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Abstract

Scene sketch semantic segmentation is a crucial task
for various applications including sketch-to-image retrieval
and scene understanding. Existing sketch segmentation
methods treat sketches as bitmap images, leading to the
loss of temporal order among strokes due to the shift from
vector to image format. Moreover, these methods struggle
to segment objects from categories absent in the training
data. In this paper, we propose a Class-Agnostic Visio-
Temporal Network (CAVT) for scene sketch semantic seg-
mentation. CAVT employs a class-agnostic object detector
to detect individual objects in a scene and groups the strokes
of instances through its post-processing module. This is
the first approach that performs segmentation at both the
instance and stroke levels within scene sketches. Further-
more, there is a lack of free-hand scene sketch datasets
with both instance and stroke-level class annotations. To
fill this gap, we collected the largest Free-hand Instance-
and Stroke-level Scene Sketch Dataset (FrISS) that con-
tains 1K scene sketches and covers 403 object classes with
dense annotations. Extensive experiments on FrISS and
other datasets demonstrate the superior performance of
our method over state-of-the-art scene sketch segmenta-
tion models. Our code and dataset can be accessed from
https://github.com/aleynakutuk6/CAVT.

1. Introduction
Sketching is a rapid and widely adopted way for humans

to visually express ideas. Especially with the rise of touch-
screen technology, understanding hand-drawn sketches has
become an essential task in the field of human-computer
interaction. The field of sketch understanding includes var-
ious tasks such as sketch recognition, sketch-based image
retrieval, and sketch segmentation. Sketch semantic seg-
mentation stands out as a pivotal task, offering broad ap-
plicability in the analysis of sketches and facilitating tasks
like sketch-based image retrieval. Despite the consider-
able attention given to semantic segmentation in natural im-

Figure 1. Sample scene sketches from FrISS dataset, each paired
with corresponding textual scene descriptions. For each pair, the
left image shows the black-and-white sketch, while the right image
highlights the instance and stroke-level class annotations.

ages [1, 4, 18], this task remains relatively underexplored
in sketches. Earlier studies on sketch segmentation have
mostly concentrated on segmenting single-object sketches
into semantically meaningful parts [14,16,24,28,33,34]. On
the other hand, recent attention has shifted towards scene-
level sketch semantic segmentation [2, 9, 21, 27, 32, 35].

Sketches are processed either as stroke sequences or
bitmap images. Many methodologies treat sketches as im-
ages and address sketch segmentation similarly to image
segmentation tasks [2, 9, 21, 27, 35]. However, this direct
approach often leads to the loss of temporal stroke infor-
mation. As sketches consist of stroke sequences, capturing
the stroke order can significantly enhance semantic segmen-
tation performance. Moreover, current research on scene
sketch segmentation mainly focuses on assigning a class to
each pixel or stroke within a scene, thus segmenting scene
sketches at the class level. Unfortunately, these methods
cannot distinguish between individual objects that belong
to the same class, such as two zebra instances in the same
scene. To overcome these limitations, we introduce the
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Dataset # of Sketches # of Cat. Vector Free-hand Scene-level Publicly Available Annot. Type

QMUL Shoe [29] 419 1 ✓ ✓ C, I
QMUL Chair [29] 297 1 ✓ ✓ C, I
Sketchy [20] 75K 125 ✓ ✓ ✓ C, I
TU-Berlin [7] 20K 250 ✓ ✓ ✓ C, I
QuickDraw [12] 50M+ 345 ✓ ✓ ✓ C, I

SketchyScene [35] 7K+ 45 ✓ ✓ C, I
SketchyCOCO [8] 14K+ 17 ✓ ✓ C, I
SKY-Scene [9] 7K+ 30 ✓ ✓ C
TUB-Scene [9] 7K+ 35 ✓ ✓ C
CBSC [31] 331 74 ✓ ✓ ✓ ✓ C, I
FS-COCO [5] 10K 92-150 ✓ ✓ ✓ ✓ D
SFSD [32] 12K+ 40 ✓ ✓ ✓ C

FrISS (Ours) 1K 403 ✓ ✓ ✓ ✓* C, D, I

Table 1. Summary of the sketch datasets. C, I, and D denote class-level annotations, instance-level annotations, and scene sketch textual
descriptions, respectively. ✓*: the dataset will be publicly available after acceptance.

Class-Agnostic Visio-Temporal Network (CAVT) that pro-
cesses scene sketches and generates stroke-level groupings
of instances without relying on predefined class labels. Our
approach leverages visual information via an object detector
and incorporates the temporal order of strokes using both a
post-processing module and an RGB coloring technique.

The primary challenge for scene sketch semantic seg-
mentation lies in the absence of large-scale scene sketch
datasets. Existing scene sketch datasets are typically
constructed by inserting pre-defined clip-art or free-hand
single-instance sketches into the layouts of reference im-
ages [8, 9, 35]. These datasets preserve the scene sketches
in image format, limiting their utilization in stroke-based
sketch methods. More recently, scene datasets have been
collected by instructing participants to draw scenes based
on reference natural images [5, 32]. However, this often re-
sults in the loss of participants’ natural drawing behavior,
as individuals tend to replicate the object positions and pos-
tures from the reference images.

In this work, we collected the largest Free-hand Instance-
and Stroke-level Scene Sketch Dataset (FrISS), consisting
of free-hand scene sketches in vector format, accompanied
by textual descriptions, verbal audio recordings, and anno-
tations at both the stroke and instance levels. To capture
natural drawing behavior, participants were provided only
with textual scene descriptions during the drawing process,
without being shown any reference images. This approach
ensures that FrISS features a diverse range of scene sketches
that are not mere copies of reference images. Moreover, we
avoided prolonged drawing sessions or multiple attempts,
thus preventing artificially polished scene sketches. In sum-
mary, our main contributions are highlighted as follows:

1. We propose CAVT, a novel scene sketch semantic seg-
mentation pipeline, that utilizes both visual and tem-
poral information in the scene. This is the first study

on scene sketch semantic segmentation that works at
both instance and stroke levels.

2. We introduce FrISS, a densely annotated dataset that
includes 1K free-hand scene sketches covering 403 ob-
ject categories. FrISS can promote future stroke-based
scene-level studies.

3. We conduct extensive experiments on FrISS and other
free-hand scene sketch datasets and show that our ap-
proach achieves state-of-the-art performance.

2. Related Work
2.1. Sketch Semantic Segmentation

Existing works on sketch semantic segmentation mostly
focus on single-object sketch datasets and divide an ob-
ject into its semantically valid parts [14, 16, 24, 28, 33, 34].
On the other hand, scene-level sketch semantic segmenta-
tion aims to distinguish individual object instances within
the scene. Regarding the processing of sketches, these
studies can be divided into two main groups: image-based
and sequence-based. Image-based methods typically treat
sketches as raster images and output pixel-level segmenta-
tion predictions; whereas sequence-based methods utilize
stroke-level information and assign semantic labels to each
stroke in a sketch. Even if the majority of studies on single-
object sketch semantic segmentation lie in the sequence-
based methods [14, 24, 28, 33], there are not many studies
conducted on stroke-level scene sketch semantic segmen-
tation. This is mostly due to the lack of large-scale scene
sketch datasets with stroke-level class annotations.

Prior works on scene sketch semantic segmentation treat
the task as a semantic image segmentation problem, disre-
garding the stroke order [2, 9, 27, 35]. SketchyScene [35]
is the pioneering study that assigns object categories at the
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Figure 2. The overall pipeline of CAVT

pixel level. Ge et al. [9] proposed a deep-shallow fea-
ture fusion network based on DeepLab-v2 [4], examining
the influence of local details on scene sketch segmentation.
Bourouis et al. [2] introduced the first language-supervised
scene sketch segmentation method by utilizing sketch cap-
tions. In contrast, Zhang et al. [32] developed an RNN-
GCN-based architecture, marking the first stroke-level ap-
proach to scene sketch semantic segmentation. Their study
is the most relevant to ours since they also utilize visual, se-
quential, and spatial information on stroke sequences. How-
ever, their code is not publicly available for comparison.

Scene sketch segmentation works mostly focus on as-
signing each pixel or stroke to a specific class in a given
scene. Therefore, different objects belonging to the same
category cannot be distinguished at the instance level. In
contrast, we propose a novel class-agnostic scene segmen-
tation pipeline that can differentiate object instances in a
given scene, regardless of their classes.

2.2. Sketch Datasets

Sketch datasets can be categorized into two primary
types: single-object and scene sketch datasets. Single-
object sketch datasets feature one object instance per sketch,
while scene sketch datasets encompass drawings with mul-
tiple objects. Table 1 provides a summary of the sketch
datasets and our proposed scene sketch dataset, FrISS.

QMUL Shoe [29], QMUL Chair [29], and Sketchy [20]
are multi-modal single-object sketch datasets that contain
corresponding natural images paired with each sketch. TU
Berlin [7] is the first large-scale free-hand single-object

sketch dataset, that is collected via crowdsourcing. Quick-
Draw [12] is the largest free-hand single sketch dataset, and
it is gathered through an online game.

A growing number of large-scale scene-level sketch
datasets have been proposed due to the importance of
higher-level sketch understanding. SketchyScene [35]
pioneered this field, assembling clip art-like single-
object sketches onto reference images as layout tem-
plates. SketchyCOCO [8] is another synthetically gener-
ated scene sketch dataset that integrates free-hand single-
object datasets into the corresponding mask area of COCO-
Stuff [3] real images. Ge et al. [9] introduced two more
semi-synthetic scene datasets, called as SKY-Scene and
TUB-Scene. Although synthetic scene sketch data gener-
ation offers a quick solution to the scarcity of large-scale
scene datasets, it lacks the authenticity of human drawing
behavior. Moreover, none of these synthetic datasets are
available in vector storage formats, rendering them unsuit-
able for our stroke-based approach. FS-COCO [5] stands
out as the first free-hand scene sketch dataset collected in
vector format, accompanied by scene captions. However, it
lacks stroke- or object-level annotations, hindering seman-
tic segmentation experiments. SFSD [32] is another free-
hand scene sketch dataset, offering both vector storage for-
mat and stroke-level class annotations, but it is not publicly
available. Lastly, CBSC [31] emerges as the sole publicly
accessible free-hand scene sketch dataset with instance-
level class annotation in the vector storage format. Thus,
we leverage CBSC to test our network. To address the
lack of free-hand scene sketch datasets, we introduce FrISS,
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which contains free-hand scene sketches annotated at both
instance and stroke levels.

3. Methodology
In this section, the architecture of CAVT and the gen-

eration process of its training dataset are explained. As
seen in Figure 2, CAVT consists of two sub-modules: (i)
the Class-Agnostic Visio-Temporal object detector and (ii)
the Post-Processing module. First, each scene sketch is pre-
processed using an RGB coloring technique to preserve the
temporal stroke order. These color-coded sketches are then
passed through the Class-Agnostic Object Detector to gen-
erate prediction boxes. Subsequently, the Post-Processing
module refines the detector’s outputs using a set of rules
for stroke-level instance grouping by leveraging temporal
stroke order and spatial features. Finally, CAVT produces
stroke groups belonging to object instances in the scene.

3.1. Class-Agnostic Visio-Temporal Detector

To proceed with an appropriate object detector, we inves-
tigated the cross-domain object detection studies [6, 13, 23]
in the literature. DASS-Detector [23] leverages YOLOX
[10] and stands out for its high performance within its do-
main. Inspired by their work, we also utilize YOLOX in our
study. Fully-supervised detectors are typically trained to
recognize specific predefined classes, restricting their abil-
ity to detect objects beyond these predetermined categories.
To address this constraint, YOLOX is trained in a class-
agnostic manner, in which the detector solely predicts po-
tential object areas without the need for classification. We
conduct an ablation study to evaluate the impact of our ap-
proach and discuss it in Sec. 5.6. Our trained detector of-
fers predictions concerning potential object regions within
sketch scenes. These predictions solely approximate object-
bounding boxes on the coordinate plane. Therefore, we in-
troduce a post-processing module designed to group object
strokes by leveraging the bounding box predictions.

3.2. Post-Processing Module

This module performs stroke-level segmentation for in-
dividual sketches by utilizing the output from the object de-
tector. The full algorithm for the post-processing module
is provided in Algorithm 1 in the Supplementary Material.
The steps involved in this module are as follows:

1. The predicted bounding boxes are sorted in ascending
order based on their area, from smallest to largest.

2. IoU-Based Stroke-to-Box Assignment: Starting with
the smallest bounding box, the stroke sequence with
the highest Intersection over Union (IoU) compared
to the selected box is identified. If the IoU value
surpasses a threshold called IoU threshold, the corre-
sponding stroke set is assigned to that bounding box.

3. Assigning Neighboring Strokes to Boxes: The unas-
signed strokes are then evaluated based on their over-
lap ratio. For each of the remaining longest stroke se-
quences, if the overlap ratio between the sequence and
the nearest bounding box exceeds a threshold called
OR threshold, the stroke set is assigned to that box.
The overlap ratio is calculated by dividing the area of
intersection between the bounding box and the stroke
set by the total area of the stroke set.

4. Grouping Unassigned Strokes: Strokes that remain
unassigned to any bounding box after these steps are
considered separate objects, and their coordinates are
added to the list of predicted boxes.

5. The coordinates of each bounding box are updated
based on the latest stroke assignments. Each box’s di-
mensions are adjusted to become the smallest bound-
ing box enclosing its assigned stroke set.

6. These steps are repeated until no further changes oc-
cur in stroke groupings, ensuring that each stroke is
assigned to a corresponding object bounding box.

Both the IoU threshold and OR threshold are deter-
mined using a grid-search algorithm (see in Supplementary
Material Sec. S1). The object detector produces bound-
ing boxes without class predictions, so strokes are grouped
without class information. This enables the utilization of
an external sketch object classifier, offering several advan-
tages: (1) Both stroke- and image-based single sketch clas-
sifiers can be employed, each capable of identifying broader
or narrower object categories, or sketches with varying
complexities; (2) Inference time and required memory can
be adjusted based on the chosen classifiers.

3.3. Synthetic Dataset Preparation for Training

Object detection models are widely used in the litera-
ture [15, 25, 30]. However, their direct application to the
sketch domain faces challenges due to the domain shift from
real-life images to scene sketches. Achieving fully super-
vised detector training on sketches necessitates a large-scale
instance-level scene sketch dataset. Furthermore, the train-
ing dataset should maintain strokes in vector storage format
to utilize temporal cues effectively. Unfortunately, none of
the existing large-scale datasets offer both instance-level an-
notation and vector storage format [5, 8, 9, 35].

To train an object detector for the sketch domain, we
created a large-scale, synthetically generated scene sketch
dataset. To ensure our object detector’s robustness across
various categories and drawing styles, we utilized Quick-
Draw [12], which offers a wide range of categories and di-
verse sketch styles. Each scene is composed of a minimum
of 2 and a maximum of 8 randomly chosen objects from
a pool of 345 categories, with 70K drawing instances per
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Dataset Cats. Category per sketch Objects per sketch Strokes per sketch
Max Min Mean Max Min Mean Max Min Mean

SketchyScene [35] 45 19 13 6.88 94 3 16.71 - - -
SketchyCOCO [8] 17 6 1 2.33 35 2 10.93 - - -
CBSC [31] 74 10 3 4.23 16 3 4.72 185 6 33.14
FS-COCO [5] 92 / 150 5 / 25 1 / 1 1.37 / 7.17 - - - 561 5 75.86
SFSD [32] 40 11 1 4.46 43 2 7.76 699 9 146.64

FrISS (Ours) 403 10 1 4.33 30 1 6.04 186 4 35.81

Table 2. Comparison and statistics of scene sketch datasets

category. Objects are randomly scaled to have a large side
length ranging from 50 to 700 pixels and positioned ran-
domly within the scene. To prevent extreme overlapping
between objects, we ensure that the intersection-over-union
(IOU) value between them remains below 0.35. Scenes are
created in two potential sizes: 720x1280 or 1280x720 pix-
els. To capture the temporal order, each stroke is assigned
a color from a spectrum spanning blue to red based on its
order (see Supplementary Material Sec. S2). In total, we
generated 11.5K synthetic drawing scenes under these set-
tings, allocating 10K for training and 1.5K for validation.

4. The FrISS Dataset
We propose the largest Free-hand Instance- and Stroke-

level Scene sketch dataset (FrISS) that includes scene
sketches in vector format, stroke-level class and instance
annotations, sketch-text pairs, and verbal audio clips paired
with each scene. The data construction process involves two
primary stages: (i) sketch collection and (ii) sketch annota-
tion. This section elaborates on these stages and provides
statistics and analysis on the FrISS dataset.

Figure 3. Sample scenes taken from FrISS that are drawn by three
individuals by referring to the same textual scene description

4.1. Sketch Collection

We developed a web application to collect scene
sketches, following similar data collection methods as in
previous studies [5, 32]. Visuals of the web application
are provided in Supplementary Material Sec. S5.1. We
recruited 100 volunteer participants with varying levels of
drawing skills, each tasked with creating 10 distinct scene

sketches based on textual scene descriptions. The textual
scene descriptions provided during the drawing phase are
either sourced from captions within the MS COCO dataset
[17] or constructed by us. Details on the generation of scene
descriptions, along with examples, are provided in Supple-
mentary Material Sec. S5.3. To avoid influencing partici-
pants with predefined layouts or poses, no visual references
were provided. As shown in Figure 3, the arrangement and
diversity of objects in the scenes varied significantly when
participants sketched scenes without visual guidance.

Each participant was given 1.5 minutes to complete each
scene. The time limit was determined through pilot stud-
ies with a group of volunteers. These studies showed that
a shorter time often led to incomplete drawings, while a
longer time resulted in excessively detailed sketches. Par-
ticipants were allowed to redraw objects within the time
limit but were not permitted to restart the scene with ex-
tra time. Allowing multiple attempts could lead to unreal-
istically polished sketches. Additionally, participants were
asked to verbally describe their scenes as they drew. To
ensure comfort and clarity, they were encouraged to speak
in their native language. The verbal explanations were
recorded during the drawing process, enabling FrISS to sup-
port research on tasks such as speech-based sketch studies.

4.2. Sketch Annotation

In the second phase of data collection, participants were
presented with scenes they had previously drawn. They an-
notated each stroke with both instance and category infor-
mation. Figure 1 shows sample sketch-text pairs from the
FrISS dataset and their colored annotations. Different col-
ors are used to visualize instance-level annotations of the
objects from the same category (e.g., pizzas, mountains).

To avoid interrupting the natural drawing process, we
collected sketch annotations separately from the drawing
phase. This phase was conducted under our supervision to
ensure accurate annotations. Each stroke in a scene was
assigned to its corresponding object category, with incom-
plete or ambiguous strokes labeled as ’incomplete’ and sub-
sequently excluded from the scene. Additionally, we manu-
ally reviewed the annotations for accuracy and assessed the
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quality of the scenes. Any mislabeled object strokes were
either corrected or eliminated from the dataset.

4.3. Statistics and Analysis

Table 2 provides a statistical comparison of various scene
sketch datasets, focusing on category, object, and stroke
counts per sketch. Our dataset covers a wider range of ob-
ject categories compared to previous scene datasets. Ad-
ditionally, each scene sketch was collected within a 1.5-
minute timeframe, resulting in simpler sketches resembling
participants’ daily drawings. Other free-hand scene sketch
datasets [5, 32] allow more time for drawings and multiple
drawing attempts, which results in extremely detailed scene
sketches. On the other hand, our scene sketches contain an
average of approximately 36 strokes per scene, significantly
fewer than other datasets in terms of complexity. Refer to
Figure 1 for sample scenes from our FrISS dataset. Thus,
FrISS stands out by including both instance- and stroke-
level class annotations. Additional scene samples and com-
parisons are available in Supplementary Material Sec. S5.

5. Experiments
5.1. Datasets

We utilize temporal stroke information in our pipeline,
thus it limits the range of applicable datasets for evalu-
ation. Therefore, we assessed our approach using only
the test partitions of FrISS and CBSC [31]. FrISS com-
prises 1K free-hand scene sketches spanning 403 object cat-
egories, with 236 categories overlapping with the Quick-
Draw classes [12]. We reserved 500 scene sketches for test-
ing, while the remaining sketches were divided into valida-
tion (145 sketches) and training (355 sketches) sets. CBSC
dataset consists of 222 free-hand scene sketches in its test
partition, covering 74 object categories and these categories
fully align with QuickDraw, except for the ’person’ class.
However, the visual characteristics of the ’yoga’ class of the
QuickDraw closely resemble those of the ’person’ class in
other scene sketch datasets. Therefore, we map the ’person’
class to ’yoga’ class during the evaluation.

5.2. Sketch Classification

As discussed in Sec. 3, CAVT generates segmented
stroke groups without any category assignments. Thus, we
utilized one stroke-based and one image-based sketch clas-
sifier. First, we investigated the performances of state-of-
the-art stroke-based sketch classifiers [11, 19, 26]. Since
Sketchformer [19] achieves superior performance, it was
selected as the external classifier for categorizing sketches
segmented by CAVT. Secondly, we trained various CNN-
based classifiers using the training sets of QuickDraw and
FrISS. Among these, Inception-V3 [22] outperforms others.
Hence, we further utilize our trained Inception-V3 as a sec-

ond external classifier. In the following sections, we call
the end-to-end CAVT + Sketchformer pipeline as CAVT-S,
and CAVT + pre-trained-Inception-V3 pipeline as CAVT-I.
A detailed analysis of classifiers can be found in Supple-
mentary Material Sec. S3.

5.3. Evaluation Metrics

Earlier works utilize metrics that are commonly used to
evaluate image segmentation models. Hence, we follow the
standard four metrics that are used in our competitor mod-
els [2,9,35] for fair comparison. These metrics are listed as
follows: Overall Pixel Accuracy (OVAcc), Mean Pixel Ac-
curacy (MeanAcc), Mean Intersection over Union (MIoU),
and Frequency Weighted Intersection over Union (FWIoU).
Still, there is no available metric specifically designed for
stroke-level scene sketch semantic segmentation. Thus, we
propose two additional metrics for stroke-level evaluation:

• All or Nothing (AoN): evaluates the ratio of correctly
predicted stroke groups. If a single stroke of an object
is mislabeled, then the result becomes incorrect.

• Stroke-level Intersection over Union (S-IoU): calcu-
lates the largest overlap ratio of the actual and the pre-
dicted stroke groups, and averages the overlap ratio for
all ground truth stroke groups.

Our competitor models perform class-level segmentation
and require bitmap images as input. Therefore, we could not
compare our results with earlier works on these metrics.

5.4. Implementation Details

The sole trainable component of our network is the
Class-Agnostic Visio-Temporal Object Detector, built upon
the YOLOX framework [10]. During model training, we
employed the MMDetection library, training YOLOX with
default configurations while modifying only the total num-
ber of categories to 1. Our training process utilizes a single
Tesla T4 GPU with a batch size of 16, spanning 600 epochs.
We compared our results with the Local Detail Perception
(LDP) [9] and the Open Vocabulary (OV) [2]. However,
when comparing CAVT with these models, several adjust-
ments to the datasets and our evaluation process are neces-
sary:

• LDP is trained on categories from SKY-Scene [9]
and SketchyScene [35]. Additionally, we use Sketch-
former [19] as our sketch classifier, which only sup-
ports the 345 categories from QuickDraw [12]. To en-
sure a fair comparison, we created five distinct sub-
datasets: FrISS-SKY and CBSC-SKY include objects
from the common classes shared between QuickDraw,
SKY-Scene, and FrISS/CBSC; FrISS-SS and CBSC-
SS feature objects from the common categories of
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Model CBSC-SKY CBSC-SS
OVAcc MeanAcc MIoU FWIoU OVAcc MeanAcc MIoU FWIoU

LDP 54.56 52.82 33.47 37.96 47.85 36.17 23.81 32.93
CAVT-S 70.24 73.89 51.21 59.22 71.25 73.29 51.92 60.30
CAVT-I 73.76 74.08 53.38 61.89 73.13 75.26 52.45 60.56

Model FrISS-SKY FrISS-SS
OVAcc MeanAcc MIoU FWIoU OVAcc MeanAcc MIoU FWIoU

LDP 44.33 27.24 14.91 31.89 41.17 29.97 15.09 27.82
CAVT-S 65.39 62.33 34.88 54.86 60.02 60.11 33.09 48.11
CAVT-I 66.56 62.08 34.18 54.40 61.54 55.07 31.83 48.19

Table 3. Comparison of CAVT against LDP [9] on the CBSC-SS CBSC-SKY, FrISS-SS, and FrISS-SKY datasets.

Model CBSC FrISS-QD FrISS
OVAcc MeanAcc MIoU FWIoU OVAcc MeanAcc MIoU FWIoU OVAcc MeanAcc MIoU FWIoU

OV 62.64 62.94 45.15 49.34 64.66 54.67 38.14 50.68 41.13 41.84 25.41 29.92
CAVT-S* 81.21 81.87 68.71 70.13 80.90 76.99 64.95 69.53 - - - -
CAVT-I* 83.52 82.36 71.97 73.14 81.89 75.50 65.81 70.97 72.71 46.46 37.17 58.05

Table 4. Comparison of CAVT with Open Vocabulary (OV) [2] on the CBSC [31], FrISS-QD, and FrISS datasets.

QuickDraw, SketchyScene, and FrISS/CBSC; FrISS-
QD comprises objects from the common classes of
FrISS and QuickDraw.

• The OV model operates without relying on pixel or
stroke-level annotations, instead, it uses sketch-caption
pairs. During inference, captions are generated by
concatenating ground truth object categories, and OV
predicts the correct class label from the given set
of object classes. To ensure a fair comparison with
OV, we developed alternative versions of our pipelines
(CAVT-S* and CAVT-I*) that restrict the possible ob-
ject classes to those present in the ground truth scene.

5.5. Comparison Against State-of-the-art (SOTA)

The comparison results of our model with prior works
on the different subsets of CBSC and FrISS datasets are
shown in Tables 3 and 4. Across all datasets and metric
variations, under identical conditions, the gap between LDP
and CAVT-S or CAVT-I is consistently between 15% - 39%,
but it narrows to 6% - 31% with OV. Still, our pipeline out-
performs previous SOTA by a significant margin.

Figure 4 shows the qualitative comparison between our
method, LDP, and OV models. Our pipeline leverages
stroke information and does not assign different class labels
to any point in a single stroke. This allows us to generate
more coherent segmentation outputs. Moreover, we share
our instance-level visual results in the rightmost column of
the figure. Different from the SOTA models, we can seg-
ment different instances from the same category (2nd and

3rd rows). We provide additional visual comparisons in
Supplementary Material.

5.6. Ablation Study

In this experiment, we examine the individual effects of
each component of CAVT. The key components include the
use of temporal stroke order, class-agnostic training, and the
post-processing module. To evaluate the impact of the post-
processing module, we implement a simple stroke grouping
technique as a baseline for comparison. In this method, each
stroke is assigned to the nearest predicted bounding box,
and the strokes assigned to the same box are grouped as a
single object.

Table 5 illustrates the impact of each component on seg-
mentation performance, with each one contributing a no-
table improvement. While the most significant component
in CBSC is PP with a 7.48% average performance increase,
CA has the least effect with a 4.96% increase. On the other
hand, CA has the most effect on FrISS with an average
of 6.22% performance enhancement, while T provides the
least increase with 1.82% on average.

As detailed in Section 3.1, the object detector is trained
using a synthetic dataset derived from QuickDraw classes
[12]. We excluded objects belonging to QuickDraw cat-
egories from the FrISS dataset and denoted as FrISSsub.
Later, we calculated AoN and S-IoU on this subset to eval-
uate the generalizability of CAVT to instances from unseen
classes. Although the AoN score drops by approximately
10%, the decrease in S-IoU remains only around 1.5%. This
indicates that CAVT can still generalize to sketch objects
from unseen classes with minimal performance loss.
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Figure 4. Visual comparison of our method with LDP [9] and OV [2] models that are evaluated on the FrISS-SS dataset.

Components: CBSC FrISS FrISSsub

T CA PP AoN S-IoU OVAcc MAcc MIoU FWIoU AoN S-IoU OVAcc MAcc MIoU FWIoU AoN S-IoU

39.80 68.76 39.54 38.21 23.74 28.53 28.30 57.49 25.08 14.34 6.17 17.32 23.85 58.23
✓ 48.95 73.57 48.83 46.68 30.70 37.05 33.40 60.07 29.77 18.21 8.83 20.74 26.11 58.37

✓ ✓ 58.64 81.09 52.00 51.67 32.57 39.55 47.09 72.89 32.89 22.33 9.98 23.17 39.98 71.67
✓ ✓ ✓ 68.68 84.77 60.09 57.50 38.81 47.96 51.57 72.77 36.55 22.04 10.20 26.12 41.62 71.34

Table 5. Ablation study for the impact of including or excluding three components: temporal stroke order (T), class-agnostic training (CA),
and post-processing steps (PP). FrISSsub: calculates metrics for a subset of categories in FrISS that are not part of QuickDraw [12]. The
metrics OVAcc, MeanAcc, MIoU, and FWIoU are evaluated using CAVT-I, since it also supports the complete class set of FrISS.

6. Conclusion

In this work, we proposed a novel pipeline for the scene
sketch semantic segmentation task that identifies individ-
ual object instances at both stroke- and instance levels. We
utilized both temporal information and the visual appear-
ance of the sketches within a scene. Our approach allows
us to assign a class label to each object instance without be-
ing constrained by a predefined category list. Furthermore,
we introduced the FrISS dataset, comprising instance and
stroke-level class annotations, sketch-text pairs, and verbal
audio clips paired with each scene. We hope that FrISS
facilitates a wide range of studies, including stroke-level

scene sketch segmentation, speech-based sketch applica-
tions, and cross-modal research utilizing sketch-text pairs.
Benefiting from FrISS, we conducted extensive experiments
to show that our novel approach outperforms the state-of-
the-art methods, yielding more coherent visual results in
scene sketch semantic segmentation.
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