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Abstract

This paper studies semi-supervised learning of video
action detection (VAD), which assumes that only a small
portion of training videos are labeled and the others re-
main unlabeled. The existing semi-supervised methods for
VAD mainly focus on leveraging spatial context of unla-
beled video, lacking its exploration of temporal context.
To resolve this, we present a novel semi-supervised learn-
ing framework that effectively incorporates spatio-temporal
context during training. We first introduce a new aug-
mentation strategy called temporal cross-view augmenta-
tion to achieve robust representation across clips depicting
the same action but not aligned on the time axis. We also
propose a new context fusion method called global-local
context fusion that effectively utilizes the spatio-temporal
context of videos to enhances the features of each frame
by incorporating those of other frames within a clip; this
method aids in actively leveraging spatio-temporal context
of video, leading to significant performance improvement.
Our framework was evaluated on UCF101-24 and JHMDB-
21, where it outperformed all existing methods in every
evaluation setting.

1. Introduction

Video action detection (VAD), the task of localizing ac-
tors in space-time and classifying his/her action at once,
plays crucial roles in a wide range of applications such
as video surveillance [8, 36, 39], human-computer interac-
tion [11, 38] and healthcare [12, 19, 44]. Recent advances
in VAD have been attributed to supervised learning of deep
neural networks [4,9,17,18,22,33,41,42,46,53,58,68,70]
on large-scale datasets [14, 21, 57]. However, collecting
such labeled videos demands manual frame-wise annota-
tion, which is prohibitively costly and thus often leads to
training data lacking in both class diversity and quantity.
To resolve this issue, we study semi-supervised learning for
VAD, in which we suppose that only a subset of training
videos are assigned manual labels while the others remain
unlabeled. Also, following the convention of the previous
work [25, 72], we assume that each annotated video is as-

signed both a video-level action class label and a frame-
level localization label.

At the core of semi-supervised learning lies the way of
using unlabeled data effectively for training. To this end,
semi-supervised learning methods for image understanding
models have generally employed consistency regulariza-
tion [10,24,40,54] and contrastive learning [1,28,29,73,74].
Specifically, consistency regularization forces a model to
produce consistent predictions when it encounters different
views of the same inputs, even if the inputs are perturbed
or augmented, while contrastive learning encourages unla-
beled data of the same pseudo label to be close to each other
in an embedding space. Although these techniques have
proven effective, they are not optimal for semi-supervised
learning in video since they primarily focus on learning in
an image domain and, when directly applied to a video, do
not actively leverage temporal information.

For semi-supervised learning in video, it is crucial to
incorporate spatio-temporal context effectively. However,
prior arts for semi-supervised VAD [25,72] have been lack-
ing in its exploration of temporal context during training;
they utilize spatial context only, applying consistency regu-
larization between two differently augmented clips sharing
the same timestamp.1 This approach leads to inconsistent
representations across different clips depicting the same ac-
tion but not aligned temporally, where the action occurs at
disparate time intervals or manifests in different ways, re-
sulting in diminished performance.

To address this issue and incorporate the temporal con-
text into the spatial one, we present a novel framework for
semi-supervised VAD, which is illustrated in Fig. 1. Our
framework introduces a new augmentation strategy, dubbed
temporal cross-view augmentation, to achieve robust fea-
ture representation across clips characterizing the same ac-
tion but not aligned in the temporal domain. The proposed
strategy first samples two clips from the same video so
that they have different timestamps but share a subset of
frames, and then performs consistency regularization on the
shared frames. Furthermore, we deploy contrastive learning
to those clips to further utilize frames not shared between
the clips. Along with consistency regularization applied to

1The term ‘timestamp’ refers to the start and end times of a video.
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Figure 1. Our semi-supervised learning framework incorporates temporal cross-view augmentation and global-local context fusion. We
first sample two clips Xa and Xb from the Video X so that they have different timestamps with shared frames. Each clip is fed into the
student and teacher networks, yielding their action predictions and pixel-wise feature embeddings at the same time, respectively. Next,
we apply global-local context fusion to the feature embeddings of the teacher and perform spatio-temporal consistency and contrastive
learning with those of the teacher and raw feature embeddings from the student. Shared frames are highlighted with coloured boundaries
in magenta.

two differently augmented versions of an unlabeled video
that share the same timestamp in a frame-by-frame manner
for the spatial domain, this strategy improves the model’s
performance thanks to its feature representation robust to
spatio-temporal variations.

Moreover, we propose a new context fusion method,
called global-local context fusion, that utilizes the spatio-
temporal context of video for learning with unlabeled
videos effectively. Based on the observation that different
frames in a video exhibit distinct spatio-temporal informa-
tion that complements each other [30, 37, 49, 61], our con-
text fusion method enhances latent features of each frame
by incorporating those of other frames within a clip. The
basic idea is to extract the latent features of different frames
within the same clip, combining them to capture a more
global perspective, and fusing the global context with the
features of each frame. In this fusion process, we aggre-
gate and propagate information along the temporal axis in
a time-ordered manner as the temporal evolution of a video
provides key cues for understanding its content. This en-
ables to integration of the global context with the local fea-
tures of each frame.

Our method was evaluated on two public benchmarks,
UCF101-24 [57] and JHMDB-21 [21], where it achieved
the state-of-the-art performance on all the two datasets. In
brief, our contribution is three-fold:

• We introduce a novel semi-supervised learning frame-
work for video action detection with the proposed tempo-
ral cross-view augmentation, along with its proper learn-

ing strategy.

• We also propose an effective spatio-temporal context fu-
sion method, global-local context fusion, enabling the
model to enhance the latent features of each frame, re-
sulting in a significant performance improvement.

• Our method achieved the state of the art on two public
benchmarks, UCF101-24 and JHMDB-21, across all ex-
perimental settings.

2. Related Work
Video Action Detection. The task of video action detection
is to localize actors in space-time and classify its action si-
multaneously. Significant developments have been made in
video action detection in recent years [6, 13, 33, 34, 43, 46,
53,62,68,70] due to advancements in deep neural networks.
Early methods [13, 62] introduced a two-stream 2D model
using an RGB frame and optical flow. [22] proposes a de-
tector that takes a sequence of frames as input and outputs
tubelets. [17] exploits 3D convolutional layers to capture
motion characteristics in videos. [68] introduces gradually
updating initial proposals during training. [56] utilizes a re-
current mechanism with ConvLSTM [66] to consider longer
temporal information. Other works [14, 70] incorporate op-
tical flow into a neural network. Most of the listed methods
utilize a proposal-based approach [14,17,68,70], leading to
a complex two-step process, while [9] introduces a simple
end-to-end approach based on capsule routing.
Semi-supervised Learning. Reducing the cost of label-
ing in machine learning through the use of semi-supervised
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learning is an active area of research. Consistency reg-
ularization is widely studied for semi-supervised learn-
ing [2, 20, 54, 59, 67]. It improves model performance by
encouraging the model to make consistent outputs from an
input and its augmented version. Another approach, con-
trastive learning [1, 7, 15, 27, 28, 50], encourages unlabeled
data with the same pseudo label to be close to each other in
an embedding space, showing performance improvement.
Some methods [51, 64] for semi-supervised video action
recognition were also introduced. [51] mainly uses con-
sistency learning between predictions from two differently
sub-sampled clips, while [64] leverages temporal gradients
as another input to further utilize temporal context.
Semi-supervised Video Action Detection. Recently, vari-
ous methods in semi-supervised video action detection have
been introduced. [25] is the first work in the literature that
employs a consistency-based approach in a frame-by-frame
manner. Building upon this method, [72] further investi-
gates consistency in the video background region and pro-
poses background-weakening to reduce false detection on
the background. [52] introduces active learning strategy to
leverage labeled data in a semi-supervised manner, while
[69] utilizes pseudo labels with re-weighting strategy. How-
ever, the listed methods mainly focus on spatial consis-
tency, emphasizing frame-by-frame consistency regulariza-
tion, leaving room for effective utilization of temporal con-
text for video action detection.

3. Proposed Method

On labeled videos, our framework is trained with su-
pervised learning losses for action classification and space-
time localization. For unlabeled videos, we use consistency
regularization and contrastive learning in both spatial and
temporal domains via our temporal cross-view augmenta-
tion and global-local context fusion strategies. Our frame-
work comprises three key components: supervised learn-
ing with labeled data (Section 3.2), spatio-temporal semi-
supervised learning with temporal cross-view augmenta-
tion (Section 3.3), and the global-local context fusion (Sec-
tion 3.4).

3.1. Preliminaries

Let c denote the number of action classes. Given a
video comprising n frames of h × w size, denoted as
X = (v1, . . . , vn), and associated with ground truth Y =
(Y, y), where Y ∈ {0, 1}n×h×w and y ∈ {1, 2, ..., c} rep-
resent the pixel-wise localization map and action class la-
bel for individual frames of the video, our objective is to
train a VAD model with both a small labeled video set
DL = {(Xi, Yi)}Nl

i=1 and a large collection of unlabeled
videos, denoted as DU = {Xj}Nu

j=1, where Nl and Nu de-
notes the number of data in DL and DU , respectively.

3.2. Supervised Learning with Labeled Data

Our model is trained using labeled data with two losses:
an action classification loss and a space-time localization
loss. In line with previous work [9, 26, 72], we employ the
spread loss [9] for action classification and a combination
of the cross-entropy loss and the dice loss for space-time
localization. For an input video X , let a ∈ Rc and P ∈
Rn×h×w represent the action prediction and the space-time
localization map, respectively. The spread loss, denoted as
Lcls, is given by

Lcls =
∑
i ̸=y

max(0, b− (ay − ai))
2, (1)

where b ∈ (0, 1) denotes a margin, ai is the prediction score
for action class i, and ay represents that of ground-truth y.
The space-time localization loss is a combination of two
different losses; the dice loss Ldice and the cross-entropy
loss Lce. The two losses are defined as follows:

Ldice =
1

n

n∑
j=1

(
1−

2×
∑h·w

k=1(Pj,k · Yj,k)∑h·w
k=1 Pj,k +

∑h·w
k=1 Yj,k

)
, (2)

Lce = − 1

n · h · w

n∑
j=1

h·w∑
k=1

(Yj,k log(Pj,k) + (1− Yj,k) log(1− Pj,k)),

(3)

where j represents the frame index, k is an index for each
pixel of a given frame, and Yj,k indicates the ground truth
of k-th pixel in a j-th frame. The total loss of supervised
learning, denoted as Lsup, is the average of aforementioned
supervised losses over all the labeled data in DL, and is
given by

Lsup =
1

|DL|
∑

(X,Y )∈DL

(Lcls + Ldice + Lce). (4)

3.3. Spatio-temporal Semi-supervised Learning

In addition to the supervised learning, our model is also
trained with the unlabeled video set DU by leveraging con-
sistency regularization and contrastive learning in both the
spatial and temporal domains. We utilize the mean teacher
framework [59], which employs two networks: the student
that serves as our main network, and the teacher used to
generate pseudo-supervision. The weights θ̃ of the teacher
are updated through an exponential moving average of the
weights θ of the student, with an update ratio β:

θ̃t = βθ̃t−1 + (1− β)θt. (5)

3.3.1 Semi-supervised Learning on Spatial Domain.

The main idea behind semi-supervised learning in the spa-
tial domain is to utilize the spatial consistency within video
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frames. Let E ∈ Rn×d×h×w and Ẽ ∈ Rn×d×h×w denote
the latent feature embeddings from the student and teacher
networks for an unlabeled video X with an embedding di-
mension of d, respectively. Also, let cos denote the co-
sine similarity function. The frame-wise spatial consistency
loss, Lscon, is then given by

Lscon =
1

n · h · w

n∑
j=1

h·w∑
k=1

{
1− cos(Ẽj,k, Ej,k)

}
, (6)

where Ej,k, Ẽj,k ∈ Rd with the frame index j and an in-
dex for each pixel of a given frame k. Note that the input
fed to the student is augmented differently from that of the
teacher. The spatial consistency learning by Lscon in Eq. (6)
improves performance by encouraging the model to make
consistent embeddings for the same video in a frame-by-
frame manner.

3.3.2 Semi-supervised Learning on Temporal Domain.

In various video understanding tasks including VAD, it is
encouraged that the latent feature embeddings for actors
and background remain consistent across different clips de-
picting the same action for robustness to appearance varia-
tions and improved discrimination between actors and back-
ground in a feature space [60, 65, 75]. However, as will be
discussed in Section 4.3, a model trained solely with spa-
tial consistency struggles to maintain robust consistency be-
tween such clips and exhibits diminished performance on
them as it is trained to achieve consistency of features in the
spatial context, neglecting its context variation in the tem-
poral domain.

To address these challenges and promote robust and con-
sistent video representation learning, we introduce a novel
temporal data augmentation method, temporal cross-view
augmentation. This method begins by sampling two clips
from the same video, ensuring they share some frames but
have different timestamps. Subsequently, consistency reg-
ularization is applied to these shared frames. Let Xa and
Xb represent video clips sampled from the same video,
consisting of n frames, and sharing m frames with each
other (m < n). The temporal consistency loss, denoted
as Ltcon, is given by

Ltcon =
1

m · h · w

m∑
j=1

h·w∑
k=1

{
1− cos(Ẽa

j,k, Eb
j,k)
}
, (7)

where Ẽa and Eb are embedding maps of the shared
frames from Xa and Xb, respectively. In addition to this,
we employ contrastive learning to further utilize unshared
frames more effectively. Let Φi,t

p denote the set of pix-
els corresponded to actors with their action class i at t-
th frame and Φi,t

n denote that of pixels not belonging to

the actors. Also, let u represent a similarity function,
u(ea, eb) = exp(cos(ea, eb)/τ), where τ is a temperature
hyper-parameter. The pixel-wise contrastive loss Lcotr is
then given by

Lcotr = − 1

m · n · c

m∑
j=1

n∑
l=1

c∑
i

1

|Φi,j
p |

∑
k∈Φi,j

p

log
u(Ẽa

j,k, E
b
l,k)

u(Ẽa
j,k, E

b
l,k) +

∑
o∈Φi,l

n
u(Ẽa

j,k, E
b
l,o)

.

(8)

The contrastive loss enhances the performance of the model
by learning feature embedding using both shared and un-
shared frames together. By the temporal consistency learn-
ing with Ltcon in Eq. (7) and Lcotr in Eq. (8), the model is
able to adapt to temporal variations within the same video.

3.3.3 Semi-supervised Action Consistency Learning.

Under the assumption that the model’s action predictions
on different clips depicting the same action should be the
same, the main idea behind action consistency is to utilize
spatio-temporal consistency between those clips. The ob-
jective of the action consistency learning is to enforce the
model to predict the same outcome for (1) clips sampled
from the same video with the same timestamps but aug-
mented differently and (2) clips from the same video with
different timestamps. With the action consistency learning,
the model’s ability of recognizing actions is enhanced along
with aforementioned spatio-temporal consistency learning.
Let Xa and Xb be two clips that hold one of the two condi-
tions above, and ãa and ab be the action predictions for Xa

and Xb by the teacher and student network, respectively.
The action consistency loss, Lacon, is given by

Lacon = (ãa − ab)2. (9)

3.4. Semi-supervised Learning with Global-Local
Context Fusion

Different frames in a video have been known to contain
distinct spatio-temporal information that complements each
other [30,37,49,61]. Motivated by this, we propose a novel
context fusion method, global-local context fusion, to en-
rich features of each frame by utilizing both spatial and
temporal context throughout the video. This method ex-
tracts latent features from different frames within the same
clip, combines them to capture the global context of the clip,
and fusing the global context with the local features of each
frame.

Let vs and vt denote source and target frames, respec-
tively. Also suppose we aim to extract latent features from
vs and fuse them with those of vt. Initially, we aggregate
representative features from the source frame by averag-
ing the features of the actor and those of background re-
gions separately. Let Ej ∈ Rd×h×w be a feature map and
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Figure 2. Process of the global-local context fusion. Through the feature fusion network f , each feature embedding is fused with the
preceding representative actor and background features, which are generated by the feature averaging function g.

Mj ∈ {0, 1}h×w be a pseudo localization map obtained
from the outputs of the unlabeled video, where 1 indicates
the regions the action occurs. Let us define an averaging
function g by

g(Ej ,Mj) =

∑h·w
k=1 Mj,k · Ej,k∑h·w

k=1 Mj,k

. (10)

The representative actor and background features of vs are
then computed as follows: Ep

s = g(Es,Ms) and En
s =

g(Es,¬Ms), where Es denotes the latent features of vs and
Ms ∈ {0, 1}h×w denotes a pseudo localization map from
the source frame. Next, we propagate the aggregated fea-
tures, Ep

s and En
s , from the source frame vs to the target

frame vt. Let Et and Mt be a feature embedding and pseudo
localization map of the target frame vt, respectively. Then
the fused feature of the target frame is given by

E
′

t,k =

f(Ep
s ⊕ Et,k) if Mt,k = 1,

f(En
s ⊕ Et,k) otherwise,

(11)

where ⊕ represents channel-wise matrix concatenation and
f is a simple feature fusion network that takes input in R2d

and returns the output in Rd.
Now suppose we are given a sequence of k

frames (v1, v2, ..., vk) and our goal is to enhance fea-
tures of all the frames via the iterative global-local context
fusion process from v1 to vk. Specifically, the fusion
process begins by operating on the first two frames, v1 and
v2, which represent source and target frames, respectively,
and continues by iteratively applying the context fusion
on the next consecutive frame pair (v2 and v3, and so
on) till the last frame pair (vk−1, vk). Note that at each
iteration, the target frame vt and its fused feature E

′

t from
the previous iteration now become the source frame vs
and its feature embedding Es for the next iteration. This
process is depicted in Fig. 2.

Yet regarding this fusion process, we should carefully
address the following consideration: How do we select a
suitable sequence of frames for the process? It is infeasible

to identify the optimal sequence out of all possible candi-
dates due to a prohibitively large number of such sequences
and expensive post-hoc evaluation. Hence, we consider all
possible sequences complying certain conditions and refer
to each of these sequences as a path, which then repre-
sents a sequential fusion process. This strategy allows to
handle uncertainty inherent in the sequence selection for
the fusion process, like sequential model averaging tech-
niques [16, 55]. Let r be the number of frames within a
sequence that comprises a single path, and j an index for
the last target frame of the fusion process. Then, the set of
all possible paths Ωj to the frame vj is defined by

Ωj =

n⋃
r=2

{
p| p = [vk1 , ..., vkr ],

(1 ≤ k1 < ... < kr = j) ∨ (n ≥ k1 > ... > kr = j)
}
,

(12)

where p denotes a single path in the form of a list, and it
consists of frames sorted in a monotonic increasing or de-
creasing order on the time axis. Then we randomly sample
s paths from Ωj per last target frame to achieve temporal
drop-out regularization with computation efficiency. Note
that the time complexity of the context fusion is O(ns|p|),
and |p| is empirically lower than n (i.e., |p| < n).

Finally, for the last target frame vj , the global-local con-
text fusion is performed for each path of Ωj to obtain a fused
feature embedding of the target frame, and the final fused
feature embedding is obtained by averaging all the fused
feature embeddings from every path. Note that we apply the
context fusion to the feature embeddings of the teacher net-
work and then perform the proposed spatio-temporal con-
sistency and contrastive learning with those of the teacher
network and raw feature embeddings from the student net-
work.

The overall semi-supervised learning loss, Lsemi, is com-
puted as the average of the aforementioned losses over all
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the unlabeled data in DU and is given by:

Lsemi =
1

|DU |
∑

X∈DU

(Lscon + Ltcon + Lcotr + Lacon). (13)

The final objective is a combination of Lsup and Lsemi, and
is given by

Ltotal = Lsup + λ · Lsemi, (14)

where λ ∈ (0, 1] is a Gaussian ramp-up constant [31],
which gradually increases as the training progresses.

4. Experiments
4.1. Implementation Details

Datasets. We conducted experiments on two datasets,
UCF101-24 [57] and JHMDB-21 [21]. UCF101-24 com-
prises videos of 24 action classes, where about 78% of the
videos are untrimmed. It presents 2,284 videos for training
and 923 for testing. Meanwhile, JHMDB-21 consists of all
trimmed videos of 21 action classes; 660 videos are used
for training and the other 268 videos are kept for testing.
For training on both UCF101-24 and JHMDB-21, we use a
frame resolution of 224 × 224. The number of frames per
clip, n, is set to 8 with a temporal skip rate of 2. For a fair
comparison with previous work, we split the training set of
UCF101-24 and JHMDB-21 into labeled and unlabeled sets
with a ratio of 30% and 20%, respectively, following [25].
Network architecture. In line with [25,72] for UCF101-24
and JHMDB-21, we utilize VideoCapsuleNet [9] with I3D
backbone [5] as our VAD network. We replace 3D rout-
ing with 2D routing [45], leading to improved efficiency in
terms of memory usage and training speed. The backbone
is pre-trained on Kinetics [23] and Charades [48] dataset.
We employ an additional module for feature embeddings,
implemented with a single 3D convolutional layer. The fea-
ture fusion network f used in Eq. (11) consists of Conv2D-
BN-ReLU-Conv2D modules in sequence.
Data augmentation. We employ data augmentation meth-
ods to enhance traning within our framework, such as Gaus-
sian blurring, color-jittering, grayscaling, and horizontal
flipping.
Optimizer. We use AdamW [35] with learning rate 5e-5
and weight decay 1e-6.
Hyper-parameters. For labeled data, the mini-batch size is
8, while it is 2 for unlabeled data on both UCF101-24 and
JHMDB-21 datasets. The margin value in Eq.(1) is set to
0.2, following [25]. The update ratio β is set to 0.995. The
temperature value τ for Lcotr is set to 0.1. The number of
shared frames in Section 3.3.2, m, is set to 4. The number
of sampled paths for each target frame denoted as s, is set to
3. The Gaussian ramp-up constant in Eq. (14) is calculated
as min(exp(−0.05 × (100 − t)), 1), where t is a current

Method Net.
UCF101-24 JHMDB-21

f-mAP v-mAP f-mAP v-mAP
0.5 0.2 0.5 0.5 0.2 0.5

Pseudo-label† [32] VDCap. 64.9 93.0 65.6 57.4 90.1 57.4
MixMatch† [3] VDCap. 20.2 60.2 13.8 7.5 46.2 5.8
Co-SSD(CC)† [20] VDCap. 65.3 93.7 67.5 60.7 94.3 58.5
Kumar et al.‡ [25] VDCap. 71.5 96.5 73.5 65.9 97.2 68.0
BWCC† [72] VDCap. 71.9 95.3 73.7 66.3 94.8 68.1

Ours VDCap. 80.0 97.1 82.5 81.8 98.5 83.3

Full VDCap. 82.6 98.1 83.3 85.8 99.5 84.9

Table 1. Comparisons with semi-supervised methods using
various thresholds for f-mAP and v-mAP on UCF101-24 and
JHMDB-21 test sets. Note that action prediction was not con-
sidered in this evaluation. † denotes performances obtained
from [25, 72]. ‡ denotes a re-implemented method.

Method Net.
UCF101-24 JHMDB-21

f-mAP v-mAP f-mAP v-mAP
0.5 0.2 0.5 0.5 0.2 0.5

Kumar et al.‡ [25] VDCap. 58.3 80.7 61.3 27.7 37.9 29.6

Ours VDCap. 68.8 83.5 71.5 34.9 38.2 35.3

Full VDCap. 72.0 86.1 73.3 47.1 48.1 42.7

Table 2. Comparisons with the semi-supervised method of [25] us-
ing various thresholds for f-mAP and v-mAP on UCF101-24 and
JHMDB-21 test sets. Note that action prediction was considered
in this evaluation. ‡ denotes a re-implemented method.

epoch. More details about hyper-parameters are found in
the Supplement Materials.
Evaluation metric. We calculate spatial IoU for each frame
to determine frame average precision and compute spatio-
temporal IoU per video for video average precision. We
then average these scores to obtain f-mAP and v-mAP over
various thresholds. In our evaluation, a correct prediction
requires matching both the predicted action label and ac-
tion localization maps with the ground truth. Some previ-
ous work [25, 72] did not include the predicted action label
in their evaluation. We will report both metrics with and
without the action label.

4.2. Results

Comparison with the state-of-the-art without the action
label. We compare our method to state-of-the-art semi-
supervised VAD [3, 20, 25, 32, 72] and the result of training
in a fully supervised manner (notated as Full). We con-
ducted experiments on UCF101-24 and JHMDB-21. We
abbreviate VideoCapsuleNet [9], the base model for all
listed semi-supervised methods, as VDCap, for brevity.
Results without the action label are reported in Table 1,
demonstrating that our method achieves state-of-the-art per-
formance for all evaluation settings. For UCF101-24, our
method shows significant performance improvement over
previous methods, achieving 97.1 and 82.5 in v-mAP@0.2
and v-mAP@0.5, respectively. Similarly, for JHMDB-21,
our method surpasses all previous work by a large margin,
showing 98.5 and 83.3 in the threshold of v-mAP@0.2 and
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ID Lsup Lscon Ltcon Lcotr Lacon GLF
UCF101-24 JHMDB-21

f-mAP v-mAP f-mAP v-mAP
0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5

I ✓ 90.7 / 75.5 67.4 / 57.6 95.3 / 79.4 68.5 / 58.2 87.5 / 35.1 63.5 / 25.9 94.8 / 31.9 64.2 / 28.0
II ✓ ✓ ▲ 90.9 / 77.7 77.6 / 66.4 96.5 / 79.9 79.6 / 68.6 95.6 / 36.2 74.1 / 31.7 98.0 / 36.6 77.3 / 32.3
III ✓ ✓ ✓ ▲ 91.7 / 78.3 79.5 / 68.0 96.8 / 82.9 80.9 / 70.3 96.0 / 37.5 79.8 / 33.1 98.2 / 37.7 80.5 / 32.7
IV ✓ ✓ ▲ ✓ 91.1 / 78.4 77.9 / 67.2 96.7 / 81.3 80.2 / 69.2 95.9 / 36.5 78.8 / 32.6 98.1 / 36.8 80.2 / 32.9
V ✓ ✓ ✓ ▲ ✓ 92.4 / 79.6 79.5 / 68.5 97.0 / 83.3 82.1 / 70.8 96.8 / 37.9 81.7 / 34.0 98.3 / 38.1 82.0 / 34.8
VI ✓ ✓ ▲ 90.8 / 77.3 77.2 / 66.6 96.8 / 80.5 78.4 / 66.5 95.3 / 35.7 73.2 / 31.7 97.8 / 36.8 76.0 / 31.9
VII ✓ ✓ ✓ ✓ 91.0 / 78.2 77.6 / 66.7 96.8 / 81.5 80.0 / 68.8 95.8 / 36.4 75.8 / 32.8 98.4 / 37.0 78.9 / 32.7
VIII ✓ ✓ ✓ ✓ ✓ 92.3 / 79.1 79.7 / 68.3 96.9 / 83.0 81.5 / 71.2 96.1 / 38.0 80.8 / 34.0 98.4 / 37.8 82.0 / 32.8
IX ✓ ✓ ▲ ✓ 91.5 / 77.9 77.9 / 68.7 97.0 / 82.0 81.2 / 70.9 96.1 / 36.2 77.7 / 32.8 98.0 / 37.3 80.5 / 33.2
X ✓ ✓ ✓ ✓ ✓ ✓ 92.5 / 79.8 80.0 / 68.8 97.1 / 83.5 82.5 / 71.5 97.0 / 38.2 81.8 / 34.9 98.5 / 38.2 83.3 / 35.3

Table 3. Ablation studies of losses and global-local context fusion (GLF) in Eq. (13) on UCF101-24 and JHMDB-21 test sets. In Lacon,
▲ indicates that the loss function considers the consistency between clips with either the same or different timestamps, but not both.
Performance is reported without the action label, then with the label included (separated by ‘/’).

Figure 3. Qualitative results on test set of UCF101-24 [57] with ours and Kumar et al. [25]

Figure 4. Qualitative results on test set of JHMDB-21 [21] with ours and Kumar et al. [25]

v-mAP@0.5, respectively.
Comparison with the state-of-the-art with the action la-
bel. The results with the action label are shown in Table 2.
Previous work [25, 72] and other reported methods did not
include the action label in their evaluation protocol. To ad-
dress this, we re-implemented [25] as it was the only one
with its official codebase and reported the performance. The
results in Table 2 show that our method consistently outper-
forms the previous methods.
Qualitative analysis. Fig. 3 displays our results on
UCF101-24, while Fig. 4 exhibits those on JHMDB-21.

4.3. Ablation Studies

We conducted ablation studies to investigate the effec-
tiveness of each component of the proposed method. The
experiments were conducted on test sets of UCF101-24 [57]
and JHMDB-21 [21].

Impact on losses and global-local context fusion in
Eq. (13). We investigated the impact of each loss term
and global-local context fusion. The results are show-
cased in Table 3. The experiments I, II and III show
that the effectiveness of the temporal-consistency learn-
ing (Exp. II) compared to the supervised only (Exp. I),
and contrastive learning (Exp. III) improves its performance
based on temporal-consistency learning (Exp. II). For the
global-local context fusion, the experiments II, III, VI and
IV, V, IX show that feature embeddings enhanced by the
context fusion (Exp. IV, V and IX) show the improved per-
formance than those not enhanced (Exp. II, III and VI). Note
that our method achieved comparable performance with the
compared methods by consistency based losses (Lscon and
Ltcon) thanks to our augmentation, training scheduling and
optimization strategies. Finally, the best results are achieved
when all the components are employed.
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Figure 5. Ablation studies of consistency on the shared frames
from two clips. (left) Averaged cosine similarity of feature em-
beddings on shared frames. (right) Averaged L2-distance of action
localization maps on shared frames.

Figure 6. t-SNE visualization of embedding distributions of
frames shared by overlapping clips Xa and Xb. (a) Result of a
model trained without temporal consistency. (b) Result of a model
trained with temporal consistency.

Figure 7. Grad-CAM [47] visualization of spatial consistency loss
without and with GLF.

Figure 8. Qualitative results on the UCF101-24 test set without
and with GLF.

Robust consistency on shared frames. We noticed that a
model trained only on spatial consistency struggles to main-
tain consistency on shared frames from clips of the same
video. To investigate, we extracted two clips with shared
frames from the same video and conducted an experiment;
we compared a model trained with temporal consistency
losses (Ltcon and Lcotr) in addition to spatial consistency loss
(Lscon) (denoted as ST) against a model trained solely with
spatial consistency loss (Lscon) (denoted as S). For shared
frames, we computed cosine similarity for features and L2-
distance for localization maps. High similarity indicates
consistent features, while low L2-distance suggests consis-
tent localization predictions. Results (see Fig. 5) demon-
strate that the model trained with proposed temporal con-
sistency losses exhibit robust consistency.
Interpretation of the impact of temporal information.

Metric TubeR TubeR + Kumar et al. TubeR + Ours Full

f-mAP@0.5 16.5 18.3 22.5 28.8

Metric STMixer STMixer+ Kumar et al. STMixer + Ours Full

f-mAP@0.5 22.4 23.9 25.7 27.2

Table 4. Additional experiments on AVA, where we compare our
model and Kumar et al. [25] incorporated with TubeR [71] and
STMixer [63], respectively.

We studied the impact of temporal information in tempo-
ral consistency and GLF. For temporal consistency, we first
trained two models, one with and the other without tempo-
ral consistency; we then visualized their embedding distri-
butions for frames shared by two overlapping clips. As in
Fig. 6, the model with temporal consistency showed aligned
embedding distributions despite different temporal contexts
of the clips; this leads to learned representation robust to
temporal variations. We also visualized the impact of GLF
during training through Grad-CAMs [47] of the spatial con-
sistency loss with and without GLF in Fig. 7. The model
with GLF focused its attention more on the actors of inter-
est, reducing false action predictions and enhancing perfor-
mance, as also depicted in Fig. 8.

4.4. Additional experiments on AVA

AVA [14] is a large-scale dataset comprising 299 movies,
each lasting 15 minutes. To showcase the versatility and
superiority of our method, we conducted additional exper-
iments on AVA. Specifically, we compared our model with
Kumar et al. [25], integrating TubeR [71] and STMixer [63]
as a base VAD model in the semi-supervised setting, where
only 10% of the data is labeled. Following the training and
evaluation protocol outlined in TubeR and STMixer, results
in Table 4 demonstrate the effectiveness and generalization
ability of our method.

5. Conclusion
We have presented a new semi-supervised learning

framework for video action detection, incorporating a novel
temporal augmentation strategy and global-local context fu-
sion. To mitigate the discrepancy in feature embeddings
between two clips from the same video and more effec-
tively utilize temporal context during training, we intro-
duce a novel temporal-augmentation method called tempo-
ral cross-view augmentation, along with global-local con-
text fusion. We then train a model with consistency reg-
ularization and contrastive learning using both proposed
components. Our framework substantially improves per-
formance over existing semi-supervised methods for all the
benchmarks.
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[1] Iñigo Alonso, Alberto Sabater, David Ferstl, Luis Monte-

sano, and Ana C Murillo. Semi-supervised semantic seg-
mentation with pixel-level contrastive learning from a class-
wise memory bank. In Proc. IEEE International Conference
on Computer Vision (ICCV), 2021. 1, 3

[2] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex
Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel.
Remixmatch: Semi-supervised learning with distribution
alignment and augmentation anchoring. arXiv preprint
arXiv:1911.09785, 2019. 3

[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. Proc. Neural
Information Processing Systems (NeurIPS), 32, 2019. 6

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 1

[5] João Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4724–4733, 2017. 6

[6] Shizhe Chen and Dong Huang. Elaborative rehearsal
for zero-shot action recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 13638–13647, 2021. 2

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 3

[8] Kellie Corona, Katie Osterdahl, Roderic Collins, and An-
thony Hoogs. Meva: A large-scale multiview, multimodal
video dataset for activity detection. In Proc. IEEE Winter
Conf. on Applications of Computer Vision (WACV), pages
1060–1068, January 2021. 1

[9] Kevin Duarte, Yogesh Rawat, and Mubarak Shah. Videocap-
sulenet: A simplified network for action detection. Advances
in neural information processing systems, 31, 2018. 1, 2, 3,
6

[10] Geoff French, Samuli Laine, Timo Aila, Michal Mackiewicz,
and Graham Finlayson. Semi-supervised semantic segmen-
tation needs strong, varied perturbations. In Proc. British
Machine Vision Conference (BMVC), 2020. 1

[11] Harshala Gammulle, David Ahmedt-Aristizabal, Simon
Denman, Lachlan Tychsen-Smith, Lars Petersson, and Clin-
ton Fookes. Continuous human action recognition for
human-machine interaction: A review. ACM Comput. Surv.,
55(13s), jul 2023. 1

[12] Yongbin Gao, Xuehao Xiang, Naixue Xiong, Bo Huang,
Hyo Jong Lee, Rad Alrifai, Xiaoyan Jiang, and Zhijun Fang.
Human action monitoring for healthcare based on deep learn-
ing. IEEE Access, 6:52277–52285, 2018. 1

[13] Georgia Gkioxari and Jitendra Malik. Finding action tubes.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 759–768, 2015. 2

[14] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Car-
oline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan,
George Toderici, Susanna Ricco, Rahul Sukthankar, et al.
Ava: A video dataset of spatio-temporally localized atomic
visual actions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6047–6056,
2018. 1, 2, 8

[15] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2006. 3

[16] Seunghoon Hong, Suha Kwak, and Bohyung Han. Order-
less tracking through model-averaged posterior estimation.
In 2013 IEEE International Conference on Computer Vision,
pages 2296–2303, 2013. 5

[17] Rui Hou, Chen Chen, and Mubarak Shah. Tube convolu-
tional neural network (t-cnn) for action detection in videos.
In Proceedings of the IEEE international conference on com-
puter vision, pages 5822–5831, 2017. 1, 2

[18] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2462–2470, 2017. 1

[19] Ahmad Jalal, Shaharyar Kamal, and Daijin Kim. A depth
video sensor-based life-logging human activity recognition
system for elderly care in smart indoor environments. Sen-
sors, 14(7):11735–11759, 2014. 1

[20] Jisoo Jeong, Seungeui Lee, Jeesoo Kim, and Nojun Kwak.
Consistency-based semi-supervised learning for object de-
tection. Advances in neural information processing systems,
32, 2019. 3, 6

[21] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia
Schmid, and Michael J. Black. Towards understanding ac-
tion recognition. In 2013 IEEE International Conference on
Computer Vision, pages 3192–3199, 2013. 1, 2, 6, 7

[22] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari,
and Cordelia Schmid. Action tubelet detector for spatio-
temporal action localization. In Proceedings of the IEEE
International Conference on Computer Vision, pages 4405–
4413, 2017. 1, 2

[23] Will Kay, João Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Apostol Natsev, Mustafa Suley-
man, and Andrew Zisserman. The kinetics human action
video dataset. ArXiv, abs/1705.06950, 2017. 6

[24] Rihuan Ke, Angelica Aviles-Rivero, Saurabh Pandey, Saiku-
mar Reddy, and Carola-Bibiane Schönlieb. A three-stage
self-training framework for semi-supervised semantic seg-
mentation. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 1

[25] Akash Kumar and Yogesh Singh Rawat. End-to-end semi-
supervised learning for video action detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14700–14710, 2022. 1, 3, 6, 7, 8

[26] Vijay Kumar B G, Gustavo Carneiro, and Ian Reid. Learn-
ing local image descriptors with deep siamese and triplet

855



convolutional networks by minimising global loss functions.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 3

[27] Donghyeon Kwon, Minsu Cho, and Suha Kwak. Self-
supervised learning of semantic correspondence using web
videos. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pages 2142–
2152, January 2024. 3

[28] Donghyeon Kwon and Suha Kwak. Semi-supervised seman-
tic segmentation with error localization network. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 9957–9967, June 2022.
1, 3

[29] Xin Lai, Zhuotao Tian, Li Jiang, Shu Liu, Hengshuang Zhao,
Liwei Wang, and Jiaya Jia. Semi-supervised semantic seg-
mentation with directional context-aware consistency. In
Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 1

[30] Yuandu Lai, Yahong Han, and Yaowei Wang. Anomaly de-
tection with prototype-guided discriminative latent embed-
dings. In 2021 IEEE International Conference on Data Min-
ing (ICDM), pages 300–309, 2021. 2, 4

[31] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242, 2016.
6

[32] Dong-Hyun Lee et al. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, volume 3, page 896. Atlanta, 2013. 6

[33] Yixuan Li, Zixu Wang, Limin Wang, and Gangshan Wu. Ac-
tions as moving points. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XVI 16, pages 68–84. Springer,
2020. 1, 2

[34] Wei Lin, Leonid Karlinsky, Nina Shvetsova, Horst Posseg-
ger, Mateusz Kozinski, Rameswar Panda, Rogerio Feris,
Hilde Kuehne, and Horst Bischof. Match, expand and im-
prove: Unsupervised finetuning for zero-shot action recog-
nition with language knowledge. In ICCV, 2023. 2

[35] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In Proc. International Conference on Learn-
ing Representations (ICLR), 2019. 6

[36] Rajat Modi, Aayush Jung Rana, Akash Kumar, Praveen
Tirupattur, Shruti Vyas, Yogesh Rawat, and Mubarak Shah.
Video action detection: Analysing limitations and chal-
lenges. In In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages
4911–4920, June 2022. 1

[37] Rajat Modi, Aayush Jung Rana, Akash Kumar, Praveen
Tirupattur, Shruti Vyas, Yogesh Rawat, and Mubarak Shah.
Video action detection: Analysing limitations and chal-
lenges. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4911–
4920, 2022. 2, 4

[38] Inzamam Mashood Nasir, Mudassar Raza, Jamal Hussain
Shah, Muhammad Attique Khan, and Amjad Rehman. Hu-
man action recognition using machine learning in uncon-
trolled environment. In 2021 1st International Conference

on Artificial Intelligence and Data Analytics (CAIDA), pages
182–187, 2021. 1

[39] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cun-
toor, Chia-Chih Chen, Jong Taek Lee, Saurajit Mukherjee,
J. K. Aggarwal, Hyungtae Lee, Larry Davis, Eran Swears,
Xioyang Wang, Qiang Ji, Kishore Reddy, Mubarak Shah,
Carl Vondrick, Hamed Pirsiavash, Deva Ramanan, Jenny
Yuen, Antonio Torralba, Bi Song, Anesco Fong, Amit Roy-
Chowdhury, and Mita Desai. A large-scale benchmark
dataset for event recognition in surveillance video. In Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 3153–3160, 2011. 1

[40] Yassine Ouali, Celine Hudelot, and Myriam Tami. Semi-
supervised semantic segmentation with cross-consistency
training. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020. 1

[41] Junting Pan, Siyu Chen, Mike Zheng Shou, Yu Liu, Jing
Shao, and Hongsheng Li. Actor-context-actor relation net-
work for spatio-temporal action localization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 464–474, 2021. 1

[42] Xiaojiang Peng and Cordelia Schmid. Multi-region two-
stream r-cnn for action detection. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part IV 14, pages
744–759. Springer, 2016. 1

[43] Yijun Qian, Lijun Yu, Wenhe Liu, and Alexander G Haupt-
mann. Rethinking zero-shot action recognition: Learning
from latent atomic actions. In European Conference on Com-
puter Vision, pages 104–120. Springer, 2022. 2

[44] Ashwin Ramachandran, Kartik Gokhale, Maike Kripps, and
Thomas Deserno. Video-based in-vehicle action recognition
for continuous health monitoring. In Medical Imaging 2023:
Imaging Informatics for Healthcare, Research, and Applica-
tions, volume 12469, pages 197–210. SPIE, 2023. 1

[45] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dy-
namic routing between capsules. In Proceedings of the 31st
International Conference on Neural Information Processing
Systems, NIPS’17, page 3859–3869, Red Hook, NY, USA,
2017. Curran Associates Inc. 6

[46] Suman Saha, Gurkirt Singh, Michael Sapienza, Philip HS
Torr, and Fabio Cuzzolin. Deep learning for detecting
multiple space-time action tubes in videos. arXiv preprint
arXiv:1608.01529, 2016. 1, 2

[47] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 8

[48] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, Computer Vision – ECCV 2016, pages 510–
526, Cham, 2016. Springer International Publishing. 6

[49] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Pro-

856



ceedings of the 27th International Conference on Neural In-
formation Processing Systems - Volume 1, NIPS’14, page
568–576, Cambridge, MA, USA, 2014. MIT Press. 2, 4

[50] Ankit Singh, Omprakash Chakraborty, Ashutosh Varshney,
Rameswar Panda, Rogerio Feris, Kate Saenko, and Abir
Das. Semi-supervised action recognition with temporal con-
trastive learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
10389–10399, 2021. 3

[51] Ankit Singh, Omprakash Chakraborty, Ashutosh Varshney,
Rameswar Panda, Rogerio Feris, Kate Saenko, and Abir
Das. Semi-supervised action recognition with temporal con-
trastive learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 10389–10399, June 2021. 3

[52] Ayush Singh, Aayush J Rana, Akash Kumar, Shruti Vyas,
and Yogesh Singh Rawat. Semi-supervised active learning
for video action detection. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages 4891–
4899, 2024. 3

[53] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip HS
Torr, and Fabio Cuzzolin. Online real-time multiple spa-
tiotemporal action localisation and prediction. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 3637–3646, 2017. 1, 2

[54] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence.
In Proc. Neural Information Processing Systems (NeurIPS),
2020. 1, 3

[55] Jeany Son. Contrastive learning for space-time correspon-
dence via self-cycle consistency. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14679–14688, June 2022. 5

[56] Lin Song, Shiwei Zhang, Gang Yu, and Hongbin Sun. Tac-
net: Transition-aware context network for spatio-temporal
action detection. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
11987–11995, 2019. 2

[57] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from
videos in the wild. CoRR, abs/1212.0402, 2012. 1, 2, 6,
7

[58] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Mur-
phy, Rahul Sukthankar, and Cordelia Schmid. Actor-centric
relation network. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 318–334, 2018. 1

[59] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Proc. Neural In-
formation Processing Systems (NeurIPS), 2017. 3

[60] Anyang Tong, Chao Tang, and Wenjian Wang. Semi-
supervised action recognition from temporal augmentation
using curriculum learning. IEEE Transactions on Circuits
and Systems for Video Technology, 33(3):1305–1319, 2023.
4

[61] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-
works for action recognition in videos. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 41(11):2740–
2755, 2019. 2, 4

[62] Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia
Schmid. Learning to track for spatio-temporal action local-
ization. In Proceedings of the IEEE international conference
on computer vision, pages 3164–3172, 2015. 2

[63] Tao Wu, Mengqi Cao, Ziteng Gao, Gangshan Wu, and Limin
Wang. Stmixer: A one-stage sparse action detector. In
CVPR, 2023. 8

[64] Junfei Xiao, Longlong Jing, Lin Zhang, Ju He, Qi She, Zong-
wei Zhou, Alan Yuille, and Yingwei Li. Learning from tem-
poral gradient for semi-supervised action recognition. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2022. 3

[65] Junfei Xiao, Longlong Jing, Lin Zhang, Ju He, Qi She, Zong-
wei Zhou, Alan Yuille, and Yingwei Li. Learning from tem-
poral gradient for semi-supervised action recognition. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2022. 4

[66] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Ye-
ung, Wai-Kin Wong, and Wang-chun Woo. Convolutional
lstm network: A machine learning approach for precipitation
nowcasting. In Proc. Neural Information Processing Systems
(NeurIPS), 2015. 2

[67] Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A
survey on deep semi-supervised learning. IEEE Transactions
on Knowledge and Data Engineering, 2022. 3

[68] Xitong Yang, Xiaodong Yang, Ming-Yu Liu, Fanyi Xiao,
Larry S Davis, and Jan Kautz. Step: Spatio-temporal pro-
gressive learning for video action detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 264–272, 2019. 1, 2

[69] Hongcheng Zhang, Xu Zhao, and Dongqi Wang. Semi-
supervised learning for multi-label video action detection.
In Proceedings of the 30th ACM International Conference
on Multimedia, MM ’22, page 2124–2134, New York, NY,
USA, 2022. Association for Computing Machinery. 3

[70] Jiaojiao Zhao and Cees GM Snoek. Dance with flow:
Two-in-one stream action detection. In Proceedings of the
ieee/cvf conference on computer vision and pattern recogni-
tion, pages 9935–9944, 2019. 1, 2

[71] Jiaojiao Zhao, Yanyi Zhang, Xinyu Li, Hao Chen, Bing
Shuai, Mingze Xu, Chunhui Liu, Kaustav Kundu, Yuanjun
Xiong, Davide Modolo, et al. Tuber: Tubelet transformer
for video action detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13598–13607, 2022. 8

[72] Xian Zhong, Aoyu Yi, Wenxuan Liu, Wenxin Huang, Cheng-
ming Zou, and Zheng Wang. Background-weakening consis-
tency regularization for semi-supervised video action detec-
tion. In ICASSP 2023-2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages
1–5. IEEE, 2023. 1, 3, 6, 7

[73] Yuanyi Zhong, Bodi Yuan, Hong Wu, Zhiqiang Yuan2, Jian
Peng, and Yu-Xiong Wang. Pixel contrastive-consistent

857



semi-supervised semantic segmentation. In Proc. IEEE In-
ternational Conference on Computer Vision (ICCV), 2021.
1

[74] Yanning Zhou, Hang Xu, and Wei Zhang. c3-semiseg: Con-
trastive semi-supervised segmentation via cross-set learning
and dynamic class-balancing. In Proc. IEEE International
Conference on Computer Vision (ICCV), 2021. 1

[75] Yuliang Zou, Jinwoo Choi, Qitong Wang, and Jia-Bin
Huang. Learning representational invariances for data-
efficient action recognition. Comput. Vis. Image Underst.,
227(C), jan 2023. 4

858


	. Introduction
	. Related Work
	. Proposed Method
	. Preliminaries
	. Supervised Learning with Labeled Data
	. Spatio-temporal Semi-supervised Learning
	Semi-supervised Learning on Spatial Domain.
	Semi-supervised Learning on Temporal Domain.
	Semi-supervised Action Consistency Learning.

	. Semi-supervised Learning with Global-Local Context Fusion

	. Experiments
	. Implementation Details
	. Results
	. Ablation Studies
	. Additional experiments on AVA

	. Conclusion

