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Abstract

A robust anomaly detection mechanism should possess
the capability to effectively remediate anomalies, restoring
them to a healthy state, while preserving essential healthy
information. Despite the efficacy of existing generative
models in learning the underlying distribution of healthy
reference data, they face primary challenges when it comes
to efficiently repair larger anomalies or anomalies situated
near high pixel-density regions. In this paper, we intro-
duce a self-supervised anomaly detection method based on
a diffusion model that samples from multi-frequency, four-
dimensional simplex noise and makes predictions using
our proposed Dynamic Transformer UNet (DTUNet). This
simplex-based noise function helps address primary prob-
lems to some extent and is scalable for three-dimensional
and colored images. In the evolution of ViT, our devel-
oped architecture serving as the backbone for the diffusion
model, is tailored to treat time and noise image patches as
tokens. We incorporate long skip connections bridging the
shallow and deep layers, along with smaller skip connec-
tions within these layers. Furthermore, we integrate a par-
tial diffusion Markov process, which reduces sampling time,
thus enhancing scalability. Our method surpasses existing
generative-based anomaly detection methods across three
diverse datasets, which include BrainMRI, Brats2021, and
the MVtec dataset. It achieves an average improvement of
+10.1% in Dice coefficient, +10.4% in IOU, and +9.6%
in AUC. Our source code is made publicly available on
Github.

Keywords: Anomaly Detection, Self-Supervised Learning,
Diffusion models, UNet, Noise function.

sudiptal.roy@jioinstitute.edu.in

1. Introduction

The scarcity of experts with the ability to diagnose and
treat specific medical conditions is a pressing concern in de-
veloping countries [14]. To illustrate, consider the ratio of
dermatologists to the general population, which can plum-
met to as low as 1 per 216,000 people [10]. This motivation
fuels the development of a deep learning system with the
ability to localize diseases and thereby prevent misdiagnosis
or underdiagnosis [7,20]. Nonetheless, employing super-
vised learning models poses notable challenges due to the
substantial amount of annotated data they necessitate, mak-
ing the acquisition process expensive and time-consuming.
Self-supervised anomaly detection is a powerful deep learn-
ing algorithm that trains on healthy or normal inference data
which is used as a threshold for anomalies. The primary as-
pect of these algorithms is to address unhealthy or abnormal
regions, followed by the calculation of the target anomaly
using the difference of squares. When it comes to diverse
anatomy, anomaly patterns, and distribution shifts [15], im-
age data, especially medical image data, can be quite com-
plex. Generative models have demonstrated their potency
in self-supervised representation learning of the underlying
distribution, particularly in the context of healthy inference
data [14,31,46,49]. Denoising diffusion probabilistic mod-
els (DDPMs) [17] have demonstrated remarkable effective-
ness in self-supervised representation learning and are capa-
ble of generating samples even from complex data distribu-
tions with superior convergence, as compared to generative
adversarial networks (GANSs) and variational autoencoders
(VAES5) [5,46]. The DDPM consists of two steps: a forward
noise injection step and a backward denoising step. In the
forward step, noise is injected from a N (0, I) distribution,
while the denoising backward step stochastically transforms
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(a) Detection of complex distribution anomalies without relying on an-
notations. It detects both big and small anomalies, even those situated
near high-intensity regions, challenging existing methods.
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(b) Anomaly repair partial diffusion processes with Tsimplex (Our)
and Gauss noise, where A1 and \g represent intermediate steps in the
forward process, while )\/1 and >\/2 indicate diffusion steps in the back-
ward process. Tsimplex noise recovers the anomaly over Gauss.

Figure 1. Our partial diffusion model (400/1000) trained on
healthy reference data for anomaly detection in a self-supervised.

the samples from a Gaussian distribution onto a learned data
distribution. We employ this approach to train DDPM on
healthy reference data, which maps anomaly data onto the
healthy distribution through a diffusion process but Gaus-
sian noise at each diffusion step is not able to recover the
anomaly, and that results in unrepaired anomaly (see Figure
1). Gaussian noise has a constant power spectral density,
meaning it has equal power across all frequencies which
makes it "white” noise. Simplex noise [30] is used for tasks
such as procedural terrain generation, texture synthesis, and
creating natural-looking patterns like clouds or marble tex-
tures. However, models trained based on simplex noise have
a few disadvantages, including a decrease in sample quality,
particularly when subjected to higher noise levels (a further
t value). These models also struggle to repair anomalies
situated near other high-frequency information (See Figure

la), and they exhibit limited exploration capabilities, espe-
cially in the context of complex and high-dimensional sim-
plex noise, which affects their focus on tasks like process-
ing colored and higher dimension images. Moreover, the
model was trained using a batch size (bs) of one due to the
time complexity, which scales as O(bs x t), where ¢ repre-
sents the time required to sample an image of size (H, W).
This motivation led us to address these challenges, result-
ing in the development of a four-dimensional simplex noise
function capable of generating noise for colored and higher-
dimension images while maintaining the same processing
time for batched images. Additionally, Vision Transform-
ers (ViTs) integrated into UNet architectures offer signifi-
cant advantages over other models for image generation, in-
cluding enhanced efficiency, versatility, and robustness [3].
However, ViTs encounter challenges with spatial relevance
and weak channel representation, crucial for accurate image
recognition and generation [26]. To address these issues, we
introduce DTU-Net, a dynamic Transformer UNet architec-
ture inspired by ViTs, which serves as the backbone for dif-
fusion models. DTU-Net incorporates various components
such as Patch Embedding, multi-head attention, multi-layer
perceptron, and refinement layer, through thorough exper-
imental analyses. Our algorithms offer several advantages
over adversarial training, including improved sample qual-
ity and stable training, particularly beneficial for smaller
datasets.

The contributions of the paper are summarized as follows:

¢ Our enhancement of the simplex noise function, Tsim-
plex, reduces processing time for multiple, colored,
and higher-dimensional images. By generating av-
eraged sample outputs, we mitigate noise stochastic-
ity and improve sample quality. Tsimplex enables
anomaly detection with partial diffusion, significantly
reducing backward process time.

* We developed a ViT-based U-Net model as the core
for diffusion models, treating noised image and time
step as tokens. We improved the multi-head attention
mechanism through dynamic interactivity among at-
tention heads.

In addition, we conducted extensive experiments and an in-
depth ablation study on three datasets, demonstrating supe-
rior performance, especially in the Brain MRI dataset, and
providing valuable insights for the research community.

2. Related Work

Self-supervised anomaly detection: In the realm of
anomaly detection, Self-Supervised Learning (SSL) plays
a pivotal role in training systems to capture intricate re-
lationships within data, with a primary focus on detect-
ing irregular patterns. SSL encompasses two distinct ap-

7918



proaches: Invariance-based methods [, 5, 6] and genera-
tive methods [9, 17, 18]. Generative models, in particular,
have made substantial contributions to anomaly detection
and have paved the way for addressing more intricate tasks,
particularly in self-supervised understanding and the gen-
eration of natural images. Authors in [33] introduced DC-
GAN, showcasing GANSs’ ability to capture semantic image
content, which has led to intriguing applications like vec-
tor arithmetic for manipulating visual concepts. Addition-
ally, [50] trained GAN’s on natural images and employed the
trained models for semantic image inpainting, demonstrat-
ing the versatility and potential of GANS in various image-
related tasks. While VAE models are sometimes criticized
for their poor sample quality, GANs [40] come with their set
of challenges, including their inability to repair anomalies,
training instability, model collapse, and reliance on large
datasets. Recent strides in the field of Diffusion Probabilis-
tic Models (DDPM) [9, 17] have showcased their ability to
generate higher-quality samples from complex distributions
with superior coverage compared to GANs [40] and VAEs.
However, these improvements come at the expense of re-
duced scalability and increased sampling times, primarily
due to the necessity of employing long Markov chain se-
quences [19]. Furthermore, DDPMs also have limitations
in capturing larger anomalies caused by Gaussian noise. In
their paper [49], the authors introduced a noising scheme
for diffusion models based on simplex noise. However, this
scheme comes with several significant drawbacks. As the
noise level increases, there is a noticeable decrease in sam-
ple quality, especially when applying noise to higher val-
ues of ”t”. Moreover, the scheme struggles to effectively
repair anomalies located near other high-frequency infor-
mation, limiting its ability to handle complex data patterns.
Additionally, it exhibits limited exploration capabilities, es-
pecially concerning 3D and colored images, where its focus
is less well-defined. Most crucially, this noising scheme
leads to increased sampling times, which can be a signif-
icant practical limitation, particularly when dealing with
batched images or real-time applications.
Backbone of diffusion models: Indeed, along with the de-
velopment of diffusion model algorithms [3, 18,24,25,41,
,44,45], the revolution in backbone models plays a cru-
cial and integral role. An illustrative instance is U-Net, con-
structed upon a convolutional neural network (CNN) and
previously utilized in research [17,43]. The CNN-driven
U-Net design features a sequence of down-sampling blocks,
a series of up-sampling blocks, and extensive skip connec-
tions between these two sets of blocks [9, 35, 39]. This ar-
chitectural framework has held a prominent position within
diffusion models utilized for image generation assignments.
Conversely, ViTs [ 1 1] have demonstrated promising, and in
some cases, superior performance compared to CNNs in a
range of tasks. In their paper [3], the authors introduce a

straightforward and versatile architecture for image genera-
tion using ViTs within diffusion models. Experimental re-
sults illustrate that U-ViT performs on par with, if not better
than, a CNN-based U-Net of a similar size. However, recent
studies [12,27, 34] that investigate the reasons behind the
difference in data efficiency between ViTs and CNNs have
led to the conclusion that it attributed to a lack of inductive
bias. Based on our experiments we also found out that the
ViT-based diffusion backbone [3,29] fails to generate the
image when it comes to small datasets.

3. Methodology
3.1. Background

Diffusion models, specifically Diffusion Probabilistic
Models (DDPMs) [17], are a class of generative models
that employ a diffusion process resembling a Markov chain.
This process comprises sequential steps, where each step in-
volves sampling from a Gaussian distribution. Importantly,
the mean of this distribution depends on the current state of
the chain. As the number of steps increases, the distribution
over the chain converges to a Gaussian distribution. Let’s
begin with data represented as xg ~ ¢(x¢) and a Markov
chain process q progressing from x to x,, injecting noise at
each step from a normal distribution with a variance sched-
ule 3;:

g(@e | we—1) = N(xe; /1 — Bray—1, BI) (D

In DDPM, instead of repeatedly applying ¢ to sample x; ~
q(z¢|zo), it expresses q(z¢|zo) as a Gaussian distribution
using an auxiliary noise variable n ~ N (0, I):

q(x¢ | o) = N(ze; vV ouwo, (1 — ay)I) )
=Vaxo +nv1—ay 3
Here, 1 — oy = B, and a; = Hs:O:X as. 1 — ay

serves as a noise scheduler in place of ;. To sample from
the posterior distribution, which is also Gaussian, Bayes’
theorem is applied by sampling from each reverse step
of the distribution ¢(x;_1|z;) for ¢ ranging from y to 1,
eventually reaching ¢(z¢). The parameters (mean vector
and covariance matrix) of g(z;_1|z;) can be estimated us-
ing neural networks, which approximate this distribution.
The objective of these neural networks is to minimize the
dissimilarity between probability distributions from step ¢
to ¢ — 1 using Kullback-Leibler divergence (D). The
loss function for training the parameterized distribution
po(xs—1|xs) is expressed as the variational lower bound Lyy,
on the marginal likelihood pg(x¢). It is defined as the sum
of terms Lo through Ly, where Ly = —logpg(xo|z1),
Li1 = Drr(q(xi—1|ze, 20)||po(wi—1]2t)), and Ly =
Dy (q(zr|zo)||p(zr)). These terms quantify the recon-
struction loss, conditional divergence, and final divergence,
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respectively, in the context of this variational lower bound
formulation.

Conceptually, a neural network can also be seen as a
mapping from a simpler Gaussian distribution to a more
complex distribution of images. This mapping is thought
of as a non-parametric method for defining the mean func-
tion of a Gaussian process. A network denoted as g (¢, t)
with parameters 6 for predicting 7 trained to simplify the
objective by DDPM [17] and enhance the quality of sam-
pling. For a given zop ~ ¢(xo) and n ~ N(0,I) at each
step ¢ within the range [0, x], the following loss function is
defined:

1
L(9) = — Z In =16 (x4, )|° + Loy “4)
X t=0:x

3.2. Noise function

The visual world is endlessly captivating due to its con-
sistency across different scales, a phenomenon known as
scale invariance, which can be observed in various visual
contexts [38]. In natural images, the distribution of fre-
quencies adheres to a power-law distribution, with lower-
frequency components playing a more substantial role in
defining the image’s characteristics [47, 49]. However,
there’s a notable discrepancy in how DDPMs treat lower-
frequency and high-frequency components when Gaussian
noise is employed, mainly due to the uniform spectral den-
sity of this noise source as shown in Figure 1b. Conversely,
diffusion models employing simplex noise tend to assume
that lower-frequency components are relatively less cor-
rupted, leading to the recovery of larger anomalous regions
in the reverse process (Figure 1b for Tsimplex).

Tsimplex: Simplex noise' represents an enhancement of
Perlin noise [30], characterized by increased computational
efficiency and the generation of smooth and structured ran-
domness. Tsimplex noise relies on gradient noise follow-
ing simplex and is generated through the amalgamation of
numerous noise octaves. In this process, each octave rep-
resents a higher-frequency variation of the noise from the
previous octave. These octaves are weighted with decreas-
ing amplitude and increasing frequency as outlined in Algo-
rithm 1, yielding a more intricate and detailed noise pattern.
The outcome is a textured noise that exhibits gradual and
continuous variations across spatial dimensions shown in
Figure 3a. Additionally, in Tsimplex noise, we incorporate
the temporal dimension (B) and diffusion time steps as a
grid along with spatial dimension. Consequently, the total
time required to sample noise from Tsimplex for a batch of
1000 steps (approximately 5.97 seconds) become less than
simplex noise and close to Gaussian noise, as demonstrated
in Figure 2. This improvement is also attributed to the Hon-
eycomb pattern introduced by the additional time step pa-

Thttps://github.com/lmas/opensimplex

Algorithm 1 Noise(S, ¢, O, p, i)
1: Initialize, A <~ 1, N < 0
2: x,y < spatial grids,
C < channel grids B < batch grids V 3D grids

3: for i from 1 to O do
4 N « simplex(Z,% B ¢ ¢t
R TR TR TR
5: N+ N+A-N
6 p5,A—Ap
7: end for
8: return N
74 —e— Tsimplex
Simplex
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Figure 2. Time Required for sampling up to 1000 steps for grid
of 64 x 64 and for O octaves. Tsimplex requires less time than
simplex as batch size goes further.

rameter (t), t € RY*X, thereby incorporating a hexagonal
pattern (honeycomb) due to the inherent characteristics of
simplex noise. This incorporation results in a tetrahedral
honeycomb pattern. In 2D simplex noise, these shapes man-
ifest as equilateral triangles forming a hexagonal grid, while
in 3D simplex noise, the lattice is composed of tetrahedra
(See [30] for details). Our experiments show that these
added honeycomb patterns contribute to increased symme-
try, especially at a minimal octave value (Figure 3), ulti-
mately enhancing sample quality as demonstrated. Further-
more, we have observed that the sample quality of simplex
noise decreases as ¢ increases. One of the reasons for the
lower sample quality is the asymmetry of simplex noise, as
shown in Figure 3c, in contrast to Gaussian noise. In con-
trast, Tsimplex” provides similar sample quality to Gaus-
sian noise, as illustrated in Figure 3b.

3.3. Dynamic Transformer UNet

DTU-Net serves as a fundamental component in diffu-
sion models (see Figure 4a) for anomaly detection and can
be applied across a variety of tasks within diffusion model-
ing. The primary goal of DTU-Net is to minimize the loss as
defined in equation 4 which combines L2 —norm with L,
for the robust self-supervised training and generate predic-

ZPlease see more analysis and generation method in Supplementary
Material
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(a) Tsimplex noise structure

(b) Tsimplex noise distribution

(c) Simplex noise distribution

Figure 3. Comparing Tsimplex and Simplex noise, we analyze the impact of two variables: octave (O) on the y-axis and frequency (1) on
the x-axis, examining their influence on both distribution and structure. We selected a minimum value of O with the highest symmetry.

tions by removing the noise to reconstruct the image. It
takes the noisy input x;, the time step ¢, and predicts the
noise added to x;.

Sliding window patch embedding: Following the ar-
chitectural principles of ViT [ 1], DTU-Net divides the in-
put images into patches and treats all patches, along with
time, as tokens. The whole process of sliding window patch
embedding (SPE) is shown in Figure 4a and the function is
formulated as follows.

Affine(x) = Diag(v)z + ¢ Q)

Where v, and ¢ are learnable parameters initilized with 1
and O resepctively. The output from the affine function un-
dergoes a series of operations, including a Conv(3,3) oper-
ation, followed by batch normalization and activation func-
tions, and this sequence is repeated up to k times. Fi-
nally, the result is post-processed once again through an

affine function to get the sliding window patch embedding
(L= HV)

DTU-Net Layer: Following the architecture of UNet,
DTU-Net also comprises three types of layers: Encoder,
Middle, and Decoder. These layers consist of the same
types of blocks, as indicated by the colors in Figure 4a.
These blocks primarily include dynamic multi-head atten-
tion (DMHA) (refer to Figure 4b) and a hybrid feedforward
(HFF) block (see Figure 5). Inspired by [26], we incor-
porate the Head token into our DMHA. This addresses the
issue of inductive bias in ViTs by allowing interactions be-
tween multiple heads, in contrast to the hierarchical struc-
ture of the ViT with window attention [22].

DMHA: The mechanism is formulated as follows: For
x € Rbs*LxD we first apply Rearrange Average and Re-
shape (RAR), i.e., we rearrange D into h x d, average with
respect to L + 1 tokens, and reshape into h x d. The out-
put is then projected into & x D through a fully connected

layer (FC), followed by layer normalization and activation.
The head tokens are added with the head position embed-
ding (HPE) so the position embedding of the head will not
be forgotten. We concatenate the generated head token with
shortcut input and feed it to the multi-head attention. Fi-
nally, output is transformed into the original shape by split-
ting into L x D, 1 x D, and h x D as shown in Figure
4b.

HFF: We employ a channel attention mechanism to con-
solidate the features of patch tokens into the class token
as visualized in Figure 5. Before reaching the projection
layers, we split the class token. Subsequently, the patch
tokens undergo processing within a depth-wise convolu-
tional (DW-Conv) integrated feedforward network, which
includes a shortcut. The resulting output patch tokens are
then subjected to averaging, producing a weight vector re-
ferred to as W. Following the squeeze-excitation opera-
tion, the output weight vector is channel-wise multiplied
with the class token. This recalibrated class token is then
joined with the output patch tokens to reconstruct the to-
ken. In DTU-Net, we integrate skip connections, much
like those employed in the UNet architecture, into the dif-
fusion models, establishing connections between shallow
and deep layers. The primary goal is to furnish pixel-level
information, which is particularly sensitive to fine-grained
features. Consequently, the incorporation of extensive skip
connection shortcuts amplifies feature communication and
preserves the fidelity of pixel-level details. Additionally,
DTU-Net employs a Conv(3, 3) block before predicting the
noise. This step is intended to mitigate artifacts that may
arise in images due to the attention mechanism.
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(a) Full pipeline of DTU-Net as a backbone for diffusion models.

(b) Pipeline of Dynimical Multi-Head at-
tention

Figure 4. The complete DTU-Net architecture designed for partial diffusion models, where it processes noisy image inputs, including

diffusion steps as tokens, and predicts the noise.
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Figure 5. Hybrid Feed Forward network integrated as a Multi-
Layer Perceptron for DTU-Net pipeline.

4. Experiments

All experiments in this study are conducted using the
DDPM algorithm as the foundation. For DTU-Net, the
hyperparameters used to approximate 7y closely resemble
those in the ViT model outlined in [27]. The model is imple-
mented using PyTorch and trained on a single GPU, specif-
ically the NVIDIA RTX A4000. For the image settings, we
used images resized to 224 x 224 pixels and a batch size of
32. The training process ran for 3000 epochs with a time
step of 1000. We used 1 or 3 channels, a cosine schedule
for the beta parameter, and an [2-norm loss type. The learn-
ing rate was set to 1 x 10~%. The patch size was 16, the
embedding dimension was 384, the model depth was 6, the
number of attention heads was 6, and the MLP ratio was
4. The number of classes was either null or 2, and the ex-
ponential moving average (EMA) rate was 0.9999. For the

Tsimplex parameters, we used an octave value of 6, a fre-
quency of 64, and a persistence of 0.9. We train only in
healthy images with the goal of repairing the anomaly. We
compute the ({anomaly — repaired}image)? followed by
binarization for testing the method on segmentation tasks
using a variety of segmentation measures °.

4.1. Datasets

Brain MRI: We utilize the healthy brain dataset sourced
from the NFBS repository [32]. This dataset comprises T1-
weighted MRI scans with dimensions of 256 x 256 x 192.
For our experiments, we focus on 2D slices of size 256 x
192 in the axial plane. Specifically, we allocate 100 of these
slices for training purposes and reserve 25 for testing the al-
gorithms. For anomaly detection, we curate a set of 154
tumor images from Kaggle, deliberately choosing a diverse
range to pose a challenging task in tumor detection. In Fig-
ures la and 1b, we exclusively showcase images from this
tumor dataset, highlighting the substantial variations com-
pared to the healthy brain dataset.

MVTec: To train our model on typical inference data, we
employ a MVTec dataset [4] comprisingcomprises 15 cate-
gories with 3629 images for normal images. For the testing

3More details are provided in supplementary
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phase, we evaluate the model’s performance on abnormal
inferences consists of 1725 images, which involve various
anomalies such as color variations, cuts, folds, glue marks,
and punctures.

AnnoBrats: From the BRATS 2021 (Brain Tumor Segmen-
tation) dataset [2, 1 9], we initially preprocess it into healthy
and anomaly datasets using segmentation masks for model
training and testing, respectively. We select the top 1306
(40%) 2D slices with dimensions of 4 x 240 x 155, utiliz-
ing all four modalities, as anomalies are more discernible
in this perspective. For testing, we employ the top 1935
(60%) 2D slices with dimensions of 4 x 240 x 155, along
with segmentation masks.

4.2. Results

To evaluate our method, we segment un-
healthy/anomalous regions in the test dataset and employ
segmentation metrics, including the Sgrensen—Dice coef-
ficient (Dice), Intersection over Union (IOU), Precision,
and Recall. The results for comparison are presented in
Table 1. Additionally, we conduct an area under the curve
(AUC) for state-of-the-art comparison, as depicted in Table
2.In autoencoders (AE) and VAE, we utilize architectures
similar to those in [36]. For the diffusion-based models,
we first identify the optimal diffusion step range for
anomaly detection and subsequently compute the results.
As illustrated in 1, DTU-Net outperforms other methods
and exhibits lower deviation compared to AnnoDDPM,
though it does exhibit slightly higher deviation compared
to DDPM. DTU-Net leverages sampling from Tsimplex,
which exhibits fewer stochastic patterns than simplex,
owing to the inclusion of batch sampling. In contrast,
DDPM samples from Gaussian noise, which has fewer
stochastic patterns*.

4.3. Ablation studies

Noise functions: Based on our experiments, we have
observed a slight decrease in sample quality as the diffusion
step increases. This phenomenon is likely attributable to the
asymmetry in Tsimplex noise. We use structural similarity
index measure (SSIM) to compare the compare quality of
reconstruction which is shown in Figure 6. Tsimplex gives
a better SSIM than other noise functions.

4Please see the supplementary material for more detailed discussion
and further results on objectives
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Figure 6. Effect of diffusion steps on SSIM with the backbone
DTU-Net and varity of noise functions.

Effect of Diffusion Steps: The choice of diffusion steps
(t) stands as a pivotal parameter in the simplex noise diffu-
sion model for anomaly detection. In our devised approach,
labeled the partial diffusion model (PDM), we strategically
circumvent unnecessary diffusion steps following anomaly
repair. To investigate the impact of this parameter, we con-
ducted a series of experiments encompassing various diffu-
sion models, each with distinct time steps ranging from 0 to
800, all grounded in simplex noise, as illustrated in Figure

+—DTU-Net V2

SRSt
N —+—DTU-Net V1

T N UViT+Gauss
——uviT

UNet

o et
50 80 110 140 170 200 230 260 290 320 350 380 410 440 470 500 530 560 590 620 650 680 710 740 770 800

Figure 7. Diffusion steps range selection based on best Dice score
for all simplex noise based model.

Additionally, we implemented a strategy aimed at reduc-
ing the stochasticity of the noise function by averaging the
outputs of n-samples during the training of the model, de-
noted as DTU-Net V1. All instances of the PDM involve
the careful selection of the optimal range of diffusion steps,
maximizing the Dice score across all experiments. It is ev-
ident from the results that our proposed models, DTU-Net
V1 and DTU-Net V2, achieve the highest Dice scores with
fewer steps. Furthermore, the stochastic nature is notably
reduced in DTU-Net V1 compared to the model without
averaging during training (DTU-Net V2). The Dice score
also improve robustness in DTU-Net V1, not decline as ob-
served in DTU-Net V2.

Backbone Configuration: To assess the impact of all
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Table 1. Performance Comparison of the model’s ability to segment abnormal regions. Square error is employed as a predictor of the mask.
We use the same architecture of VAE, and AE based on ResNet. Results in the last three rows use Tsimplex noise. The best results are

highlighted.
(a) Brain MRI (b) AnnoBrats2021
Model Dice (1) 10U (1) Recall (1)  Precision (1) Model Dice (1) 10U (1) Recall (1)  Precision (1)
AE [48] 0.098+0.01  0.063+0.04  0.109+0.09  0.130+0.04  AE [48] 0.0154+0.04 0.063+0.02 0.125+0.02  0.1124+0.04
VAE [16] 0.111£0.05  0.060+0.03  0.113+0.02  0.1324+0.04 VAE[16] 0.016+0.04  0.05+£0.02  0.115£0.02  0.1154+0.04
CE [28] 0.242+0.20 0.1524+0.14  0.25+£0.218  0.2754+0.22 CE [28] 0.2394+0.19  0.154+0.14  0.245+0.21  0.265+0.22
AnnoGAN [40] 0.140+£0.00  0.108+0.00  0.380+0.01  0.0184+0.01  AnnoGAN [40] 0.135+0.00 0.098+0.00 0.384+0.00  0.085+0.00
DDPM 0.0174£0.00  0.006+0.01  0.013+£0.02  0.042+0.02 DDPM [17] 0.0104+0.01  0.004+0.00 0.007+£0.01  0.036+0.04
AnnoDDPM [49] | 0.3344+0.29 0.243 £0.23  0.607+0.45  0.263+0.25 AnnoDDPM [49] | 0.3344+0.25 0.1464+0.13  0.0834+0.18  0.042+0.14
DTU-Net \ 0.466+0.12  0.364+0.18  0.705+0.13  0.383+0.19 DTU-Net ‘ 0.428+0.13  0.280+0.17 0.210£0.13  0.299+0.12
Table 2. MvTec Dataset result on 15 objects by AUROC for state-of-the-art comparison.

Classes PatchCore [37] PaDiM [8] SimpleNet [23] DMAD [21] DRAEM [51] AnnoGAN [40] FastRecon [13] AnnoDDPM [49] DDPM Ours

Carlet 98.85 99.10 98.71 99.56 96.27 91.63 92.58 98.63 51.10 99.15

Grid 98.34 97.30 98.33 99.61 99.80 94.09 90.71 96.65 51.46 99.85

Leather 99.66 99.20 98.67 99.76 99.32 97.39 94.60 96.39 51.51 99.90

Tile 97.20 94.10 98.20 98.06 99.41 81.78 79.12 97.94 51.46 99.80

Wood 97.17 94.90 96.66 97.82 97.79 93.69 93.27 97.84 4991 98.35

Bottle 99.32 98.30 97.10 99.47 99.15 99.54 96.47 96.09 51.15 9941

Cable 98.97 96.70 99.32 98.62 93.20 93.01 94.25 98.52 50.63 98.87

Capsule 98.44 98.50 98.74 98.61 96.47 96.67 98.33 98.13 50.74 98.61

Huelnut 99.37 98.20 99.32 99.56 99.85 99.26 98.85 99.43 51.46 99.85

Metal nut 99.23 97.20 98.55 98.89 99.09 95.29 94.33 99.02 51.46 99.85

Pill 96.99 95.70 99.42 97.98 98.27 97.79 95.24 95.54 51.25 99.15

Screw 98.73 98.50 99.03 99.81 95.69 97.70 98.57 99.40 51.10 99.21

Toothbrush 99.37 98.80 98.63 99.71 99.08 99.02 96.47 96.23 50.99 99.42

Transistor 98.21 97.50 98.94 97.10 92.04 89.55 91.10 96.96 4795 96.46

Ziplrr 99.11 98.50 99.61 98.97 99.42 83.65 80.03 96.59 51.20 99.61

Average 98.60 97.39 98.62 98.90 97.66 94.00 92.93 97.56 50.89 99.17

the modifications made to DTU-Net, in addition to the
ViT model, we conducted a series of experiments involv-
ing various backbone variations. We evaluated these vari-
ations based on Dice and AUC scores, which are sum-
marized in Table 3. The Leather dataset was chosen
for this comparison due to its inherent difficulty in seg-
menting anomalies.As depicted in Figure 4a, we exam-
ined four types of variations, including changes in Patch
Embedding (PE and SPE), Multi-Head Attention (MHA
and DMHA), Multi-Layer Perceptron (MLP and HFF), and
Refinement Layer (Conv(3,3) and an additional Conv(3,3)
layer for output refinement). Among these configurations,
DTU-Net with the setup of PE+DMHA+MLP+Conv out-
performed others in terms of AUC scores. However, the
PE+DMHA +MLP+Conv configuration achieved superior
results in Dice scores.

Weakly Supervised Segmentation: We explore three
different backbone models for the backward diffusion pro-
cess: UNet, UVIiT, DiT [9], and our proposed DTU-Net,
in conjunction with the Tsimplex noise function. Guided
diffusion models [9, 29] have demonstrated superior per-
formance when trained in a weakly supervised (WS) man-
ner, such as by using image-level labels. We trained our
model using image-level labels to evaluate its effectiveness,
and the results are presented in Table 4, specifically in the

Table 3. Comparison of DTU-Net variations with DICE and AUC
scores.

DTU-Net Variations ‘ Dice AUC

PE+MHA+MLP+Conv 0.2934+0.230  0.640+0.092
SPE+MHA+MLP+Conv 0.140+£0.208  0.621+£0.099
PE+DMHA+MLP+Conv 0.2684+0.232  0.757+0.131
SPE+DMHA+MLP+Conv | 0.147+0.204 0.71140.070
PE+DMHA+HFF+Conv 0.163+0.177  0.706+0.110
SPE+DMHA+HFF+Conv 0.181£0.128  0.667+0.092
SPE+DMHA+HFF+RConv | 0.306+0.234 0.636+0.137

shaded columns (G) for the BrainMRI dataset. Further-
more, To illustrate the overall impact of our modifications
on baseline methods and to compare with WS tasks, we also
report results for the same dataset, which includes highly
challenging abnormal images (see Figure 1a). Our experi-
ments indicate that Tsimplex generates better samples for
recovering or repairing anomalies, even when used with
the UNet and UViT models. The DTU-Net model com-
bined with Tsimplex surpasses other combinations, primar-
ily due to configuration modifications (refer to Table 3).
Additionally, we observe superior performance compared
to DiT [29] in both DICE and AUROC measures for image-
level labels.
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Table 4.

Impact of modifications on anomaly detection per-

formance in the BrainMRI dataset, measured by DICE/AUROC
scores. Shaded columns (G) represents the training with image-

lavel.
Noise({)/Model(—) |  UNet UViT  DTU-Net DiT(G) DTU-Net(G)
Gauss 0.02/0.64 0.10/0.69 0.08/0.61 0.13/0.66  0.18/0.65
Simplex 0.33/0.68 0.34/0.70 0.40/0.74 0.41/0.75  0.41/0.77
Tsimplex 0.35/0.68 0.39/0.73 0.46/0.75 0.42/0.76  0.50/0.78

5. Conclusion

Our self-supervised anomaly detection model, which
leverages partially observed diffusion steps to significantly
reduce sampling time, has shown remarkable effectiveness.
The combination Tsimplex diffusion and DTU-Net, a ViT-
based backbone, has not only enabled our method to gener-
ate high-quality anomaly maps but has also led to achieving
good scores for anomaly segmentation across three different
image datasets without the need for annotations.
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