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Abstract

The performance of vision-language models (VLMs),
such as CLIP, in visual classification tasks, has been en-
hanced by leveraging semantic knowledge from large lan-
guage models (LLMs), including GPT. Recent studies have
shown that in zero-shot classification tasks, descriptors in-
corporating additional cues, high-level concepts, or even
random characters often outperform those using only cat-
egory names. In many classification tasks, while the top-1
accuracy may be relatively low, the top-5 accuracy is often
significantly higher. This gap implies that most misclassi-
fications occur among a few similar classes, highlighting
the model’s difficulty in distinguishing between classes with
subtle differences. To address this challenge, we introduce
a novel concept of comparative descriptors. These descrip-
tors emphasize the unique features of a target class against
its most similar classes, enhancing differentiation. By gen-
erating and integrating these comparative descriptors into
the classification framework, we refine the semantic focus
and improve classification accuracy. An additional filtering
process ensures that these descriptors are closer to the im-
age embeddings in the CLIP space, further enhancing per-
formance. Our approach demonstrates improved accuracy
and robustness in visual classification tasks by address-
ing the specific challenge of subtle inter-class differences.
Code is available at https://github.com/hklee/
Comparative—-CLIP

1. Introduction

The emergence of vision-language models (VLMs), such
as CLIP [26], has contributed significantly to the vast
progress in the field of visual classification. The standard
zero-shot visual classification procedure—computing simi-
larity between the query image and the embedded words for
each category [21], then choosing the highest—has shown
impressive performance on many popular benchmarks, in-
cluding ImageNet [5]. Comparing against the word that
names a category was a reasonable place to start [26].

jyjung}Quos.ac.kr, kyungwoo.song@yonsei.ac.kr

While numerous studies have explored VLMs, recent re-
search has shifted towards an innovative visual classifica-
tion strategy [8, 20, 21, 23, 33] that enhances class repre-
sentation by leveraging the semantic knowledge from large
language models (LLMs) (e.g., GPT-3 [3]). Specifically,
GPT-descriptor-extended CLIP (DCLIP) [2 1] diverges from
the existing method that relied solely on class names, e.g.,
“A photo of a Golden Retriever.” by incorporating addi-
tional information, e.g., “A photo of a Golden Retriever,
which has golden fur.” termed a descriptor. Employing
such descriptors with additional cues in the class has led
to improvements in classification performance as well as
some explainability of the model. One can understand how
the model classifies an image by checking the similarity of
the image embedding with each descriptor. However, this
approach has limitations mainly due to failure in descrip-
tor creation. For example, GPT-3 occasionally produces
descriptors about taste and smell in addition to vision, as
well as descriptors with ambiguous words having multiple
meanings, synthetic errors, or repetitive words [21]. These
descriptors diminish the image classification performance.

An interesting approach named WaffleCLIP [32] substi-
tutes these LLM-generated descriptors with either random
words e.g., “foot loud” or sequence of random characters
e.g., “ymhj, !J#m”, which have absolutely no semantic re-
lation to class names. Without any external models, clas-
sification accuracy remained comparable to that of seman-
tically meaningful descriptors. Moreover, when high-level
concepts are added, e.g., “A photo of an animal: a Golden
Retriever, which has jmhj, !J#m.”, the performance sub-
stantially exceeds the previous descriptor-based approach
(DCLIP) [21]. This progression consequently triggered a
reconsideration of the benefits of additional semantics in-
troduced by LLM-generated descriptors [32]. However, this
approach has an inherent downside: the complete loss of
explainability. While using LLM-generated descriptors im-
proved classification accuracy and provided insights into
the model’s decision-making process [21], employing ran-
dom descriptors to enhance performance significantly di-
minishes the interpretability of the model’s decisions.
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Figure 1. Overview of our method and the baselines(CLIP [
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1, and WaffleCLIP [32]).

(left) Comparison of our method with the baselines. Our proposed method outperforms the baselines on CLIP’s image classification task.
(right) A detailed overview of our method. Our method generates descriptors through comparison with semantically similar classes. Then
the filtering process is applied to retain only descriptors that are useful for classification, significantly increasing the classification accuracy.

During our analysis of existing experiments across var-
ious visual classification tasks, we found an inspiring phe-
nomenon: as shown in Table 1, while top-1 accuracy may be
relatively low, top-5 accuracy is often significantly higher.
For example, in zero-shot classification on the Caltech-
UCSD Birds 200 dataset [39], a notable difference is ob-
served: top-1 accuracy stands at 51.36%, whereas top-5 ac-
curacy is 83.48%. This gap implies that most misclassifica-
tions occur among a few similar classes out of the hundreds
of classes in the dataset. It also indicates that the model has
difficulty distinguishing between classes with subtle differ-
ences, often confusing classes with common characteristics.
Based on this observation, we hypothesized that generating
descriptors that emphasize the differences between the tar-
get class and its similar, frequently confused classes could
enhance classification accuracy.

In this paper, we propose a novel approach to enhance
the image classification performance of VLMs by gener-
ating comparative descriptors using LLMs. Our approach
consists of two steps. Rather than directly prompting
LLMs to generate descriptions for a specific class, we
identify n classes that are semantically similar in advance,
by measuring the distances between the text features of
each class name. We then request the LLMs to generate
descriptions for the target class comparatively, highlighting
its distinct features relative to these semantically simi-
lar classes. For example, we query GPT, “What are
useful features for distinguishing a
{target class} from a {similar class} in
a photo?” to generate comparative descriptors.

Next, we propose the following descriptor selection pro-
cess, which we call the filtering process. This process is
motivated by the observation that some descriptors gener-
ated by LLMs do not contribute to the classification and
can even harm performance. Since VLMs and LLMs have
different knowledge bases, some descriptors generated by
LLMs may not be useful for classification in VLMs. In-
tuitively, removing these unhelpful descriptors would en-
hance classification accuracy. Specifically, we retain only
the top-k descriptors that exceed a certain amount of sim-
ilarity to the mean image feature of each class. These re-
maining k comparative descriptors effectively represent the
target classes, distinguishing them well from their similar
classes, thereby significantly enhancing the classification
performance of VLMs.

In summary, our contributions are as follows: 1) We
present a novel concept of comparative descriptors, which
are visual descriptions emphasizing differences and unique
features of the target class compared to semantically sim-
ilar classes. This approach has reduced issues like ambi-
guity and the difficulty of understanding modalities, which
are common problems associated with existing LLM-based
descriptor generation methods. 2) We propose a simple yet
effective filtering process that retains only class-specific de-
scriptors contributing to image classification. By measuring
the similarity of each descriptor to the mean image feature
of its respective class, we ensure that only the most relevant
and distinguishing descriptors are preserved. 3) Our method
significantly improves the image classification performance
of VLMs (particularly CLIP) across various datasets while
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still preserving the inherent interpretability of the model’s
decision.

Note that the classification leveraging comparative de-
scriptors operates in a zero-shot setting, whereas the addi-
tional filtering process applies to a few-shot setting, as it
involves calculating the mean image feature using a few
examples for each class. In the experiments section, we
independently evaluate the impact of both the comparative
descriptors and the filtering process on enhancing the classi-
fication performance of VLMs, demonstrating their respec-
tive contributions.

2. Related Work
2.1. Vision-Language Models (VLMs)

Vision-language models (VLMs) [14-16,26,30,34] are
multimodal architectures designed to process and integrate
visual and linguistic information simultaneously. These
models are capable of understanding both visual and tex-
tual data concurrently, learning the interactions between
these two forms of information. Motivated by the achieve-
ments of large language models (LLMs) like BERT [6] and
GPT [27], researchers have begun developing large-scale
VLMs. These models, pre-trained on extensive datasets
containing both images and text, show exceptional perfor-
mance across various tasks. Specifically, CLIP [26] sets a
significant milestone in the advancement of VLMs. CLIP
learns the general correlations between images and text,
showcasing remarkable flexibility and achieving superior
performance in a wide array of visual tasks. Notably, it
has reached state-of-the-art results in zero-shot classifica-
tion, demonstrating its ability to accurately recognize im-
ages from unseen categories. This highlights CLIP’s profi-
ciency in understanding and categorizing a broad spectrum
of visual concepts, extending beyond predefined categories.

2.2. Large Language Models (LLMs)

Large language models (LLMs) [3,6,17, ] have be-
come foundational in the field of natural language process-
ing. These powerful models excel at detecting patterns in
vast amounts of text data, enabling them to tackle a diverse
range of language-related tasks such as understanding lan-
guage [0], generating text [28], translating languages [36],
and summarizing texts [29]. The development of LLMs
has significantly influenced VLM research. Leveraging the
language comprehension capabilities and the knowledge
learned from text data inherent in LLMs, VLMs have im-
proved their ability to process and interpret the intricate re-
lationships between images and text. This advancement has
enhanced multimodal learning [18], facilitated the integra-
tion and expansion of knowledge across visual and textual
domains [35], and led to the efficient integration and fine-
tuning of VLMs using pre-trained LLMs [43].

2.3. Visual Classification of VLMs

Zero-shot classification [31, 40] is a task that allows a
model to classify new classes or objects that were not seen
during the training process. Recent studies leverage vision-
language models (VLMs) for conducting zero-shot classi-
fication tasks. Specifically, there is research focused on
utilizing both class names and additional information in
termed descriptors. It is noteworthy that performance im-
proves when using large language models (LLMs) to gener-
ate descriptors [8,20,21] or even employing random strings
as descriptors [32]. On the other hand, few-shot classifi-
cation [1, 37, 38,41] is another branch that classifies new
classes with minimal training data. This method is use-
ful for real-world problems with limited data or labeling
difficulties [25]. Particularly, training-free few-shot clas-
sification [42] is a type of few-shot learning technique that
does not require training. Although it requires no training, it
shows significant performance improvements compared to
zero-shot approaches by leveraging a few image-label pairs
from the dataset.

3. Method

We first discuss image classification in CLIP and clas-
sification when using descriptors in Section 3.1. Next, We
describe how to generate comparative descriptors in Sec-
tion 3.2. Specifically, to proactively identify classes likely
to be misclassified, we propose an efficient method for de-
tecting semantically similar classes. These similar classes
can substitute for incorrect classes resulting from misclas-
sification. We then generate a descriptor by querying the
LLM with a comparison between the target class and sim-
ilar classes. Lastly, Section 3.3 covers the filtering process
to keep only descriptors that contribute to classification.

3.1. Image Classification with Descriptors

Given an image = and target categories C, the visual
classification procedure of CLIP [26] is defined as,

¢ = argmay s(o1(x), or(f.)) M)

where f. denotes the prompt, e.g., “A photo of a
Golden Retriever.”, ¢; and ¢r represent the im-
age and text encoders respectively, and s(-, -) represents the
similarity score or the distance between two feature vectors
calculated by the dot product.

To improve classification performance, we add a class
descriptor [21] to the prompt f. as, “A photo of
a Golden Retriever, which has golden
fur.” Given a set of descriptors D, for each class c,
classification procedure is reformulated as,

. 1
Cc = argrgleac)‘(m

> s(¢r(x).or(d) @)

deD.
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ViT-B/32 ‘ IN1k IN1k-V2 Caltech CIFAR CUB

SAT Places Food Pets

DTD Flowers Aircraft Cars‘ Avg

Top-1 62.04 54.67 78.39 64.31
Top-5 87.67 81.97 91.31 88.38

51.36  40.89
83.48 90.91

39.11  82.57
69.71 96.89 9736 73.62 8442 63.43 89.84 | 84.54

85.04 43.19 62.97 24.96 58.62 | 57.55

Table 1. The top-1 and top-5 accuracy for image classification on various datasets using the CLIP ViT-B/32 model. Even if the top-1
accuracy is relatively low, the top-5 accuracy is significantly high. This indicates that while the dataset contains many classes, the model
can effectively capture coarse features but struggles to distinguish subtle differences between similar classes.

3.2. Generating Comparative Descriptors
3.2.1 Identifying similar classes

To reduce misclassification, we identify classes similar to
the target class by calculating the cosine similarity between
the text features of their class names. The reasoning behind
this approach is that CLIP has knowledge of both modali-
ties, vision, and language. Therefore, we assume that, when
given only text, it can leverage its inherent visual knowl-
edge to find similar classes. The cosine similarity between
the text features ¢ (f;) and ¢ (f;) of the classes f; and f;
respectively is given by:

: W ¢r(fi) - or(fi) i
cosor (£ orUi)) = T i Mor (o 7 € Z)

where || - || denotes the Euclidean norm of the vector. We
select n similar classes having high cosine similarities with
the target class.

3.2.2 Querying LLMs

Next, our goal is to generate comparative descriptors which
include distinguishing attributes between the target class
and its semantically similar classes. The descriptors are
generated using GPT-4o0 [10] with the prompts for the
queries as follows:

Q: What are useful features for distinguishing a {target
class} from a {similar class} in the photo?

A: There are several useful visual features to tell the
photo is a {target class}, not a {similar class}.

The proposed approach addresses the limitations asso-
ciated with LLM-generated descriptors, such as challenges
in modality comprehension and word ambiguity, effectively
reducing their impact. This reduces the occurrence of mis-
classifications and thus improves the overall accuracy of
classification tasks.

To effectively utilize in-context learning techniques with
LLMs, we prepared ten sets of question-and-answer ex-
amples, following a consistent prompt template as shown
above. For each instance of generating comparative descrip-
tors, we randomly choose two sets from these ten. We arbi-
trarily select the target and similar classes from our datasets

to create comparative descriptors using ChatGPT. This dy-
namic selection process, rather than using a fixed set of ex-
amples, introduces a broader range of contexts to the model.

3.3. Filtering

In the final stage, we filter the generated descriptors to
include only those that contribute to classification. Initially,
we compute the mean image feature for each class by se-
lecting a few images of the class from the dataset, making
our method applicable even in scenarios with limited image
availability. Note that the mean image feature is utilized
solely during this filtering phase. We calculate the cosine
similarity between the mean image feature of each class and
every descriptor, deriving similarity scores. From these, we
retain only the top-k descriptors based on their scores, dis-
carding the rest.

We employ a lower bound for similarity scores in this
process, set as the cosine similarity between the mean im-
age feature and a CLIP-style text prompt (e.g., “A photo
of a {class}.”). Descriptors falling below this thresh-
old are excluded. If no descriptors for a class exceed this
lower bound, classification proceeds using only the CLIP-
style text prompt, without additional descriptors. For de-
tailed steps of this filtering process, refer to the pseudo-code
presented in Algorithm 1.

Algorithm 1 Filtering Process

1: for c € classes do

2 Lower Bound <+ min(cos(¢;c, ¢7(f.)), 0.3)
3 ford € D, do

4 score < cos(¢pre, dr(d))

5: if score < Lower Bound then
6 Discard(d)

7 end if

8 end for

9: D, + Select(D., k)
10: if D, is empty then
11: D, + f.
12: end if
13: end for
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ViT-B/32 ‘ IN1k IN1k-V2 Caltech CIFAR CUB SAT Places Food Pets DTD Flowers Aircraft Cars ‘ Avg
CLIP 62.04 54.67 78.39 6431 5136 40.89 39.11 8257 8504 43.19 6297 2496  58.62 | 57.55
DCLIP 63.66 56.28 81.23 64.94 5361 4137 41.64 83.06 8525 4426 @ 66.63 26.67  59.08 | 59.05
WaffleCLIP 63.32 55.97 81.06 65.44 5247 43.66 40.67 82.84 8548 4293  66.32 25770  58.82 | 58.82
Ours 64.02 56.71 82.24 65.69 54.09 4292 4222 83.81 8741 4654 67.07 27.57 5930 | 59.97

Ours + Filtering | 65.66 57.56 83.55 64.81 5641 51.08 44.18 84.62 87.04 53.78 7343 28.61 60.15 | 62.37

Table 2. Results of the image classification. Comparison of classification results using our method with CLIP [26], DCLIP [21], and
WaffleCLIP [32]. Our method outperforms the baseline performances across most evaluated datasets. Results for ViT-L/14 and ResNet50
are available in the supplementary material.

ViT-B/32 ‘ IN1k IN1k-V2 Caltech CIFAR CUB SAT Places Food Pets

DCLIP | 22.53 19.69 48.92 35.04 445 3843 2622 37.03
Ours 31.57 27.54 60.60 41.07 18.62 46.17 33.37

DTD Flowers Aircraft Cars‘ Avg

17.06 25.48 12.67 7.98 13.17 | 23.74
51.54 3576 3569  25.09 14.97 28.73 | 34.67

Table 3. Image classification results without class labels. To evaluate the quality of the descriptor itself, we perform image classification
after removing class labels and prefixes, using only the descriptor as text input. In this experiment, our method outperforms the existing

methods. This means that our descriptors contribute significantly to the improvement of classification performance.

4. Experiments

First, we provide experimental details in Section 4.1. We
then assess the effectiveness of our method through image
classification in Section 4.2, demonstrating its superior per-
formance compared to existing methods. Next, in Section
4.3, we perform image classification using only descrip-
tors as text input and show that our method generates high-
quality descriptors. Additionally, we show that our method
is not solely dependent on the number of descriptors by
comparing it to the baseline after equalizing the number of
descriptors in Section 4.4. We propose and evaluate a few-
shot filtering process in Section 4.5, highlighting its practi-
cal utility even with limited data. Also, we apply our filter-
ing process to the existing method to show the effectiveness
of this process. We show the explainability, which is an ad-
vantage of using the LLM-generated descriptor in Section
4.6. Finally, we discuss some limitations of our approach in
Section 4.7, providing a foundation for future research and
improvements.

4.1. Experimental Details

In all experiments, we utilize CLIP [26] as the underly-
ing VLM. Furthermore, since our method is training-free,
all experiments were conducted using a single NVIDIA
3090 GPU.

4.1.1 Hyperparameters

In our experiment, we use two hyperparameters: the num-
ber of similar classes per class, denoted as n, and the maxi-
mum number of descriptors to retain after filtering, denoted
as k. We empirically choose one of the values between 5
and 20 for both n and k. The hyperparameters used for each
dataset are shown in supplementary material.

412 GPT

In the baselines [21, 32], GPT-3 [3] text-davinci-003 was
employed as the LLM to generate descriptors, but this ver-
sion has been deprecated. Therefore, to ensure a fair com-
parison, we re-conducted all experiments for both the base-
lines and our method using GPT-40 [10]. Note that we did
not change any of the baselines’ settings, except for the GPT
version. To demonstrate the fairness of our experiments, we
disclose all responses.

4.1.3 Datasets

We conduct experiments on 13 datasets, including the
11 datasets tested in the baselines [21, 32]: ImageNet
(IN1k) [5], ImageNetV2 (IN1k-V2) [11], CUB200-2011
(CUB) [39], EuroSAT (SAT) [9], Places365 (Places) [44],
Food101 (Food) [2], Oxford-IIIT Pet (Pets) [24], Describ-
able Textures (DTD) [4], Flowers102 (Flowers) [22], FGV-
CAircraft (Aircraft) [19], and Stanford Cars (Cars) [12],
along with 2 additional datasets: Caltech256 (Caltech) [7]
and CIFAR100 (CIFAR) [13]. Note that ImageNetV2 is
an expansion of the validation set designed to evaluate the
generalization ability of ImageNet, sharing the same set of
classes and not including a new training set. Therefore, we
use the mean image feature of ImageNet during the filtering
process for ImageNetV2.

4.2. Image Classification

We assess the effectiveness of our method by perform-
ing image classification on various datasets, each of which
contains a wide range of domains. We then compare these
results to those obtained by existing methods, as shown in
Table 2.
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Since our method generates descriptors by comparing
similar classes, it is straightforward to perform well on
domain-specific datasets such as Flowers [22] and Cars
[12] which contain only images of flowers and cars, re-
spectively. However, its performance on multi-domain
datasets might be questionable. To address this concern,
we present additional experimental results on two multi-
domain datasets: Caltech [7] and CIFAR [13], which were
not covered in the baselines [21,32]. Our method surpasses
the baselines across most evaluated datasets, irrespective of
the domain. This superior performance demonstrates the
validity and robustness of our approach.

In particular, the classification accuracy on the Describ-
able Texture Dataset (DTD) [4] was significantly improved
compared to existing methods. When we generate descrip-
tors using the existing method [21], we frequently encounter
failures due to the ambiguity of words. This leads to the pro-
duction of descriptors irrelevant to the intended class and
lacking sufficient detail. Specifically, with GPT-40 [10],
descriptors are sometimes not created at all if the class is
ambiguous. In contrast, we can make precise and relevant
queries by generating descriptors using our comparison-
based method. This approach reduces the occurrence of
errors and produces context-rich descriptors, ultimately in-
creasing classification accuracy. To offer further insight
into these results, we compare the descriptors generated by
DCLIP and our approach. See Figure 2 for examples.

4.3. Image Classification with Descriptors Only

To evaluate the quality of the descriptor, we mod-
ify the form of the input text. Instead of us-
ing the format “A photo of a {class}, which
is/has/etc {descriptor}.” in Section 4.2, we re-
move the class name and prefix, using only the descriptor
as the text input, i.e. “{descriptor}”, for classification.
The results of this experiment are shown in Table 3. Our
method achieves a much higher accuracy for all evaluated
datasets than the existing method.

One of the reasons for these results can be found in the
reduction of common attributes in the descriptors. The de-
scriptors generated by the existing method are likely to con-
tain common attributes. In contrast, our method generates
descriptors by comparison, minimizing the generation of
common attributes and allowing us to obtain distinct at-
tributes. To be more specific, no matter how well a descrip-
tor describes a class, if a semantically analogous descriptor
exists for another class, this descriptor will not help distin-
guish between them. For better understanding, we present
the examples in Figure 3. Consequently, this result demon-
strates that the descriptors generated by our method have a
much higher contribution to the classification.

\

N

DCLIP Ours
* (Error) * Farallel lines or stripes
Could you clarify what you * Linear or wavy patterns

mean by “banded”?
Are you referring to an animal,
an object, or something else?

* Sharp color contrasts in bands
* Horizontally or vertically aligned

stripes

* a pointed beak
* a medium-sized bird body
* vibrant and iridescent plumage

* Long, pointed petals
* Upright, sturdy stem
* Long, spiky green leaves

* elaborate and often elongated
feathers

* Broad, banana-like leaves
* Exotic and tropical appearance

bird of paradise

Figure 2. Addressing ambiguity in descriptor generation. We
compare the descriptors generated by our method and the DCLIP
[21] method on the (top) Describable Texture Dataset (DTD) [4]
and (bottom) Flowers102 (Flowers) [22] dataset. DCLIP method
failed to generate descriptors due to ambiguity (e.g. the word
banded refers to both texture and a species of snake), and in some
cases generated descriptors that were unrelated to the class. On the
other hand, our method not only avoided failures but also enriched
in context. This difference leads to a significant improvement in
classification accuracy.

plell] Ours

&

* rows of seats

* overhead storage components
* narrow aisles

* overhead lighting panels

* tray tables

« presence of small windows at regular
intervals along the fuselage

* exit signs typically located above the
doors or near emergency exits

* seat belt signs and oxygen masks

%
L

airplane_cabin
=
= * rows of seats or benches
* overhead luggage racks
= 2 * narrow aisles
‘l'»
¥

uTl: « lighting fixtures on the ceiling or walls
train_interior

* larger windows with exterior scenery

* rows of forward-facing seats with
varying directions

* overhead compartments that may be
open rather than closed bins

* windows along the sides

Figure 3. Comparison of generated descriptors between sim-
ilar classes. Descriptors were generated for similar classes in
the Places dataset. Bold text indicates an attribute that appears in
both classes and highlighted text indicates a distinct attribute. The
descriptors generated by DCLIP have semantically equivalent de-
scriptors between the target class and its similar class. In contrast,
our method minimizes semantically analogous descriptors, adds
distinct features, and provides more detailed explanations. As a
result, this makes it easier to distinguish between similar classes.

Filtering (k=5)

59.68
61.97

ViT-B/32 ‘ Random (k=5)

DCLIP 58.31
Ours 58.66

Table 4. Image classification results with an equal number of
descriptors. We reduce the number of descriptors in two ways to
make them equal, and both cases show better performance when
using our descriptors. This demonstrates that our method does not
depend solely on the number of descriptors.
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Shot ‘ IN1k IN1k-V2 Caltech CIFAR CUB SAT Places Food Pets DTD Flowers Aircraft Cars‘ Avg

1 63.97 56.23 82.67 6438 5459 4888 4191 84.03 86.56 5094 7234 28.03  56.92 | 60.88
2 64.54 56.59 83.16 64.45 5541 50.78 4256 8425 86.77 52.09  72.80 28.03  58.53 | 61.54
4 65.10 57.08 83.26 64.57 56.11 5049 4329 8434 8693 5288 7297 2834  59.29 | 61.90
8 65.36 57.33 83.49 64.78 56.36 5039 43779 8444 86.82 5333 7343 28.61  59.85 | 62.15

16 | 65.52 57.44 83.43 6476  56.41 51.05 44.09 8451 87.04 53.70 - 28.59 60.15 -
32 | 65.65 57.56 83.55 64.81 - 51.08 44.16 8452 86.92 53.78 - 28.48 - -
64 | 65.66 57.55 - 64.71 - 50.93 44.18 84.62 86.88 - - - - -

Table 5. Image classification results with few-shot filtering applied. Our filtering method shows superior results even when using a few
images. This indicates that our method can be useful even in situations with limited data.

ViT-B/32 ‘ IN1k IN1k-V2 Caltech CIFAR CUB SAT Places Food Pets DTD Flowers Aircraft Cars‘ Avg

DCLIP 63.66 56.28 81.23 6494  53.61 4137 41.64 83.06 8525 4426  66.63 26.67 59.08 | 59.05
+ Filtering | 64.29 56.42 81.22 63.83 5424 4285 4257 83.61 8503 46.06 67.87 28.20 59.59 | 59.68

Table 6. Image classification results when filtering is applied to the existing method [21]. Performance improved in most datasets. This
demonstrates that our proposed filtering method is effective not only for descriptors generated by our method but also for those generated

by various other methods.

4.4. Evaluation with Equal Number of Descriptors

WaffleCLIP [32] pointed out that the number of descrip-
tors can affect image classification accuracy. Our method
identifies n similar classes for one target class and appends
all the descriptors generated from n comparisons, it in-
evitably uses more descriptors than the baselines. Since
it may be questionable that the performance improvement
with our method is due to the increased number of descrip-
tors, we perform an additional experiment with the same
number of descriptors in the baseline and our approach.

We try both random selection and filtering to equalize
the number of descriptors. The number of descriptors, k, is
set to 5 for both approaches. We run both five times with
different seeds or different images, and the average accu-
racy is shown in Table 4. Our method performs the baseline
on average for both approaches. This demonstrates that the
performance of our method is not solely dependent on the
number of descriptors, but also indicates that it possesses
better quality on its own.

4.5. Few-Shot Filtering

We propose a simple, training-free filtering process to re-
tain only descriptors close to the given class and contribute
to the classification. We present the classification accuracy
obtained through this filtering process in the last row of Ta-
ble 2, and show the variation in performance depending on
the number of images used in Table 5. We repeat the ex-
periment five times using different images to get reliable
results and present the average accuracy. For most of the
evaluated datasets, filtering using only one or two images
also results in significant performance improvements. This
demonstrates that our filtering can be used practically even
in limited data situations.

Additionally, to demonstrate the validity of our proposed
filtering process, we apply it to descriptors generated with
DCLIP [21] and compare the results before and after filter-
ing. As shown in Table 6, the use of filtering generally leads
to an increase in accuracy.

However, the performance improvement is relatively low
compared to applying filtering to the descriptors produced
by our method, and for some datasets, we even observe a
slight decrease in accuracy. This is because there are fewer
descriptors available for filtering. Our filtering method aims
to identify descriptors that are closely related to the class
and useful for classification from a large pool of descriptors.
If the number of these descriptors is limited, the filtering
may be less effective.

4.6. Explainability

Our approach leverages descriptors generated by LLMs
for image classification. Similar to DCLIP [2 1], our method
not only allows the model to make precise decisions but also
provides an explanation of those decisions and the reasons
behind them. This capability significantly enhances the ex-
plainability of the model and provides deeper insights into
its operational process.

As shown in Figure 4, we analyze by selecting a class
and its similar counterpart from the dataset. Despite their
resemblance, we find that the similarity scores of the target
and similar classes show a huge gap. This gap enables the
precise classification between the images of similar classes.
Moreover, by comparing similarity scores, we can identify
which features in the image contribute more to classifica-
tion. This provides a clearer understanding of the reasoning
process and enhances the explainability of our model.
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Our top prediction: stadium-soccer

winter months

Similar class: stage-outdoor

Average Average
« players wearing soccer uniforms * microphone stands
« soccer players on the field * microphones or musical instruments
* spectators in soccer jerseys * possibly a band or performers on stage
* stadium seating surrounding the field * large crowd
« goalposts * musical instruments or equipment

‘ Our top prediction: beef carpaccio Similar class : filet mignon

Average Average
« served on a plate rather than in a bowl * typically served as a single piece | 02605 |
« thinly sliced raw beef « creamy, savory grits
« drizzled with olive oil | 02458 | « possibly served with a sauce or garnish
« garnished with arugula or capers [ 02795 | « seared exterior
« flat presentation on a plate [ o281z | + steak knife

> Our top prediction: poinsettia Similar class : petunia

Average | ooms | Average
« distinctive star-shaped pattern on the leaves | o026 | * smooth, oval-shaped leaves
« associated with christmas and winter holidays T * smaller, trumpet-shaped flowers
« typically grown as a festive holiday plant « usually grown in hanging baskets or flower beds
« commonly associated with christmas decorations [N « paper-like bracts surrounding small white flowers  [IESTH
* typically found in colder climates during | 02578 | * can have a trailing or upright growth habit | 02435 |

Figure 4. Examples of explainability. (left) We show examples of decisions and justifications through our model. (right) We present the
descriptors of each target class and the similar class within the datasets (from the top, Places365 [44], Food101 [2], Flowers102 [22]). The
chart shows the similarity score between the descriptor and the image in the CLIP latent space. The higher the similarity score, the greater
the influence of the descriptor on the decision-making process. The descriptor with the highest average similarity becomes the model’s

classification prediction.

4.7. Limitations

In this section, we provide a detailed analysis of the lim-
itations involved in our approach. This analysis will be use-
ful in guiding future improvements and research directions.

We encounter an interesting problem while generating
descriptors with LLMs for certain datasets. FGVCAircraft
(Aircraft) [19] and Stanford Cars (Cars) [12] are datasets
that contain different types of aircraft and cars, respectively.
When querying on these datasets, we find some attributes
that contain visual information but are invisible. Think of
the seating arrangement in aircraft or the engine in cars:
these are visual components, but they are hard to observe
due to the limited availability of images of aircraft and car
interiors in the datasets. This resulted in less improve-
ment in classification accuracy on these datasets compared
to other datasets.

During our analysis of the experimental results, we dis-
covered that the use of filtering can lead to a lack of diver-
sity in the descriptors. More specifically, this phenomenon
means that some filtered descriptors are semantically almost
identical, but only slightly different in form (e.g., “short,
rounded ear” and “small, rounded ears”). We assume that
this phenomenon occurs because our filtering process only
considers similarity scores. If an attribute has the highest
similarity to the mean image feature of the class, it is rea-
sonable to expect that a descriptor with a similar meaning
and almost identical form would also have a high similar-
ity. We will address this issue in future work by considering
more factors in the filtering process.

5. Conclusion

In this work, we presented an innovative strategy for
enhancing the image classification capabilities of vision-
language models (VLMs) by generating comparative de-
scriptors. By comparing the target class with semantically
similar classes, our method effectively minimizes ambigu-
ity and enhances the model’s ability to distinguish closely
related classes. Coupled with a filtering process, our ap-
proach substantially boosts classification accuracy across
various datasets, demonstrating notable improvements over
existing baselines, even with limited image-label pairs. In-
tegrating comparative descriptors with our filtering mech-
anism significantly advances image classification perfor-
mance. This novel method not only improves the per-
formance metrics of VLMs, particularly in models like
CLIP [26] but also enriches the interpretability of the re-
sults, offering a more intuitive understanding of the model’s
decision-making process.
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