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Abstract

Continual Learning aspires to build models capable of
learning new tasks, without forgetting previously learnt
tasks. In real-world settings, the distributions underlying
the tasks are prone to shift. This necessitates a model ca-
pable of observing how the task distributions drift with time
and adapt proactively. We present a novel framework of
continual learning under evolving domains. Our approach
employs a hypernetwork with separate embeddings condi-
tioned on both domain and task to address this problem.
The hypernetwork generates customised classifier weights
corresponding to any domain-task pair. We employ a sep-
arate network that is trained end to end along with the hy-
pernetwork to predict the next domain embedding, which
in turn helps to generate classifier parameters correspond-
ing to the next future domain in the evolution. We conduct
extensive experiments on various datasets with a wide vari-
ety of distribution shifts to demonstrate the efficacy of our
model in generalizing to future domains across all the tasks.

1. Introduction
One of the hallmarks of intelligence lies in its ability

to adapt. This adaptive intelligence stems from the real-
world requirement to tackle continuously evolving chal-
lenges [27]. This contrasts starkly with our assumption that
the distributions of data when the model is trained and when
it is put to use are similar. This is simply not true as the
data arising from the real world is prone to drift. A ma-
jority of ML models in deployment suffer from progressive
performance decay with time as the gap between the distri-
bution that the model was originally trained on and the cur-
rent distribution grows. To drive home the idea, consider
a facial recognition model. Aligning with practical needs,
such a model must be capable of continually learning new
faces with time. Aside from such a continual learning ca-
pability, the model must also be able to address changes in
already learnt faces as they age with time and learn to gen-
eralize and extrapolate to future settings, failing in which,
the model’s performance will degrade with time [25]. Fur-
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Figure 1. A scenario comprising of tasks (shapes) that are learnt
over periods long enough that the underlying domain (color)
evolves. This illustrates the need for a solution such as EvoCL
where the focus is not only on learning new tasks but ensuring that
this learning generalizes to future domains. (Diagram best viewed
in colour)

thermore, dynamic systems such as Traffic Modelling sys-
tems could benefit from having the ability to take on new
tasks in the form of new neighbourhoods and model the
evolution of existing neighbourhoods as they change with
time. IoT systems have penetrated the home and society at
large. Such systems benefit from continually learning new
tasks and coping with domain changes such as that posed
by sensor degradation. Resilience to changing conditions is
key as machine learning permeates into every aspect of our
lives. [22].

Over the past few years, Continual Learning (CL) [17,
18,24] has matured significantly as a field, heavily driven by
practical requirements. Practitioners have widely taken into
cognizance that it is highly impractical in terms of cost and
time to retrain a model every time new data is encountered.
Although CL models are rapidly closing the gap between
them and models trained in offline settings, an oft-ignored
fact is that learnt tasks are prone to age. CL is a paradigm
where a model is trained over time. Longer periods might
result in significant temporal drift in the underlying ground
truths pertaining to the learnt tasks. This caving divergence
between the learnt distribution and the ground truth distri-
bution will lead to degradation in model performance. Ad-
dressing performance degradation that stems from such sce-
narios is studied under the umbrella of Domain Generaliza-
tion (DG). DG [15, 16, 19] focuses on minimizing the test
error on a dataset drawn from an unseen domain after being
trained on a collection of arbitrarily seen domains. How-
ever, we need to consider a more specific situation where
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the distribution underlying the tasks evolves in a smooth
manner and the tasks are required to generalize well to an
unseen future domain arising as part of this evolution. The
mitigation of such continuous drift in domains is recently
considered under the framework of evolving domain gen-
eralization (EDG) [1, 21], where the model has to adapt to
temporally evolving domains and minimize the generaliza-
tion error over some unseen future domain. In the EDG
framework, there is no provision for distributional shifts in-
curring new classes. The shift in distribution is only covari-
ate and can therefore not accommodate tasks as in a Con-
tinual Learning setting.

We propose an Evolving Continual Learning framework
to bring the disjoint paradigms of Continual Learning and
Domain Evolution together. CL and EDG both reckon with
the problem of shifting domains but their goals vary, with
CL focusing on catastrophic forgetting mitigation and EDG
dealing with unseen domain generalization. A related work
that aims to bring together DG and CL, Cross Domain Con-
tinual Learning (CDCL) [26], requires that all training do-
mains are seen at once within each task, which is not a
practical assumption in most situations. Evolving Contin-
ual Learning on the other hand, offers the flexibility of being
fully continual in terms of both tasks and domains. In the
pursuit of flexible models that can continually learn from
the environment and generalize to changing conditions, we
propose a model that effectively addresses the evolving con-
tinual learning problem. We illustrate the idea of an Evolv-
ing Continual Learning scenario in Figure 1.

We propose a model that adapts to the changes in the
tasks and domains by capturing them through the parame-
ters of the deep learning architecture used to solve the task,
e.g. a classifier network in case of classification tasks. The
proposed model is centred around a hypernetwork [29] that
generates the classifier network parameters bespoke to any
domain and task. The hypernetwork achieves this through
the use of distinct task and domain embeddings as input
to generate the parameters. We learn the task embeddings
from the corresponding task data. We use domain embed-
dings to capture the temporal evolution in domains. The
domain embeddings are generated by a fully connected net-
work that we term the Domain Predictor which captures de-
pendencies across the domains. We train our model, which
comprises the classifier network, the hypernetwork, and the
domain predictor through a joint loss that maintains contin-
ual learning capability. We conduct extensive experiments
with datasets such as MNIST, CIFAR10, CIFAR100, Eu-
rosat, FER, and Fashion MNIST, that are transformed in a
myriad of ways to simulate the evolution. Our proposed ap-
proach achieves state-of-the-art performance on a multitude
of different benchmarks that we have proposed to evaluate
for the evolving continual learning setup.

The principal contributions of our work are as follows:

• We propose a more general treatment of continual
learning and evolving domain generalization wherein
we simultaneously tackle the problems of catastrophic
forgetting over tasks and temporal generalization over
domains.

• We propose a novel architecture comprising a hy-
pernetwork with a domain predictor module capable
of continually learning tasks arising from temporally
evolving domains.

• We introduce a new set of benchmarks to pave the way
for future work in this direction.

• We conduct extensive experiments with real-world
data sets and demonstrate that our method can success-
fully handle continual learning under evolving domain
distributions.

2. Related Works
Our work lies at the crossroads of domain generaliza-

tion (DG) [30] and continual learning (CL) [31]. As far as
we are aware, there is a singular work that addresses con-
tinual learning with tasks that span a myriad of domains.
Cross domain continual learning (CDCL) [26] considers a
problem setting wherein each task contains samples drawn
from different domains. The model is trained on a sub-
set of the domains and tested on a held-out test domain at
the end of learning each task. There are two fundamen-
tal differences between CDCL’s setting and ours. All the
domains are available simultaneously during training each
task whereas we consider temporally changing domains that
are made available with time. Secondly in EvoCL (i.e, the
proposed work), the nature of how domains differ signifi-
cantly differs from that of CDCL which tackles a vanilla DG
setting where the domains are independent. In contrast, we
approach a problem where the domains temporally evolve.
Such a setting is known in existing literature as evolving
domain generalization or temporal domain generalization.

Approaches addressing evolving domain generalization
are predominantly recent endeavors and thus are few in
number. Particularly, the problem focuses on achieving out-
of-distribution generalization when the domains are evolv-
ing, in the sense that there is a temporal pattern to how each
domain varies from the preceding and the succeeding do-
mains. The problem was addressed using techniques incor-
porating ideas from meta-learning [15], gradient interpola-
tion [20], latent space exploration [21], and recurrent graph
generation [1].

The field of Continual Learning has enjoyed widespread
success and adoption in recent years and has branched out
to a variety of different strategies to combat catastrophic
forgetting. Broadly speaking, they can be classified into
regularization-based approaches [10, 17, 29], replay-based
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techniques [23, 24, 28] and dynamic architecture-based ap-
proaches [33]. One of the recent advances in the field of
Continual Learning is hypernetwork. Hypernetwork [5]
was first proposed as a means of weight compression. It
was not long before this idea of bespoke network gener-
ation was found to be an effective approach for continual
learning [2,29]. Hypernetworks possess some qualities that
are greatly desired in CL. Hypernetworks have a large ca-
pacity to learn extended sequences of tasks. Furthermore,
hypernetworks demonstrate strong knowledge transfer ca-
pabilities in between tasks. Their versatility makes them a
suitable candidate for our CL strategy. We build atop this
framework to incorporate the concept of generalizing those
continually learnt tasks to future domains in a temporally
evolving setting. CL techniques such as Hypernetworks are
founded with a focus on mitigating catastrophic forgetting.
They are not, however, built to anticipate temporal domain
changes and generalize to future unseen domains.

3. Problem Formulation
We consider a problem setting consisting of sequential

tasks that evolve over time. Each task Tk follows a prob-
ability distribution Pk. In several practical scenarios, tasks
are subject to distribution shift with time, leading to an evo-
lution over their domains. Let us assume this temporal evo-
lution results in D domains, with each domain consisting
of K sequential tasks. We represent a task T d

k to follow a
probability distribution P d

k for a task k over a domain d. Let
us consider an ordered collection of data from the sequence
of tasks over domains as

S = {Sd
1 , S

d
2 , . . . , S

d
K}Dd=1 (1)

with Sd
k representing the data pertaining to each task T d

k .
The data within each task is represented as:

Sd
k = {(xd

ki, y
d
ki) ∈ X d

k × Yk}
Nd

k
i=1 (2)

Each task is a collection of Nd
k labeled samples and X d

k and
Yk are the corresponding feature and label sets specific to a
particular task and domain. Our objective here is to contin-
ually learn from the sequence of tasks S and to generalize
to tasks associated with a future unseen domain. We aim to
develop a model that exhibits strong generalization perfor-
mance on data arising from tasks of a future unseen domain
{SD+1

1 , SD+1
2 , . . . , SD+1

K }.

4. Methodology
Due to continual learning restrictions, it is impractical

to maintain separate classifier parameters trained on each
task, and each domain that it evolves through. Moreover,
we want to capture the shift in domains through our param-
eterization of the classifier. To achieve this, we propose a
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Figure 2. Architecture of the model with its components Domain
Predictor, Hypernetwork, and Classifier; along with their interac-
tions. The Domain Predictor takes in the previous domain em-
bedding as its input and outputs the current domain embedding ξd.
This domain embedding is concatenated with the task embedding
τk, which is initialised randomly and learnt via backpropagation.
The concatenated embedding is input to the hypernetwork which
in turn generates the parameters θdk of the classifier for the kth

task and dth domain. The classifier finally acts on the input xd
k

and generates prediction yd
k . The Hypernetwork, the Domain Pre-

dictor and the Task Embeddings are jointly optimised via back-
propagation.

model that can generate unique weights and biases to pa-
rameterize the classifier on the fly as per the task and do-
main evolution. The proposed model incorporates a hyper-
network, which is well suited to the role of generating the
parameters of a classifier network. The hypernetwork can
generate model parameters unique to every task by condi-
tioning on a task embedding. Secondly, the covariate space
Pr(X d

k ) of each task evolves temporally across the domains
but in a similar manner across the tasks. This necessitates
a model capable of capturing this evolutionary pattern in
the parameter space. We let our hypernetwork capture this
by conditioning it with respect to a domain embedding that
evolves over time. We model the evolution in domain em-
bedding by utilizing a network we term the domain pre-
dictor which is trained to predict the next domain embed-
ding given the current domain embedding in a Markovian
fashion. The Markovian formulation is necessitated by the
absence of data from previous domains, mandated by the
Continual Learning setting. Thus, our proposed model con-
sists of three components: a classifier network, a hypernet-
work, and a domain predictor network. Figure 2 provides
an overview of our proposed architecture. We describe in
detail different components in our model and learning of
these model parameters to perform continual learning over
evolving domains.

4.1. Classifier

We assume there is a classifier network F(xd
k; θ

d
k) with

parameters θdk associated with task k and domain d. The
classifier network F : X d

k → Yk is a function that maps
from an input space that is both domain and task-specific
to a task-specific label space. The classifier F(xd

k; θ
d
k) can

be any network such as a fully connected neural network
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(FNN) or any type of convolutional neural network (CNN)
[13] such as LeNets [14] or ResNets [6]. A significant de-
parture with our approach is that the classifier network pa-
rameters are not updated through backpropagation. Instead,
it is generated through a hypernetwork whose parameters
are learnt through backpropagation.

4.2. Hypernetwork

The hypernetwork is a meta-model that serves as a
weight generator that can dynamically parameterize a tar-
get model based on the input that it receives. The hyper-
networkH(ξ, τ ;ϕ) is a function that is modeled as a neural
network with parameters ϕ. The hypernetwork takes in two
inputs: a domain embedding ξ and a task embedding τ . As
the setting being studied consists of a variety of tasks over
different domains, we require that the hypernetwork gener-
ates model weights that best befit the data conforming to the
domain-task pair under consideration.

Each task Tk has its own corresponding unique task em-
bedding τk. Note that the task embedding is domain agnos-
tic, meaning that there is a singular task embedding per task
irrespective of whatever domain it’s drawn from. The task
embeddings and hypernetwork parameters are learnt by op-
timizing with respect to the cross-entropy loss computed on
the data associated with each task as we see them. We opti-
mize the following task-specific loss to learn the parameters
while we are at task k in domain d,

Ltask =

Nd
k∑

i=1

Lce(F(xd
ki,H(ξd, τk;ϕ)), ydki) (3)

where Lce is the cross entropy loss. The task-specific loss is
optimized through backpropagation to learn the task embed-
dings and hypernetwork parameters. During backpropaga-
tion, the gradients flow through the classifier, then through
the hypernetwork’s parameters, and finally to the task em-
beddings. The hypernetwork parameters and the task em-
beddings are updated during backpropagation. As for the
domain embeddings, we introduce the mechanism under-
neath their generation in the following section.

An issue with the aforementioned optimization is that the
hyper-network parameters get adapted to the latest task, and
this leads to catastrophic forgetting of the earlier tasks in the
sequence. As the hyper-network gets adapted to generate
the latest task parameters, it fails to generate correctly the
parameters of the initial task classifier. We overcome this by
performing a regularization over the hypernetwork outputs
as we learn them on the new task data. The regularization
[29] takes the following form:

Lreg =
1

k − 1

k−1∑
j=1

||H(ξ∗d , τj ;ϕ∗)−H(ξd, τj ;ϕ)||2 (4)

where ϕ∗ and ξ∗d are the frozen hypernetwork weights
and frozen domain embedding weights respectively before
learning the current task k in the domain d. The regulariza-
tion ensures that while learning on the data from task k, the
current hypernetwork parameters (ϕ) will be able to gen-
erate the parameters associated with previous tasks similar
to the one generated using frozen hyper-network weights.
This regularization term over all the previous tasks ensures
that the hypernetwork will be able to generate correctly the
parameters for the previous tasks given the corresponding
task embedding. Consequently, the parameters of the hy-
pernetwork are learnt by considering the following total loss
function:

Ltotal = Ltask + β · Lreg (5)

where β is a hypernetwork regularization hyperparameter
that controls the magnitude of regularization.

4.3. Domain Predictor

The Domain Predictor R(ξ;λ) is a fully connected net-
work that maps the drift between two consecutive domains.
The domain predictor is conditioned on the prior domain
embedding and predicts the current domain embedding.
The domain predictor is trained end to end along with the
hypernetwork, across all tasks. As the problem setting con-
sists of a sequence of tasks within each domain, the domain
predictor learns through one task after another, leading to a
drift in its parameters towards the later tasks. This puts the
domain predictor at risk of predicting a drifted domain em-
bedding that no longer generates ideal classifier weights in
conjunction with the task embeddings for the earlier tasks,
resulting in catastrophic forgetting of the earlier tasks. To
mitigate this, we regularise the output of the domain pre-
dictor along with the hypernetwork parameters. This regu-
larisation is over all previous tasks. We regularise the out-
puts of the hypernetwork with its parameters ϕ and the do-
main embedding ξd in their current states with the outputs of
the frozen hypernetwork with its parameters ϕ∗ and domain
embedding ξ∗d , both frozen prior to learning the current task.
This leads to the following regularisation term formulation:

Lreg =
1

k − 1

k−1∑
j=1

||H(ξ∗d , τj ;ϕ∗)−H(R(ξd−1;λ), τj ;ϕ)||2

(6)

Summarily, the overall optimisation objective is as fol-
lows:

7525



h
1
1

x 1
1

h
2
1 h

2
1

x 1
2y1

1 x 1
3y1

2

S1
1 S1

2 S1
3 S2

1 S2
2 S2

3

h
1
2

x2
1y1

3

h
2
2 h

3
2

x2
2y2

1 x2
3y2

2 y2
3

time

1

1 1 1

2 3 11 2 31 1 2 2 2

Legend

Domain Predictor

Hypernetwork

Classifier

Frozen Parameters

Figure 3. Unfolded schematic of the architecture showcasing embedding combinations used across domains. The figure contains three
tasks over two domains. (Diagram best viewed in color)

arg min
τk,ϕ,λ

Nd
k∑

i=1

Lce(F(xd
ki,H(R(ξd−1;λ), τk;ϕ)), y

d
ki) +

β · 1

k − 1

k−1∑
j=1

||H(ξ∗d , τj ;ϕ∗)−H(R(ξd−1;λ), τj ;ϕ)||2

(7)

5. Experiments

For the primary set of experiments, we train the model
on 5 evolving domains continually. Each domain contains a
number of tasks that vary between experiments, the details
of which are presented in the Dataset section that follows.
The results are measured on tasks from a test domain that
is not seen during training. The results presented in 1 are
averaged across all tasks.

5.1. Architecture details

The hypernetwork we employ is a fully connected feed-
forward neural network comprising three hidden layers.
Each hidden layer of the hypernetwork consists of 64 or 100
nodes depending on the experiment (100 for CIFAR10/100
and 64 for the rest). We utilize domain and task embeddings
of dimensions 16 and 32 respectively.

The domain predictor is a fully connected network with
three hidden layers of dimension 64 each. The input to the
domain predictor is the previous domain embedding of di-
mension 16, and the output is the current domain embed-
ding of the same dimension.

Algorithm 1 Training Algorithm
Input: Sequence of tasks, S
Models: Domain Predictor R(ξ;λ), Hypernetwork
H(ξ, τ ;ϕ) & Classifier F(x; θ)

1: Initialise domain embedding ξd
2: Initialize list of task embeddings T
3: for d = 1, 2, ..., D do
4: for k = 1, 2, ...,K do
5: if d ̸= 1 then
6: ξd ← R(ξd−1;λ)
7: end if
8: θdk ← H(ξd, τk;ϕ)
9: ŷdk ← F(xd

k; θ
d
k)

10: if k = 1 then
11: loss← Ltask

12: else
13: loss← Ltask + β · Lreg

14: Optimize loss w.r.t τk, ϕ, λ
15: ϕ∗ ← ϕ
16: ξ∗d ← ξd
17: end if
18: end for
19: end for

The main network or the classifier is a CNN [13], specif-
ically a ResNet [6]. The Resnet consists of 4 residual blocks
with 8, 8, 32, and 64 feature maps respectively. Each resid-
ual block comprises 2 convolutional layers. The string of
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residual blocks is followed by 2 fully connected layers.
The loss function considered is a cross entropy loss. We

use Adam [9] as the optimizer. Adam is configured with
exponential decay rates β1 and β2 of 0.90 and 0.99, respec-
tively, and a learning rate of 0.001.

5.2. Datasets

To illustrate the problem of continuously evolving do-
mains, we employ the following classification datasets each
demonstrating distribution shift through different transfor-
mations. The specific values of each domain are highlighted
in the figure that follows.

(1) MNIST: The MNIST [3] dataset comprises of
grayscale images of handwritten digits. The digits are se-
quentially paired in this setup to form 5 binary classification
tasks. To simulate a continuous distribution shift, the digits
are rotated by increments of 30 degrees to create 5 training
domains and one test domain.

(2) CIFAR-10: CIFAR-10 [12] contains ten classes of
images of various real-world objects which we organize se-
quentially into five tasks. To simulate drift, we continu-
ously reduce the image exposure by changing gamma val-
ues across domains by increments of 0.2. The evolution
portrayed here amounts to a lossy transformation of infor-
mation as with a reduction in exposure, the information re-
tained in each subsequent domain is less than the previous
one.

(3) CIFAR-100: To further demonstrate that our ap-
proach can scale to more domains and tasks, we employ the
CIFAR-100 [11] dataset and organize it in a similar fashion
to CIFAR-10 resulting in 10 tasks across 15 training do-
mains ranging from γ = 1.0 to γ = 3.8 and 1 test domain
at γ = 4.0.

(4) Eurosat: Eurosat [8] is a collection of Sentinel-2
satellite images of different land cover types. We use the
variant with only the RGB spectral bands. Similar in fash-
ion to the above two setups, the ten classes of Eurosat are
organized into 5 binary classification tasks. We incremen-
tally add cloud cover following the method proposed in [7]
to showcase distribution shift through progressive occlusion
of data. This too is a lossy evolution as increasing parts of
the images are occluded.

(5) FER: The Facial Expression Recognition dataset [4]
entails images of human faces displaying 7 different types
of emotions. We structure the 7 classes into two tasks of 4
and 3 classes respectively. We progressively perturb the im-
age by adding increasing levels of Gaussian noise by keep-
ing the mean at 0 and varying the standard deviation across
domains in increments of 10 to create 5 training domains
and 1 test domain.

(6) FMNIST-: Fashion- [32] utilizes the Fashion
MNIST dataset that contains 28 x 28 grayscale images of
10 types of apparel. We organize this into tasks in a man-
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Downsample
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Figure 4. Figure displaying how each dataset temporally evolves.
We choose a wide array of transformations ranging from loss-
less transformations such as rotation in the MNIST dataset to
lossy transformations such as noise perturbation in FER. We train
EvoCL on 5 training domains and test it on the 6th domain which
is unseen during training.

ner similar to MNIST. We exhibit distribution shifts through
different viewing distances. To simulate this, we progres-
sively reduce the image resolution in steps of 4 pixels on
both dimensions and pad with black pixels to keep the im-
age dimensions constant at 28 x 28.

(7) FMNIST+: Fashion+ proceeds the same way as the
previous experiment but the order is reversed. So we start
with a small image and progressively grow its size in similar
steps as in the above experiment.

(8) TinyImageNet: We utilize the TinyImageNet dataset
comprising 200 classes that are split into 20 tasks of 10
classes each. Then, we progressively blur the images to
simulate a domain evolution over tasks. Specifically, we
apply Gaussian Blur over the image with increasing kernel
sizes ranging from 1 to 9 for the training domains and 11
for the test domain.

5.3. Baselines

We consider the following six baselines:
(1) Last Domain. Last Domain is a continual learning

baseline wherein we train a hypernetwork only on the last
training domain. In other words, we train on the domain
closest to the test domain.
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Table 1. Classification accuracy in a Task Incremental Setting on test domains comparing EvoCL with baselines

Last Last+ ADTI ADTI+ DRAIN ProTune EvoCL

MNIST 90.982 ± 0.54 93.756 ± 0.82 82.697 ± 0.23 93.233 ± 0.61 85.961 ± 0.88 94.002 ± 0.79 96.752 ± 0.95

CIFAR10 69.934 ± 1.09 62.231 ± 1.22 69.561 ± 1.45 78.992 ± 1.30 78.340 ± 1.27 85.432 ± 1.22 90.944 ± 1.15

CIFAR100 55.682 ± 1.13 56.232 ± 1.34 71.841 ± 1.09 82.121 ± 1.21 55.735 ± 1.24 82.834 ± 1.43 83.512 ± 1.11

Eurosat 61.612 ± 0.68 83.772 ± 0.92 71.014 ± 1.07 85.723 ± 0.69 68.836 ± 0.81 89.046 ± 1.24 93.312 ± 0.76

FER 70.563 ± 1.61 73.434 ± 0.96 85.214 ± 0.64 85.972 ± 0.85 74.012 ± 0.73 88.212 ± 0.68 90.002 ± 0.71

FMNIST+ 87.642 ± 0.73 87.301 ± 0.91 86.935 ± 0.70 96.823 ± 0.78 93.421 ± 0.84 93.435 ± 1.16 98.563 ± 0.77

FMNIST- 82.432 ± 0.81 88.991 ± 1.29 74.254 ± 0.78 93.752 ± 0.82 90.226 ± 0.84 91.203 ± 0.80 99.111 ± 0.85

TinyImgNet 60.432 ± 1.70 61.672 ± 1.63 50.992 ± 1.33 51.631 ± 1.63 51.402 ± 1.27 54.026 ± 1.35 63.913 ± 1.38

(2) Last Domain +: This setup is an extension of the
above wherein we follow the same training procedure but
fine-tune the model on a small subset of the test set. We
then evaluate the performance of the rest of the test set.

(3) All Domain Task Incremental: ADTI is a standard
continual learning setup wherein each task consists of sam-
ples from all domains. Citing the MNIST example, we first
train on the first binary classification task between 0 and
1 with samples at all the training domain angles. We then
move on to training on the subsequent tasks in a continual
fashion and finally test on test domain tasks. The model
architecture is again similar to the two baselines stated pre-
viously.

(4) ADTI+: This setup is an extension of the above
wherein we follow the same training procedure but fine-
tune the model on a small subset of the test set. We then
evaluate the performance on the rest of the test set.

(5) Progressive Finetuning: In progressive fine tuning
(ProTune), we train the model solely on the first training
domain and fine-tune it over and over with the successive
training domains. We then test it on the test domain.

(6) DRAIN: Unlike the above baselines, DRAIN [1] is
not a continual learning baseline. In this setup, there is no
notion of tasks. Instead, all the classes of a domain are
treated as a single multi-class classification problem. The
domains, however, do arrive in sequence.

5.4. Results

The classification accuracy as averaged over the tasks on
the test domains is presented in Table 1. This is in a Task
Incremental Learning setting. Class Incremental Learning
results are delegated to the Appendix. Empirically, we ex-
hibit that EvoCL outperforms all the baselines across exper-
iments involving all the datasets. EvoCL easily outclasses
rudimentary baselines such as Last Domain and Last Do-
main +. Baselines utilizing the entire domain spectrum in an
offline setting (ADTI and ADTI+) also pale in comparison

to EvoCL’s numbers. Conversely, we also consider DRAIN
as a baseline where the domains occur in sequence, with
each domain possessing all tasks in an offline arrangement.
DRAIN’s performance is also eclipsed by EvoCL. Progres-
sive Finetuning that iteratively fine tunes on newer domains,
as they arrive, performs best among all baselines but is still
outclassed by EvoCL.

5.4.1 Forward Transfer

As evident from Figure 5, we can observe a strong forward
transfer of knowledge across domains as the model learns.
The plot shows progressively increasing accuracy with each
subsequent domain. In fact, with training on just a single
epoch on each task, the model’s parameters can converge
which can be attributed to good forward transfer character-
istics.

5.4.2 Hypernetwork Regularisation

Experiments on varying hypernetwork regularization
demonstrate that the best value of regularization varies from
dataset to dataset. However, a regularization value of β =
0.1 demonstrates superior test domain accuracy numbers
on the majority of datasets. The results of the comparison
study are compiled in Table 3.

5.4.3 Ablation Studies

To validate our claims that the Domain Predictor plays a key
role in modeling the temporal evolution of the domains, we
undertake an ablation study wherein we compare the stan-
dard EvoCL architecture with a version bereft of the domain
predictor. The Domain Predictor-less version is composed
solely of a hypernetwork with task embeddings that gener-
ate classifier parameters. This modified version is trained
in the same manner as the standard EvoCL model with the
same order of tasks and domains. The difference is that
the modified version is oblivious to task evolution and the
scenario plays out similarly to a model that is fine-tuned
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Table 2. Results of the ablation demonstrating the architecture bereft of (i) task embeddings as displayed in the first row, (ii) Domain
Predictor and domain embeddings as represented in the middle row; compared with the complete EvoCL architecture with both task and
domain embeddings as showcased in the last row.

MNIST CIFAR 10 CIFAR100 Eurosat FER FMNIST- FMNIST+ TinyImageNet

w/o τ 85.445 78.504 54.856 64.624 73.245 92.296 90.824 49.231

w/oR 92.495 82.383 82.728 85.736 87.758 92.737 91.029 52.573

EvoCL 96.882 91.324 83.235 93.891 90.472 98.982 99.213 64.338

Table 3. A comparison of results from varying the hypernetwork regularisation hyperparameter β

β MNIST CIFAR 10 CIFAR100 Eurosat FER FMNIST- FMNIST+ TinyImageNet

1e-1 96.882 91.324 83.235 93.891 90.472 98.982 99.213 64.338

1e-2 96.756 91.287 83.724 93.720 90.954 99.877 98.802 62.234

1e-3 96.192 90.235 93.245 93.831 88.472 94.213 96.932 61.845

progressively as new domains are presented one after an-
other. Similarly, we perform yet another ablation retaining
the Domain Predictor but removing task embeddings. The
experimental setup again is identical to the above two. The
results of the ablation are presented in the Table 2.

The ablation studies demonstrate the superior perfor-
mance of having both Domain Predictor and Hypernet-
work incorporated in the EvoCL architecture when com-
pared with just a hypernetwork or without task embeddings.
This is due to the fact that EvoCL can accurately capture
the shift in domains through its Domain Predictor compo-
nent and model the different tasks via its hypernetwork. On
the contrary, losing out on task embeddings hampers the
model’s ability to distinguish between a new task and an al-
ready learnt task appearing from a new domain. Similarly,
having the Hypernetwork alone is akin to progressive fine-
tuning of the model which inhibits learning of any pattern
in the domain evolution.

The experiments were performed on an x64 machine
with an Intel Xeon Gold 6130 CPU, with 32 cores, clocked
at 2.10GHz. The system is equipped with 128 gigabytes
of RAM, an Nvidia A6000 GPU with 48 GB VRAM, and
10752 CUDA cores.

6. Conclusion

We introduce a novel problem setting comprising both
continual learning and domain evolution. To tackle the chal-
lenge, we propose a hybrid hypernetwork architecture con-
ditioned on learnable task embeddings and domain embed-
dings generated by a domain predictor. We perform exten-
sive experiments on a wide variety of datasets, each show-
casing domain evolution through different styles of progres-
sive transformations. We compare our model with com-
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Figure 5. Demonstration of forward transfer characteristics across
domains during training. Individual task accuracy and average ac-
curacy on the CIFAR10 dataset are presented.
petitive baselines in a variety of experiments and demon-
strate state-of-the-art performance on the aforementioned
datasets. One limitation of the model is that it expects all
the tasks to evolve at the same rate which might not nec-
essarily be the case in a practical scenario. We can en-
counter tasks that evolve at different rates which the cur-
rent approach cannot capture. With EvoCL, we open a new
problem direction and set the stage for future works in this
direction.
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