by randomly applying a mask to an area that does not

overlap with the existing tumor location. During inference

for tumor removal, the tumor area is masked by the user-

provided mask and then removed via the removal path. For
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Figure 4. Qualitative results of the Baseline on four organs. This displays the outcomes of each model performing two tasks. Synthesis:

presents the tumor synthesis result in the given mask when provided with radiomics texture features. Removal: shows the result after

removing the tumor corresponding to the mask. In breast, red: peri-tumor, yellow: tumor. In brain, red: necrosis, yellow: enhancing tumor.

tumor synthesis, the normal area is masked by the synthe-

sized mask from the shape generator and texture features are

provided as input to synthesize the tumor through the syn-

thesis path. For detailed training and inference processes,

please refer to Algorithms 1, 2 and 3 of supplementary.

4. Experiments
Datasets. To substantiate the effectiveness of our method,

we validated tumor synthesis performance across two

modalities and four organs. The kidneys and lungs were

examined using CT data with the kidney data derived from

the KiTS23 [19] and the lung data from the NSCLS [1]. For

the breast and brain, MRI data were utilized with the breast

data coming from a private dataset and the brain data from

the BraTS2021 [5, 6, 42]. We allocated 80% of all datasets

for training and 20% for testing. Details of the datasets are

available in the Sec. A of supplementary.

Models and hyperparameters. Our tumor shape generator

is built upon GigaGAN [28], while the tumor texture gener-

ator is based on BBDM [37]. Due to the large dimensions

of 3D volumes and the consequent high computational cost,

we employ VQGAN [15] to compress and reduce the model

size. BBDM consists of two components: a pretrained VQ-

GAN and a Brownian Bridge diffusion model. The VQ-

GAN is later utilized as a comparative model, employing

the same model as the Latent Diffusion Model used in sub-

sequent comparisons. During the training stage, the number

of time steps for the Brownian Bridge was set to 1000, while

in the inference stage, 200 sampling steps were used. The

implementation was done using PyTorch1 and MONAI2 li-

1https://pytorch.org/
2https://monai.io/

braries. We train the network by using the Adam [34] opti-

mizer with a learning rate of 5 × 10−6. Training was con-

ducted on four A100 80GB GPUs with a batch size of 1

per GPU. For details on the model architecture and hyper-

parameters, refer to the Sec. B of supplementary.

Baseline Methods and Metrics. To our knowledge, there

has not been much previous research that used radiomics

features to create tumors for 3D images. Therefore, to sub-

stantiate the efficiency of our tumor texture generator, we

compare ours with two baselines: one based on GAN and

the other on LDM. The GAN-based model is adapted by

modifying the 3D image translation model Ea-GAN [75]

(based on pix2pix [25]), with the addition of cross-attention

for conditioning radiomics. All the baselines we used in the

experiment, as well as our method, are 3D methods using

radiomics conditioning. For tumor generation, all texture

generators used the same shape generator, and in the case of

LDM, the same image compression method as BBDM was

used. We employed Peak Signal-to-Noise Ratio (PSNR)

and the Structural Similarity Index Measure (SSIM), com-

monly used quantitative evaluations in medical image gen-

eration, to assess the quality of image synthesis [74]. Since

the radiomics features can significantly change based on the

preprocessing and normalization of the given modality, we

assessed whether the features of generated images match

the original radiomics features given as conditions by mea-

suring the Pearson and Spearman correlation coefficient.

5. Results

Results of Comparison Method: To demonstrate the ef-

fectiveness of our method, we compared its generative per-

formance on a test set against that of the baselines. We con-
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Task (a) Tumor Synthesis (b) Tumor Removal

Model GAN LDM Ours GAN LDM Ours

Organ (Modality) PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Kidney (CT) 25.62 0.6962 30.57 0.8829 33.95∗ 0.9346∗ 25.88 0.6985 31.02 0.8877 34.16∗ 0.9370∗

Lung (CT) 23.10 0.6628 29.35 0.9287 32.68∗ 0.9471∗ 23.61 0.6704 28.42 0.9205 32.81∗ 0.9484∗

Breast (MRI) 23.44 0.6420 29.51 0.8726 31.85∗ 0.9177∗ 24.04 0.6516 29.86 0.8741 32.07∗ 0.9193∗

Brain (MRI) 30.17 0.9038 35.83 0.9616 36.67∗ 0.9634∗ 29.59 0.8943 35.91 0.9609 37.24∗ 0.9681∗

∗p-value < 0.05 comparing two best results

Table 1. Quantitative comparison results for four organs and two modalities were measured using PSNR and SSIM.

Model GAN LDM Ours

Organ PCC ↑ SCC ↑ PCC ↑ SCC ↑ PCC ↑ SCC ↑
Kidney 0.553 0.587 0.793 0.818 0.829∗ 0.865∗

Lung 0.591 0.624 0.759 0.827 0.801∗ 0.859∗

Breast 0.610 0.657 0.828 0.810 0.852∗ 0.851∗

Brain 0.645 0.672 0.849 0.883 0.864∗ 0.906∗

∗p-value < 0.05 comparing two best results

Table 2. Correlation between conditioned texture features rtx
and the texture features extracted from generated images.

Metric Model Kidney Lung Breast Brain Avg.

Pearson Corr.
GAN 0.937 0.928 0.893 0.902 0.915

BBDM 0.925 0.933 0.913 0.905 0.919

Spearman Corr.
GAN 0.954 0.941 0.907 0.916 0.930

BBDM 0.932 0.939 0.924 0.921 0.929

Table 3. Correlation between conditioned shape features rsh
and the shape features extracted from generated tumor masks.

ducted both qualitative and quantitative evaluations. The

results of the qualitative assessment are depicted in Figure

4. Each model performed tumor synthesis and tumor re-

moval tasks simultaneously through cross-attention mecha-

nisms. GAN-based model struggled to produce natural de-

pictions for both tasks. This is largely due to the difficulty

of obtaining ample data in the medical imaging field and the

challenge of dealing with 3D images, which prevented the

GAN-based model from generating high-quality images in

both tasks across organs. However, models based on dif-

fusion processes could generate good-quality images that

closely resembled the real images. Additionally, the BBDM

performed the tumor removal task quite naturally, especially

in comparison to the LDM. The quantitative evaluation re-

sults for each baseline are in Table 1. Consistent with the

qualitative assessment, the BBDM exhibits the best perfor-

mance in generating images for all organs.

We also evaluated how well the generated images reflect

the given radiomics features used as conditions. We re-

extracted the radiomics features from the generated images

and conducted a correlation comparison with the radiomics

features provided as conditions. Table 2 shows the correla-

tions between the original texture feature and the extracted

texture features from the images generated by each base-

line. We observed that the fidelity in terms of correlation

of reproducing radiomics features was relatively higher in

MRI images, with the highest fidelity occurring in the brain.

Volume

Sp
he
ric
ity

Figure 5. The results of the Tumor Shape Generator for breast.

The tumors are conditioned by shape features. Volume denotes

the size of the tumor, increasing from left to right. Spheric-

ity refers to the degree to which the shape approaches that of a

sphere, assessed from top to bottom.

Moreover, the degree of reproduction was somewhat lower

in CT images compared to MRI, possibly because tumor

regions in CT are generally more ambiguous.

Manipulation of Tumor Shape: We generated 3D tumor

masks with the appropriate conditions using shape features

in the tumor shape generator. We quantitatively assessed

the generated tumor masks by comparing the shape feature

values of the ground truth with those of the generated tu-

mor masks using correlations. Table 3 shows the correla-

tions between the original shape feature and the extracted

shape features from the tumor mask generated by the shape

generator. This demonstrates that the generation process ac-

curately integrated the shape features showing that there is

little difference in performance between GAN and BBDM

for shape generation. It also proves that even a simple GAN

is sufficient for effective modeling. The shape features used

are specified in Sec. C of the supplementary.

We attempted to create tumors by adjusting the intuitive

radiomics features of volume and sphericity. Figure 5 shows

the results of the tumors generated by manipulating these

two features, presented through 3D rendering. The out-

comes indicate that our shape generator has successfully

reflected the shape features in creating the tumor masks.
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Therefore, this suggests that we can generate tumor masks

of desired shapes by controlling the intuitive shape features.

In our study, we adjusted the volume size in the shape

feature to generate tumor masks of different sizes. We then

used these tumor masks to simulate changes based on tumor

volume size. This experiment is depicted in Figure 6. Our

proposed method not only generates tumors in a remarkably

natural manner but also demonstrates the ability to simulate

according to the volume size. Additionally, it shows that

even as the volume size increases, the original texture is

accurately reflected in the tumor generation as shown by

correlation values over 0.8.

Change Tumor Texture: To verify if our proposed method

accurately reflects texture features in tumor generation, we

conducted experiments by generating tumors using texture

features from different samples. That is, we replaced the

original texture features of one subject with those of an-

other subject. This experiment is depicted in Figure 7. To

check how well the given texture is replicated, we extracted

texture features from the generated image in the mask and

compared their correlation with the features provided as

conditions. The quantitative metrics shown in the figure in-

dicate that the texture features were well-replicated in the

generation process (correlation > 0.8). This demonstrates

that our model is capable of accurately reflecting even sub-

tle textures that are not easily noticeable.

Change Tumor Position: We conducted experiments on tu-

mor generation by altering the shape and position of tumors,

depicted in Figure 8. Tumors were generated in the normal

brain without tumors and they were successfully created ac-

cording to the specified shapes and positions. Our results

show that our model can generate tumors of various shapes

at different locations in an organ, without any constraints

on position and shape. This highlights the potential for gen-

erating and utilizing a wider variety of samples in medical

imaging, where data is often scarce.

Validation in a Downstream Task. We tested our genera-

tive model’s effectiveness for downstream tasks by training

a standard segmentation model with tumor-synthesized im-

ages to see if there was an improvement. The results are

detailed in Table 4. We trained the baseline segmentation

model, nnU-Net [24], and compared it across two tasks. In
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Figure 8. Results of tumor generation in the brain with various

shapes and positions. The vertical axis represents different shapes,

while the horizontal axis depicts various positions. The upper left

indicates the original normal brain.

Region Brain Tumor

Model ET TC All

nnU-Net [24] 0.9073±0.176 0.7641±0.301 0.8357±0.256

nnU-Net (+Aug) 0.9113±0.166∗ 0.7758±0.294∗ 0.8435±0.256∗

Region Breast Tumor

Model Peri-Tumor Tumor All

nnU-Net [24] 0.8563±0.043 0.8633±0.048 0.8598±0.046

nnU-Net (+Aug) 0.8753±0.031∗ 0.8828±0.032∗ 0.8791±0.031∗

∗p-value < 0.05

Table 4. Performance comparison between the baseline mod-

els and the model trained with additional synthesized images for

downstream tasks of brain and breast tumor segmentation. Perfor-

mance metrics include DICE scores.

the brain tumor segmentation task, the baseline was trained

with images from 1000 subjects, while another model was

trained with an additional 1000 synthesized images for a to-

tal of 2000 images. In the breast tumor segmentation task,

the baseline learned from 88 subject images, and a compar-

ative model was trained with an additional 88 synthesized

images, totaling 176 images. Brain tumor segmentation typ-

ically occurs in a multimodal setting. Since training was

conducted solely with the T1ce modality, samples where the

brain tumor is not clearly visible in T1ce present challenges

for tumor detection, leading to a larger standard deviation

in performance. The results showed a clear performance

improvement when training with additional synthesized im-

ages, notably a larger boost in the less data-abundant breast

tumor case than in brain tumors with more baseline data.

This suggests that our method can significantly enhance

model performance through augmentation, especially in sit-

uations with scarce or imbalanced datasets, highlighting its

utility in augmenting models particularly when normal pa-

tient data outnumber abnormal cases.

Real Synthesis

Figure 9. Illustration of real and synthesized images used for ex-

pert evaluation.

Experts #1 #2 Avg

Real vs. Synthesis Acc 55% 60% 57.5%

Table 5. Evaluation by two experts on real vs synthesized images.

Qualitative Evaluation by Experts. To verify the authen-

ticity of synthesized images, we conducted expert evalu-

ations by board-certified radiologists on 20 subjects. As

depicted in Figure 9, experts were tasked with identifying

real images from a mix of real and synthesized ones. This

process assessed how convincingly the generated images

mimic real ones. The results are detailed in Table 5. These

findings indicate that our model can produce images of such

quality that even an expert would find it difficult to distin-

guish them from the real ones. Additional results of gener-

ating rare samples are in the Sec. D of supplementary.

6. Discussion
Limitations: In the case of tumors, there can be related

changes in the tissues surrounding the tumor [4,14]. For in-

stance, edema can occur around a brain tumor [6,63]. More-

over, as a tumor grows, it also can push and distort the sur-

rounding tissue [43]. In our experiment, we did not include

such surrounding areas, which may limit the natural gen-

eration of tumors. Additionally, because we use radiomics

features extracted from a single dataset for a given organ

and modality, the learned distribution could be insufficient

leading to degraded generalization on unseen data.

Potential: If it becomes possible to generate tumors of de-

sired shapes and locations with desired textures, this would

enable various simulations crucial for providing personal-

ized treatment plans for tumor treatment. For instance, we

could simulate scenarios of disease progression using simu-

lated tumor images under an established prognosis model

and possibly direct patients to alternative treatments. In

short, our technology allows for simulations that assess

risks based on the shape, texture, and position of the tumor.

7. Conclusion
In this study, we demonstrate the ability to synthesize

3D tumor images using a diffusion model conditioned on

biologically grounded radiomics features. This generation

capability not only enables appropriate data augmentation

in medical imaging where data are scarce but also serves as

a tool for simulating data for personalized treatment plans.
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