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Figure 1. Our face anonymization technique preserves the original facial expressions, head positioning, eye direction, and background
elements, effectively masking identity while retaining other crucial details. The anonymized face blends seamlessly into its original
photograph, making it ideal for diverse real-world applications.

Abstract

Current face anonymization techniques often depend on
identity loss calculated by face recognition models, which
can be inaccurate and unreliable. Additionally, many meth-
ods require supplementary data such as facial landmarks
and masks to guide the synthesis process. In contrast, our
approach uses diffusion models with only a reconstruction
loss, eliminating the need for facial landmarks or masks
while still producing images with intricate, fine-grained de-
tails. We validated our results on two public benchmarks
through both quantitative and qualitative evaluations. Our
model achieves state-of-the-art performance in three key
areas: identity anonymization, facial attribute preserva-
tion, and image quality. Beyond its primary function of
anonymization, our model can also perform face swapping
tasks by incorporating an additional facial image as input,
demonstrating its versatility and potential for diverse appli-
cations. Our code and models are available at https://
github.com/hanweikung/face_anon_simple.

1. Introduction

In the digital age, our identity and privacy are more vul-
nerable than ever. People have shared personal informa-
tion and photos online over recent decades, while advance-
ments in facial recognition technology have made it easier
to identify individuals from a single image. This combina-
tion allows for the potential linking of our faces to personal
information, posing a significant threat to our privacy and
identity. In response, various regions have enacted privacy
protection laws. These include the European Union’s Gen-
eral Data Protection Regulation (GDPR) [1], California’s
Consumer Privacy Act, and Japan’s amended Act on the
Protection of Personal Information. Such legislation man-
dates that organizations implement security measures and
maintain transparency in their handling of personal data.

Face anonymization is essential for protecting individ-
uals in photos and videos, thereby reducing the risk of
personal data being compromised or misused. Traditional
methods like blurring and pixelation are common but have
significant drawbacks. These techniques are vulnerable to
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reconstruction attacks [50], degrade image quality, and ap-
ply a uniform transformation across the image without con-
sidering which areas are most critical to anonymize.

These limitations make traditional methods impracti-
cal for professionals who need to preserve facial expres-
sions and backgrounds. For example, medical practition-
ers may need to anonymize patient images for case stud-
ies or research while retaining crucial facial cues that indi-
cate symptoms. In creative fields, documentary filmmakers
might want to protect interviewees’ privacy without losing
the narrative impact of their facial expressions and reac-
tions. They may also wish to replace an interviewee’s face
with a specific virtual identity to enhance storytelling clar-
ity. In contrast, recent advances in deep learning have led
to more effective anonymization techniques that enhance
both privacy protection and usability. Generative Adver-
sarial Networks (GANs) [16], in particular, can anonymize
faces by replacing the original with computer-generated al-
ternatives [10, 24, 35, 48]. However, these methods are not
without challenges. Some fail to produce natural-looking
faces [35], while others [24] struggle to preserve crucial el-
ements like facial expressions, eye direction, head orienta-
tion, background details, clothing, and accessories. These
limitations greatly restrict the practical application of these
techniques.

This paper presents a diffusion-based method for face
anonymization. Our goal is to ensure that de-identified fa-
cial images remain useful for facial analysis tasks, including
pose estimation, eye-gaze tracking, and expression recog-
nition, as well as for broader uses such as interviews and
films. Therefore, we approach face anonymization similarly
to face swapping, aiming to generate an image where a per-
son’s face is replaced by another person’s face while main-
taining the original facial expression, pose, eye gaze, and
background. We designed a framework that initially per-
forms realistic and seamless face swaps given both source
and driving images. At its core is a denoising UNet ar-
chitecture, similar to those used in text-to-image diffusion
models, which generates the final output. We enhance
this with an image feature extraction mechanism that trans-
fers fine details from input images to the synthesized out-
put throughout the diffusion process. The model is then
trained in a dual setting: conditionally with a source im-
age and unconditionally without a source image. This dual
method allows the model to replace faces using one sin-
gle image input. To create a distinct anonymized identity,
the system reverses the original face’s most distinctive fea-
tures. This technique produces a believable anonymized
face while preserving the original image’s quality and es-
sential facial characteristics.

In summary, our contributions are:

• A convenient method that produces realistic
anonymized faces while preserving attributes,

without needing external data like facial landmarks or
masks as required by existing techniques.

• A diffusion-based network that achieves good perfor-
mance with a single, simple loss function, in contrast
to GAN-based models requiring multiple, carefully de-
signed loss functions.

• Simple control of the anonymization level using a sin-
gle parameter.

• Versatility beyond anonymization, including the abil-
ity to perform face swapping tasks with an additional
facial image input.

2. Related Work
Face Anonymization. Most deep learning-based image
anonymization methods have been developed using GANs
and target not only faces [4, 10, 11, 17, 19, 24, 29, 42, 48, 49,
53,56] but also bodies [9,23] and other objects [46]. In this
study, we focus on face anonymization.

Many GAN-based face anonymization methods use con-
ditional GANs as their foundation. These techniques typ-
ically require supplementary data to create anonymized
faces. For example, IDeudemon [53] uses face parsing
maps or masks to segment image components, while Sun
et al. [48]’s method employs facial landmarks to guide face
inpainting. CIAGAN [35] relies on masks and facial land-
marks, and DeepPrivacy [24] utilizes bounding boxes and
facial landmarks. These methods depend on additional in-
formation, which can be a limitation if the required data are
missing or flawed. In contrast, our approach does not rely
on such auxiliary data to anonymize faces.

Other techniques like RiDDLE [29] and FALCO [4] use
GAN inversion. They map facial images to the latent space
of a pre-trained StyleGAN2 [28], leveraging its capabilities
to produce high-quality images. However, these techniques
may inadvertently alter important identity-irrelevant details
such as facial expressions, background, body parts, and ac-
cessories. Our method treats face anonymization similarly
to face swapping and incorporates image feature extraction
networks to capture detailed input features. This allows us
to generate anonymized faces that seamlessly integrate with
the existing image while preserving the overall integrity of
the image.

StyleFace [34] embeds identity vectors from a pre-
trained face recognition network into the StyleGAN2 [28]
model’s latent space, sampling random vectors for
anonymization. While this approach generates realistic
faces, it risks revealing the original identity if the sampled
vector is too close to the original identity. In contrast, our
model offers an adjustable anonymization degree, allowing
users to control the distance between the input and gener-
ated images for effective anonymization.
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Figure 2. Our network leverages the face swapping mechanism for face anonymization. In both cases, the system encodes source and driv-
ing images into latent space and processes them through respective ReferenceNet models. These images are also encoded into intermediate
embeddings that guide the UNet via cross-attention. The UNet incorporates states from both ReferenceNet models through concatenation,
enabling the transfer of details from source and driving images through self-attention. Using these learned features and intermediate em-
beddings, the UNet generates the output image. For face anonymization, we use the same image as both source and driving input. However,
we modify the intermediate embedding and state from the source ReferenceNet model to achieve the desired anonymization effect.

Face Swapping. Face swapping techniques can be cat-
egorized into two main approaches: source-oriented and
target-oriented methods.

Source-oriented methods [31,36,55] begin by transform-
ing the source face to match the expression, pose, and light-
ing of the target face, and then replace the target image with
this modified source face. For example, FSGAN [36] em-
ploys a two-stage process: it first uses a reenactment net-
work for expression and pose transfer, and then an inpaint-
ing network to blend the source face into the target im-
age. Similarly, E4S [31] uses face reenactment to align the
source image with the target’s pose, followed by swapping
faces using masks and texture information. However, these
methods are sensitive to the source image; exaggerated ex-
pressions or extreme poses in the source can adversely af-
fect the swapping result.

Target-oriented methods [8, 12, 15, 25, 30, 39, 41, 45, 52],
on the other hand, modify the features of the target image
to incorporate the source identity. Some of these meth-
ods [12, 25], based on autoencoder architecture, can swap
between specific identities, while others, like GAN-based
approaches [8, 15, 30, 39, 41, 45, 52], can generalize to var-
ious identities by merging the source identity and target at-
tributes at the feature level. For example, SimSwap [8] of-
fers an efficient framework for high-fidelity face swapping
by injecting the source identity into the target features and
using a weak feature matching loss to maintain attributes.
These methods are more adept at handling variations in the
source face compared to source-oriented methods. How-
ever, they often struggle to balance competing objectives,
such as reconstruction loss and identity loss.

Our diffusion-based approach differs from these meth-
ods by relying on a single reconstruction loss for simplicity,
while still generating images that both look natural in the
target context and preserve the source face’s identity.

3. Methodology
Our approach to face anonymization is similar to face

swapping, but with a key difference. In face swapping, two
images are used: a driving image (containing the face to be
replaced) and a source image (providing the new face). Our
face anonymization method, however, requires only one in-
put image. Therefore, we developed a framework that ini-
tially learns to perform realistic face swaps using both driv-
ing and source images. We then expanded this model to
work in two scenarios simultaneously: one where a source
image is provided, and the other where no source image
is available. This dual training allows the model to gener-
ate a new face even when given just one image. The re-
sult is a system that can synthesize a convincing, anony-
mous face while preserving the original image’s facial ex-
pression, head posture, gaze direction, and surrounding el-
ements. This achieves our main goal: replacing a person’s
face without revealing their identity or compromising the
image’s overall quality.

3.1. A New Paradigm

We aim to address several common limitations in current
face anonymization and face swapping techniques.

First, while facial landmarks and masks provide a struc-
tured approach for face anonymization [24, 35, 48, 53] and
face swapping [31, 36, 52, 58, 60], they have inherent limi-
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tations that can compromise the quality, realism, and flex-
ibility of generated images. These methods identify major
features like the eyes, nose, and mouth but miss finer de-
tails such as skin texture and nuanced expressions. This
oversimplification results in less realistic and detailed facial
representations compared to methods that consider pixel-
level information. Additionally, the quality of the generated
face heavily relies on the accurate detection of landmarks
and masks; inaccuracies can lead to distorted or unrealistic
faces. Moreover, facial landmarks and masks struggle to ef-
fectively capture dynamic expressions and poses, limiting
the ability to generate faces with a wide range of emotions
and orientations.

Second, using ArcFace [13], a loss function in deep face
recognition models, to learn discriminative facial features
for face anonymization [4, 29, 42, 56] can have drawbacks.
The biases in these encoded features can negatively affect
the quality of the anonymized faces. As shown in Fig. 3, Ar-
cFace [13] can sometimes produce misleading identity dis-
tances, indicating greater distance between two images of
the same person than between two images of different indi-
viduals. These errors typically stem from variations in pose,
lighting, facial expressions, occlusions, or image quality.

Lastly, training models for face swapping often involves
optimizing multiple loss functions, such as reconstruction
loss and identity loss, to address different aspects of the out-
put. However, these losses can sometimes conflict, leading
to suboptimal results. This issue often arises from insuf-
ficient disentanglement between identity and non-identity
features. Methods that prioritize preserving the source
identity, like those using 3D priors [52], often lose the
target’s non-identity details. Conversely, approaches like
Faceshifter [30] and DiffSwap [58], which focus on pre-
serving the target’s low-level attributes, risk allowing the
target’s facial identity to appear in the final swapped image.

To overcome these limitations, we use networks that cap-
ture and utilize pixel-level information, enhancing the qual-
ity of the generated faces without relying on additional fa-
cial landmarks or masks. Previous research [3, 22, 51, 54]
has shown that these networks effectively preserve the fine-
grained details of input images. Additionally, we simplify
the training process of our networks by employing a single
mean squared error loss function, avoiding the complexi-
ties associated with multiple loss functions and the depen-
dence on facial features encoded by face recognition mod-
els. This approach offers several advantages, including sim-
plicity, stability, and improved quality.

3.2. Architecture

As illustrated in Fig. 2, our architecture uses the Latent
Diffusion Model [40], based on a UNet structure, to produce
the final output images. Stacked on top of this UNet are
two ReferenceNet [22] models that transfer fine-grained de-

Original Different IDs Same ID

ID Dist. 0.406 0.448 0.462 0.637

ID Dist. 0.577 0.577 0.600 0.636

LargeSmall (A larger value means less like original’s identity.)

Figure 3. For each row, we show the identity distance of each
image from the original image in that row, as calculated by the Ar-
cFace [13] recognition model. The results indicate that the recog-
nition model can generate inaccurate identity distances. It may
assign a greater identity distance to two images of the same per-
son than to two images of different people due to variations in head
pose, facial expressions, or lighting conditions.

tails from the input images. The first ReferenceNet model,
which we call the source ReferenceNet model, takes the
source images as input. These images provide informa-
tion about the desired identity to be transferred. The sec-
ond model, named the driving ReferenceNet model, takes
the driving images as input. These images set the non-
identity related conditions, such as pose, expression, and
background details.

ReferenceNet shares the same structure as UNet. It cap-
tures details from input images and modulates the UNet
through self-attention at each diffusion step. The process
unfolds as follows: First, an input image is encoded into
latent space using the CLIP [38] image encoder and then
passed to ReferenceNet. Within each attention module of
ReferenceNet, self-attention is applied to extract features
from the CLIP-encoded image. These extracted features
serve as input states for corresponding attention modules
in the UNet. Specifically, the self-attention modules within
the UNet receive the concatenated states from all three
models—the two ReferenceNet models and the UNet itself.
The output from these modules is split into three parts, with
one part sent to the UNet’s cross-attention module for fur-
ther processing. This step is also depicted in Fig. 2.

Our architectural design offers three main advantages.
First, due to their similar network structures, ReferenceNet
can retain the extensive knowledge and capabilities that the
UNet acquired from a large dataset by adopting its pre-
trained weights. This approach prevents the training of Ref-
erenceNet from compromising the UNet’s performance and
enhances both ReferenceNet’s performance and training ef-
ficiency. Second, the UNet can utilize knowledge learned
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by ReferenceNet because of their structural similarities and
shared initialization weights. This allows the UNet to ex-
tract and incorporate relevant features from ReferenceNet
during training, as both networks operate in a shared fea-
ture space. Finally, by separating the data flows for source
and driving images, the UNet can more effectively identify
which features of the driving image to retain and which to
replace with those from the source image. This clear dis-
tinction is crucial for synthesizing the final output image
accurately.

3.3. Anonymization

Our framework’s training method enables the UNet to
selectively learn identity information from the source Ref-
erenceNet model and non-identity-related information from
the driving ReferenceNet model. The UNet then combines
these two types of information to synthesize a new facial
image. To anonymize a facial image, we use the same im-
age as input for both source and driving ReferenceNet mod-
els, while adjusting intermediate inputs to the source Refer-
enceNet and UNet models. Specifically, we modify two key
components:

1. Intermediate image embedding. We adjust the inter-
mediate image embedding from the image encoder us-
ing this equation:

Z ′
img = (1− d) · Zimg (1)

Here, Z ′
img is the adjusted embedding, d controls the

degree of anonymization, and Zimg is the original em-
bedding. As d increases, more identity information is
removed from Z ′

img . This adjusted embedding influ-
ences both the source ReferenceNet (via self-attention)
and the UNet (via cross-attention).

2. Source ReferenceNet state. We modify the state of the
source ReferenceNet using this equation:

S′ = (1− d) · Scond + d · Suncond (2)

S′ is the modified state, d is the same factor controlling
the degree of anonymization, Scond is the conditional
state (with identity information), and Suncond is the
unconditional state (without identity information). As
d increases, S′ shifts further from the conditional state
towards the unconditional state. The modified state S′

is then incorporated into the UNet’s intermediate lay-
ers using self-attention.

Simply put, the equations demonstrate that by increasing
the parameter d, the original identity is gradually removed
from the resulting image while an unknown identity is pro-
gressively introduced. This process transforms the original

identity into a different one, effectively achieving the de-
sired anonymization.

4. Experiments

This section includes our experimental setup, proce-
dures, findings, and approaches used to analyze our results.

4.1. Implementation Details

We trained our model using three datasets: CelebRef-
HQ [32], CelebA-HQ [26], and FFHQ [27]. Face recog-
nition [44] was used to identify images of the same per-
son, and for each identity, two images were randomly se-
lected: one as the source and one as the ground truth.
A synthesized driving image was then generated by using
a state-of-the-art face-swapping model [18] to replace the
face in the ground truth image with another person’s face.
These three images—the source, synthesized driving, and
ground truth—were used to train our model to learn iden-
tity changes. For a detailed breakdown of the number of
images used in training, please refer to our supplementary
material.

The ReferenceNet models and the UNet were initialized
from a pre-trained Stable Diffusion [40] v2.1 model. To in-
corporate classifier-free guidance [21], we applied the un-
conditional mode to a random 10% of the training data,
while the conditional mode was used for the remaining
90%.

During training, we discovered that focusing solely on
the attention modules in the ReferenceNet model was as ef-
fective as training the entire model. This finding aligns with
our understanding that these attention layers play a crucial
role in shaping the structure and content of the generated
images. As a result, we chose to optimize only the weights
of the UNet and the attention modules in the ReferenceNet
models. This targeted strategy allowed us to streamline
our training process while maintaining effectiveness. We
trained the model at a final output resolution of 512 × 512
over 435,000 steps. The training utilized the AdamW [33]
optimizer with a batch size of 1 and 8 accumulation steps,
maintaining a fixed learning rate of 1e-5. This process was
conducted on two A6000 GPUs.

We also observed that using only synthesized images as
driving images led to a problem where our model performed
well only when the driving image was synthesized. To en-
hance performance and generalization, we adopted strate-
gies from curriculum learning [5]. Initially, we trained the
model with both real and synthesized driving images. When
the driving image was real, we used its face-swapped coun-
terpart as the ground truth and an image of the person orig-
inally used to swap the face in the driving image as the
source. As training progressed, we transitioned to using
only synthesized images as driving images and fine-tuned
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Original d = 0.3 d = 0.6 d = 0.9 d = 1.2

ID Dist. 0.151 0.262 0.782 1.080

ID Dist. 0.208 0.281 0.408 0.951

LargeSmall (A larger value means less like original’s identity.)

Figure 4. Facial images generated with different degrees of
anonymization. Each generated image reflects a different de-
gree of anonymity applied to the original face. Alongside each
generated image is a cosine distance score, calculated using the
FaceNet [44] recognition model. This score quantifies how differ-
ent the anonymized face is from the original in terms of identity
features.

Original Seed 32 Seed 56 Seed 68 Seed 81

ID Dist. 0.578 0.444 0.986 0.568

ID Dist. 0.860 0.888 0.865 0.906

Figure 5. Various anonymized versions created from a single orig-
inal identity, each using a different integer seed value. For each
anonymized version, we present the cosine distance from its orig-
inal identity, calculated using the FaceNet [44] recognition model.

the model solely on real images as ground truth. This ap-
proach allows the model to first learn fundamental repre-
sentations from a diverse set of data and then improve its
capability to generate more realistic images.

Throughout this study, we maintained consistent param-
eters for image generation. We used the DDPM [20] al-
gorithm with 200 denoising steps and a guidance scale
value [21] of 4.0 for all examples presented in this paper.

4.2. Achieving Diverse Anonymization Results

Two methods allow us to vary anonymization results.
First, we can modify the floating-point value d, defined in
Eqs. (1) and (2), which controls the anonymization inten-
sity. Higher d values produce images that deviate more from

the original, as Fig. 4 demonstrates. When d surpasses 1,
the process moves in the opposite direction of the original
identity’s defining characteristics, ensuring the anonymized
identity is not overly similar to the original. Second, we can
use different integer seed values. This change introduces
different initial Gaussian noise, leading to varied outcomes,
as shown in Fig. 5.

4.3. Baseline Comparisons

Baselines. We benchmarked our model against three lead-
ing face anonymization methods (DP2 [23], FALCO [4],
and RiDDLE [29]) and three leading face swapping meth-
ods (DiffSwap [58], BlendFace [45], and InSwapper [18]).
For evaluation, we used images not included in the training
datasets. Specifically, we selected 1,000 images each from
CelebA-HQ [26] and FFHQ [27], totaling 2,000 images for
testing.

Evaluation Metrics. We evaluate the generated facial im-
ages using several metrics: re-identification rate, face shape
distance, pose distance, gaze distance, expression distance,
and image quality.

To calculate the re-identification rate, we extract iden-
tity vectors using the FaceNet [44] recognition model and
compute the cosine similarity to measure identity distance.
For each generated face in the test set, we find the most
similar face within the same test set. If this face matches
the original face used for generation, we increment the re-
identification count by one; otherwise, the count remains
unchanged.

Face shape and expression distances are assessed us-
ing a face reconstruction model [14]. This model pre-
dicts 3DMM [6] coefficients for both generated and original
faces, allowing us to calculate the L2 Euclidean Distance
between these coefficients.

For pose distance, we use a head pose estimation
model [43] to predict the orientation of both the generated
and original faces. We then calculate the quaternion angular
distance between these orientations. Gaze distance is com-
puted similarly. We employ a gaze estimation model [2] to
predict the gaze direction of both the generated and origi-
nal faces, then calculate the quaternion angular distance be-
tween these predicted directions.

Image quality is measured using an Image Quality As-
sessment (IQA) network [7] specifically trained on a face
IQA dataset [47], which is ideal for evaluating the quality
of facial images.

Quantitative Comparison. The quantitative results in
Tab. 1 demonstrate our model’s performance in face
anonymization in comparison to baseline methods. We
did not include the quantitative results for FALCO [4] on
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Identity Distance Attribute Distance Image Quality
Re-ID ↓ Shape ↑ Pose ↓ Gaze ↓ Expression ↓ Face IQA ↑

CelebA-HQ FFHQ CelebA-HQ FFHQ CelebA-HQ FFHQ CelebA-HQ FFHQ CelebA-HQ FFHQ CelebA-HQ FFHQ
DP2 [23] 0.020 0.046 30.297 29.837 0.140 0.194 0.244 0.252 10.139 9.613 0.459 0.480
FALCO [4] 0.005 - 31.816 - 0.088 - 0.258 - 9.290 - 0.757 -
RiDDLE [29] - 0.007 - 36.624 - 0.090 - 0.220 - 10.018 - 0.571
Ours (d = 1.2) 0.053 0.098 33.046 28.971 0.048 0.047 0.161 0.166 8.256 7.769 0.701 0.698
Ours (d = 1.4) 0.008 0.039 53.244 41.695 0.074 0.061 0.190 0.206 13.125 10.899 0.707 0.704

Table 1. Quantitative results on the task of face anonymization for CelebA-HQ [26] and FFHQ [27] test sets, with the best results
highlighted in bold and the second-best results underlined.

the FFHQ [27] test set and RiDDLE [29] on the CelebA-
HQ [26] test set, as they require additional information that
is not readily available. For quantitative results related to
face swapping, please see our supplementary material.

Table 1 indicates that our model, with d = 1.4, ex-
cels in producing faces with highly distinct shapes while
maintaining the original pose and gaze across both datasets.
Conversely, when we set d to a smaller value of 1.2,
our model best preserves all three original facial attributes
(pose, gaze, and expressions) across both datasets. How-
ever, this smaller d comes with lower re-identification per-
formance and face shapes more similar to the original. Gen-
erally, a smaller d value improves attribute preservation, but
results in lower re-identification performance and more sim-
ilar face shapes. This is expected, as the generated image
remains closer to the original.

We recognize that our method does not achieve the low-
est re-identification rates compared to FALCO [4] and RiD-
DLE [29] when assessed by the FaceNet [44] recognition
model. We examined the cases where the recognition model
successfully traced our model’s outputs back to their origi-
nal images. Many involved subjects from underrepresented
groups in our training data, particularly infants and eth-
nic minorities like Asian individuals. This lack of repre-
sentation led to poorer model performance in these scenar-
ios. This data imbalance also explains why our model per-
forms better on the CelebA-HQ [26] dataset compared to
FFHQ [27], as the former contains fewer examples of in-
fants and minority groups. In comparison, RiDDLE [29]
achieves the lowest re-identification rate on the FFHQ [27]
dataset, as it explicitly uses an identity loss term to distin-
guishes between real and anonymized faces. However, it
also relies on several additional loss terms to preserve non-
identity-relevant facial attributes and background. The use
of multiple loss terms can lead to conflicts between different
objectives, potentially resulting in less-than-ideal outcomes.

Regarding image quality, our model ranks second be-
hind FALCO [4]. This may be due to FALCO’s [4] abil-
ity to natively generate higher resolution images (1024 ×
1024) compared to our model’s native resolution of 512 ×
512. While the SDXL [37] model allows us to create im-
ages exceeding 512 × 512 resolution, training and testing
such larger models require significantly more GPU mem-

ory, which is currently beyond our available resources.

Qualitative Comparison. Figures 6 and 7 present qual-
itative comparison results for anonymization tasks on the
CelebA-HQ [26] and FFHQ [27] test sets, respectively. For
face swapping tasks, Fig. 8 showcases two representative
examples. Additional results are available in the supple-
mentary material.

From Figs. 6 and 7, we observe that DP2 [23] sometimes
produces artifacts where the anonymized face does not align
correctly with the position or orientation of the original face
in the image. This issue arises because DP2 [23] approaches
anonymization as an image inpainting task. It first detects
and crops the face region from the input photo, then applies
a predicted mask over the region to be anonymized. An in-
painting generator is then used to fill in these masked area
with an anonymized face. However, if the mask inaccu-
rately removes parts of the image, it can disrupt the inpaint-
ing process, leading to misaligned or distorted results. Our
method overcomes these limitations of inpainting-based ap-
proaches by generating the entire image from a noise map,
avoiding dependency on masks.

We also note that FALCO [4] does not preserve back-
ground details because its design does not include back-
ground elements in its loss functions. Although FALCO [4]
incorporates facial attribute preservation loss, it struggles
with maintaining certain facial features, such as eye di-
rection, because it relies on finding similarity within the
FaRL [59] feature space, which does not encode eye gaze
information. RiDDLE [29] attempts to preserve image
quality and similarity at the perceptual feature level by us-
ing a perceptual loss [57], but it still fails to accurately repli-
cate specific details like eye direction, clothing, and back-
ground elements from the original image. In contrast, our
method effectively modifies identity-related facial features
while preserving non-identity-related details, thanks to its
face-swapping approach and the advantages of its model ar-
chitecture.

4.4. Ablation Study

We conduct an ablation study on our anonymization ap-
proach, focusing on three key design elements related to
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Original Ours
(d = 1.2)

Ours
(d = 1.4)

FALCO [4] DP2 [23]

Figure 6. Qualitative results for the face anonymization task for
the CelebA-HQ [26] test set.

Original Ours
(d = 1.2)

Ours
(d = 1.4)

RiDDLE
[29] DP2 [23]

Figure 7. Qualitative results for the face anonymization task for
the FFHQ [27] test set.

Eqs. (1) and (2): (1) unmodified intermediate image embed-
dings from the image encoder, (2) unmodified states of the
source ReferenceNet model, and (3) modification limited
to intermediate image embeddings from the image encoder
and conditional states of the source ReferenceNet model,
excluding its unconditional states.

Table 2 presents the re-identification performance and
face shape distance for our full method and each individ-
ual design choice. Our analysis reveals that: (1) modifying
only the intermediate image embeddings or only the Ref-
erenceNet states is not enough to improve re-identification

Source Driving Ours InSwapper
[18]

BlendFace
[45]

DiffSwap
[58]

Figure 8. Qualitative results for the face swapping task for the
CelebA-HQ [26] test set in the upper row and the FFHQ [27] test
set in the lower row.

Identity Distance
Re-ID ↓ Shape ↑

CelebA-HQ FFHQ CelebA-HQ FFHQ
embeds a 0.378 0.309 15.756 18.881
states b 0.288 0.545 21.342 16.566
uncond states c 0.159 0.243 17.559 18.867
Ours 0.008 0.039 53.244 41.695

a Ours without modifying intermediate image embeddings
b Ours without modifying ReferenceNet states
c Ours without including unconditional ReferenceNet states

Table 2. Ablation analysis of identity anonymization performance
on the CelebA-HQ [26] and FFHQ [27] test sets, with the best
results highlighted in bold.

performance or increase face shape distinctiveness. (2)
Changing both the intermediate image embeddings and the
conditional states of the source ReferenceNet model, with-
out including its unconditional states, also fails to achieve
significant improvements. (3) The key to substantially en-
hancing re-identification performance and creating less sim-
ilar face shapes lies in a combined approach—modifying
both the intermediate image embeddings and the condi-
tional states of the source ReferenceNet model, while also
incorporating its unconditional states.

The last row of Tab. 2, representing our full method,
demonstrates the effectiveness of this comprehensive ap-
proach.

5. Conclusion
We have introduced our approach leveraging diffusion

models for face anonymization. Our framework eliminates
the need for facial keypoints and masks and relies solely
on a reconstruction loss, while still generating images with
detailed fine-grained features. Our results show that this
method effectively anonymizes faces, preserves attributes,
and produces high-quality images. Additionally, our model
can use an extra facial image input to perform face swap-
ping tasks, demonstrating its versatility and potential for
various facial image processing applications.
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