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Abstract

Autofocus aims to accurately position the camera lens to
bring the desired region of interest into focus. Conventional
works search for the sharpest frame within the lens move-
ment. However, sharpness measure in many real-world set-
tings is ambiguous and may cause a focus hunting problem,
where the lens continuously moves back and forth to search
for the accurate position. To mitigate this problem, we in-
troduce a simple yet powerful loss function, specifically de-
signed to produce consistent outputs in autofocus systems.
The proposed Focal Consistency Loss (FCL) allows auto-
focus models to better learn the geometric cues relative to
each initial position of the lens, significantly reducing dis-
tracting lens movement and enhancing the user experience
when taking a photo. Furthermore, we improve autofocus
stability by utilizing multiple consecutive frames in a prac-
tical way. Experimental results show the effectiveness of
FCL in various practical scenarios, including multi-frame
autofocus for both conventional and dual-pixel images.

1. Introduction

Focusing on the target subject is typically the first action
for a photographer to take before capturing a photo. A good
initial point would be using the autofocus (AF) feature of
the camera, since modern cameras already provide sophis-
ticated software/hardware support for rapidly moving the
lens to search for the position that leads to a sharp in-focus
scene. However, AF system can sometimes struggle to lock
onto a subject, resulting in the lens constantly shifting in
and out of focus. This problem is called focus hunting (also
known as lens hunting), where the lens “hunts” for the fo-
cusing position but is unable to decide on the correct point.
Focus hunting tends to occur when the scene lacks sufficient
contrast or when the lighting conditions are poor. This issue
can greatly impact the user experience, as it often results in
a completely blurry, out-of-focus image that fails to capture
the scene effectively.

*Work done while at SAIT.

Figure 1. Motivation of our work: Autofocus models can strug-
gle to find the in-focus lens position when the scene is complex,
such as when there are multiple objects at varying depths. This
may result in AF systems not converging and encounter distract-
ing lens movements (α ↔ β) called focus hunting. In this work,
we propose a focal consistency loss with multi-frame approach
and achieve significantly better stability, even for difficult cases
that the state-of-the-art AF model (BASELINE) fails.

Most of the existing solutions for focus hunting resort
to heuristic guidelines for photographers, such as adjusting
the camera settings for better shooting condition or sim-
ply switching to manual focus [12]. The hunting prob-
lem still exists even for the latest learning-based AF ap-
proaches [4, 13], which demonstrated substantial improve-
ments in AF performance compared with conventional AF
algorithms. We show a motivating example in Fig. 1, where
the state-of-the-art AF method [4] encounters focus hunt-
ing for a challenging scene, while our proposed approach
successfully mitigates the cyclic lens wobbling.

In this paper, we present two methodologies to make the
AF models more stable. First, we introduce a novel loss
function, Focal Consistency Loss (FCL), to enforce con-
sistent predictions for an AF model. Specifically, we re-
organize the training samples so that multiple patches from
the same scene but with different initial lens positions be-
long to a single mini-batch. For each scene, note that the
ground truth focus point should be consistent regardless of
the initial lens position. Therefore, our proposed FCL is im-
plemented to enforce the intra-scene (same scene, different
initial lens positions) predictions to be convergent, which
can improve the robustness of the model without any addi-
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tional computational burden at inference time.
Second, we explore a practical multi-frame AF prob-

lem setting to reliably infer the focus point. Notably, we
use frames from consecutive lens positions, which could be
easily (and quickly) obtained when the lens is moving to-
wards its estimated focusing position. While providing a
further boost in AF accuracy and stability, our multi-frame
model exhibits negligible extra computational complexity,
because we only modify the first convolutional layer of our
AF network to receive additional input channels. Train-
ing the multi-frame model together with FCL enables our
AF model to observe diverse intra-scene examples with the
same ground truth label (focusing lens position). Conse-
quently, our AF model could better learn the meaningful
geometric cues and patterns, which leads to a more accu-
rate and stable autofocus. In experiments, we show that
the proposed FCL and the multi-frame scheme could stabi-
lize various existing AF models and greatly reduce the focus
hunting issue in practice.

Our contributions can be summarized as follows:

• We propose Focal Consistency Loss, a novel loss func-
tion that minimizes the deviations of intra-scene pre-
dictions and reduce focus hunting.

• We introduce a practical AF problem setting that use
multiple frames and achieve state-of-the-art results.

2. Related Work
2.1. Autofocus

Existing methods for camera autofocus can be catego-
rized into two main streams: contrast-detection autofo-
cus (CDAF) and phase-detection autofocus (PDAF). CDAF
aims to find the position of the lens which gives the sharpest
image using a pre-defined contrast metric. Searching for
the peak position is typically done by hill-climbing, and the
contrast metrics are computed by image statistics [9,18,37]
or frequency-domain representations [17, 20, 22, 32, 36].
However, the target contrast metric can be noisy and may
consist of multiple local maxima within the range of lens
movement. In such cases, the estimated focusing points can
be different depending on the initial lens position, since the
CDAF algorithm would converge to the nearest local max-
imum on the sharpness curve instead of giving consistent
results across the full range. To improve the stability of
CDAF algorithms, numerous efforts have been proposed,
including more a robust contrast metric [11,23,34] or better
contrast measurements over multiple frames [10, 35].

On the other hand, PDAF algorithms calculate the dis-
parity between the left/right dual-pixel data and converts the
disparity into a focus distance using a pre-computed calibra-
tion map. While able to predict the lens position in one shot,
PDAF algorithms are susceptible to errors from geometric

distortions or low-light noise [4, 19, 29], which may lead to
a focus hunting problem.

Recently, deep learning-based approaches have been
proposed and greatly improved the overall AF performance
for both CDAF and PDAF [3, 4, 13, 15, 31]. In particular,
Hermann et al. [13] first introduced a large-scale dataset for
AF and outperformed all existing AF approaches, and Choi
et al. [4] further improved the dual-pixel AF performance.
However, both methods [4, 13] did not consider the stabil-
ity of AF models. We assert that learning-based AF models
with the state-of-the-art performance are still prone to focus
hunting problems (as we illustrate in Fig. 1) and introduce
a novel focal consistency loss to mitigate the issue.

In addition to the image AF, efforts dedicated to im-
proving the smoothness of video AF are also related to our
work. Tsai and Chen [30] tried to mitigate the bouncing
lens movements by using a Kalman filter to estimate more
accurate lens positions, but they show limited lab-scale ex-
perimental results. Abuolaim et al. [1] performed a more
thorough user study to demonstrate the effectiveness of their
bidirectional LSTM module with a weighted moving aver-
age for smooth lens movements. Our work is different from
Abuolaim et al. [1] in that we can enforce prediction con-
sistency within a single scene at a single time step. Also,
our method is model-agnostic and can be applied on top of
many different AF models including [1].

In this work, we use [4] and [13] as our baseline models,
extend them to utilize multiple consecutive input frames,
and improve their stability while preserving accuracy by
training with the proposed focal consistency loss.

2.2. Consistency Regularization Loss

Consistency regularization technique is widely used in
semi-supervised learning to make the model more robust
to semantic-preserving perturbations while leveraging un-
labeled data [2, 16, 21, 27, 33, 38]. This can help the model
to learn robust and discriminative features as well as to re-
duce overfitting to the limited labeled data. Existing works
on consistency regularization are implemented by match-
ing multiple output values obtained from input data aug-
mentation [5–7, 39], dropout [26], or random max-pooling
layers [21, 27]. The regularization is performed by mini-
mizing the mean squared error between the output predic-
tions or Kullback-Leibler (KL) divergence between the out-
put probability distributions. While our work follows the
main philosophy of consistency regularization, we do not
rely on random perturbations like data augmentation but use
the intrinsic data characteristic of the AF problem. Also, our
method is fully supervised, and our proposed consistency
loss is motivated to oversee a physically meaningful feature
of defocus blur. There exists a similar recent approach in
natural language processing domain that introduces a con-
sistency loss based on Wasserstein distance between simi-
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lar documents for offensive text detection [24]. However, to
the best of our knowledge, our work is the first to explore
and adapt the consistency regularizing scheme to the new
domain of low-level computer vision problems.

3. Methods

To formulate the autofocus problem, we follow the pre-
vious learning-based works [4, 13]. First, we quantize the
continuous lens positions into n discrete focus distances and
denote the index as f ∈ {1, . . . , n}. Let {If} represent the
set of input patches. We term the individual patch If as a fo-
cal slice, the full collection of patches obtained at different
focus distances {If | f ∈ 1, . . . , n} as a focal stack, and f
as a focal index. We assume that the region-of-interest (RoI)
to focus is already selected by the user, so that If indicates
the image patch cropped from the field-of-view.

We model AF as a classification problem, where the goal
is to accurately predict the ground truth (GT) focal index f∗.
However, unlike a typical classification setting where each
class is independent, the GT focal index for AF is closely
related to the neighboring focal indices, which is why ex-
isting works [4, 13] use an ordinal regression loss [8] for
training. This encourages the model to give lower loss for
the nearby focal indices compared with a distant index.

In the current problem formulation, the AF model is
trained with a single GT focal index supervision of f∗. This
is because the lens position should be fixed for a certain time
step, and we cannot have multiple focus distance at the same
time. However, there exists confusing cases with mixed
depths, and the true focus depends on the user’s intention.
For instance, focusing on the foreground object may have
the same sharpness metric as focusing on the background,
where some users may want to focus on the foreground ob-
ject but other users think of it as occlusion and want to focus
on the background. Even in such cases with multi-modal
distribution of sharpness metrics, we assume in this work
that there is only a single (more dominant) mode, which is
determined by the GT labels in the training dataset. This
setting is in line with prior research, allowing for fair exper-
imental comparisons.

In this work, we introduce two new modifications to im-
prove the AF stability: Focal Consistency Loss (FCL) and
consecutive multi-frame inputs. FCL is included during
training as an additional loss function that stimulates intra-
scene convergent behavior, and multi-frame inputs allow for
more stable predictions. Note that our method is model-
agnostic and can be easily applied to the other AF baselines.
We describe the details in the following subsections.

3.1. Focal Consistency Loss

Given a specific ground truth focal index f∗, the target
distribution of soft labels y for ordinal regression [8] can be

Figure 2. Overview of the proposed Focal Consistency Loss
(FCL). For different focal slices from the same scene, the out-
put probability distribution may vary. Our FCL ensures consistent
predictions by minimizing the KL-Divergence (KLD) and mean
standard deviation (MSD) of the intra-scene outputs.

computed by

yi =
exp(−|fi − f∗|2)∑n
j=1 exp(−|fj − f∗|2)

, ∀i ∈ {1, . . . , n}, (1)

and the ordinal regression loss is calculated as the cross en-
tropy between the soft label distribution y and the softmax
output probability p of our AF model:

LORD = −
n∑

i=1

yi log(pi), pi =
exp(xi)∑n
j=1 exp(xj)

, (2)

where xi is the output logit for the i-th class before the soft-
max function.

Ideally, our AF model should be able to predict consis-
tent focal index regardless of the initial focus distance, i.e.
predictions for input patches I0, I1, . . . , and In should all
be the same with the GT focal index f∗. However, this is
usually not the case in practice; while ordinal regression
loss is useful in leveraging the ordinal characteristic of the
focal indices, it cannot enforce multiple predictions from
different initial focal indices to be consistent.

To explicitly supervise our AF model to give homoge-
neous outputs, we propose Focal Consistency Loss (FCL)
and suggest two different ways for realization: symmetric
Kullback-Leibler divergence (KLD) and mean standard de-
viation (MSD). Both implementations drive the intra-scene
predictions to be more consistent, as illustrated in Fig. 2.

Symmetric KL-Divergence (KLD). Given a single
scene, consider two distinct input focal indices, fi and fj
(where i ̸= j), and the corresponding output probabilities
for each focal index as p(fi) and p(fj). Our goal is to make
the two distributions p(fi) and p(fj) to be similar, to en-
force consistent intra-scene predictions; if all distributions
p(fi),∀i ∈ {1, . . . , n} are the same, then our AF model
predictions are perfectly consistent for the given scene, and
there would be no focus hunting or other distracting lens
movements. To achieve this goal, we use KL-Divergence,
which is widely adopted for measuring the difference be-
tween two probability distributions. However, since KL-
Divergence is an asymmetric metric, we use its symmetric
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form to implement the focal consistency loss:

LKLD =
1

2
(DKL (p(fi) ∥ p(fj)) +DKL (p(fj) ∥ p(fi))) ,

(3)
where we denoted the KLD-type focal consistency loss as
LKLD, and DKL stands for the standard KL-Divergence,
which is computed as:

DKL (p(fi) ∥ p(fj)) =

n∑
k=1

pk(fi) log
pk(fi)

pk(fj)
. (4)

Note that LKLD does not depend on the ground truth focal
index f∗ and only considers the consistency between our
model outputs within each scene. For each training itera-
tion, the final loss is calculated by averaging the KLD val-
ues for all scenes in the mini-batch. When there are more
than two focal indices from the same scene, we compute the
KLD for all pairs; in practice, we randomly choose 4 input
focal indices for each scene, resulting in

(
4
2

)
= 6 pairs.

Mean Standard Deviation (MSD). An alternative ap-
proach of measuring the focal consistency is to directly
compute the deviations for each intra-scene prediction of
p(fi). We can compute the standard deviation of all predic-
tions for a given scene as:

L = STD
(
{argmaxj pj(fi)| i = 1, . . . , F}

)
, (5)

where STD is the standard deviation operator and F is the
number of input focal indices from the same scene. Note
that STD is a set metric (unlike KLD, which is a pairwise
metric) and can be easily computed for input focal indices
F ≥ 2. This allows us to utilize Eq. (5) as an evaluation
metric that can measure the focal consistency by comput-
ing it across the full focal stack (F = n). However, since
argmax is not differentiable, it cannot be used as a loss func-
tion. To address this limitation, we propose to use a Soft-
argmax function, which is a smooth and differentiable ap-
proximation of the one-hot argmax:

soft argmax(x) =

n∑
i=1

i

n

exp(βxi)∑n
j=1 exp(βxj)

, (6)

where xi is the output logit for the i-th class, and β is a
temperature parameter [14] that controls the sharpness of
the softmax distribution (we use β = 2.0 in practice). Our
final loss, named MSD as we take the mean value of the
standard deviations for all scenes, is then calculated by the
following equation:

LMSD = STD({soft argmax(xi) | i = 1, . . . , F}). (7)

In practice, we take the weighted sum of the KLD and MSD
losses to compute our final FCL:

LFCL = λKLDLKLD + λMSDLMSD, (8)

where λMSD and λKLD are hyperparameters that control the
trade-offs between the accuracy (LORD) and the consistency
(LFCL) metrics. The final training loss function of our AF
model is the sum of the original ordinal loss and the pro-
posed focal consistency loss, which is computed as:

L = LORD + LFCL. (9)

3.2. Multi-frame Input

In addition to FCL, using multiple input frames can also
help stabilize the AF model performance. Previously, Her-
rmann et al. [13] proposed the multi-step problem setting
for AF, where the lens moves to the first-step predicted po-
sition and then uses the two observed frames (initial input
position and the first-step prediction) as the second-step AF
model input. Formally, let us denote the initial lens position
as fi and the first-step model as M(1), so that the first-step
predicted lens position is fj = M(1)(fi). Letting M(2)

be the second-step model, the second-step output fk can be
calculated as:

fk = M(2)(fi, fj) = M(2)
(
fi,M(1)(fi)

)
. (10)

In this scenario, running the second-step model M(2) re-
quires the camera lens to move all the way to the first-step
predicted position fj . The total amount of lens movement
should then be |fi − fj |+ |fj − fk|.

On the other hand, we propose to use consecutive lens
positions as the multi-frame inputs. For instance, computa-
tion for a two-frame setting would be fj = M(1)(fi, fi+1),
and prediction for a three-frame setting can be computed as:

fk = M(1)(fi, fi+1, fi+2). (11)

Note that we only use the first-step model M(1) in our
multi-frame setting. We claim that this is a much more
practical scenario compared with the multi-step setting of
Herrmann et al. [13], since we can estimate the accurate
position in one-shot, and we also do not need to keep the ad-
ditional parameters for M(2). In addition, the total amount
of lens movement would be |fi − fk|, which is almost al-
ways less than or equal to the multi-step lens movements
due to triangle inequality. In our implementation, we always
obtained the consecutive input frames in increasing order:
e.g. fi, fi+1 for D2, if we start at fi. Thus, there might
be some cases where our multi-frame model need to move
the lens more than the multi-step settings if fk ≤ fi, but
such slight lens movements are often negligible in terms of
runtime, compared to AF processing. For additional train-
ing/implementation details, please refer to our supplemen-
tary document.

4. Experiments
We perform extensive experiments for various different

problem settings. Our notation for each setting follows Her-
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rmann et al. [13] and summarized as follows:

• D1 ∼ D5 represent using 1 ∼ 5 input frames, where
each frame is a 2-channel image consisting of the left
and right dual-pixel RAW images.

• I1 ∼ I5 represent using 1 ∼ 5 input frames, where each
frame is a conventional single-channel RAW image.

• D* and I* represent the full-stack performance for
dual-pixel and conventional input images, respectively.
This setting is shown only for comparison purposes as
our multi-frame performance upper bounds.

Dataset. Following the previous works [4,13], we use the
large-scale AF dataset proposed by Herrmann et al. [13].
The dataset includes 510 scenes and 49 focal depths. We
use the input patches of 128 × 128 resolution, resulting in
387,000 patches for training and 56,800 for testing. We re-
port the performance on the test patches. For additional de-
tails on the dataset, we refer the readers to [13].

Baselines. We use two baseline models from recent
works [4, 13]. For Choi et al. [4], we use the MobileNet-
v2 [28] based model and denote it as AFPE. For Herrmann
et al. [13], the network architecture is also MobileNet-v2,
but the channel width for each layer is multiplied by 4, as
stated in [13]. We denote this model as L2A. Note that both
baselines are 49-class classification models.

To reduce notation clutter, we denote the model trained
with LFCL of Eq. (9) as {BASELINE}+{LOSS}. For
instance, an L2A model trained with LFCL is called as
L2A+FCL (λKLD ̸= 0, λMSD ̸= 0 in Eq. (8)). An AFPE
model trained with λMSD = 0 is denoted AFPE+KLD, and
AFPE+MSD for λKLD = 0, likewise.

Evaluation Metrics. We follow the same evaluation pro-
tocol as the baseline methods [4,13], while introducing two
new focal consistency metrics: MSD* and Total Variation
(TV) [25]. MSD* measures the variability of predictions
for each scene by calculating the mean standard deviation
across all focal indices, which is computed by Eq. (5) with
F = n. We denote the metric as MSD* to distinguish the
notation with MSD as a loss function computed by Eq. (7).

Total Variation, on the other hand, measures the consis-
tency of predicted focal indices across adjacent frames by
calculating the sum of absolute differences between the pre-
dictions of consecutive frames:

TV =
∑
i

∣∣argmaxj pj(fi+1)− argmaxj pj(fi)
∣∣ . (12)

TV represents the amount of variation or jumps in the se-
quence of predictions. Since MSD* is computed in a simi-
lar way as the MSD loss that we use for training, one might

Alg. Type MAE RMSE MSD* TV

AFPE D1 1.760 2.855 1.338 0.895
+FCL 1.735 2.744 1.070 0.691

AFPE D2 1.656 2.593 1.161 0.606
+FCL 1.577 2.466 0.968 0.488

AFPE D3 1.542 2.421 1.073 0.496
+FCL 1.522 2.350 0.884 0.376

AFPE D4 1.516 2.351 1.003 0.420
+FCL 1.434 2.279 0.868 0.319

AFPE D5 1.456 2.236 0.954 0.368
+FCL 1.431 2.226 0.833 0.290

AFPE† D* 1.356 2.128 - -

Type MAE RMSE MSD* TV

I1 3.629 6.083 3.947 1.534
3.506 5.902 3.356 1.246

I2 2.547 4.358 2.647 1.401
2.491 4.210 2.204 1.188

I3 2.222 3.705 2.097 1.151
2.110 3.519 1.779 0.928

I4 1.990 3.299 1.814 0.935
1.958 3.202 1.557 0.790

I5 1.883 3.081 1.681 0.825
1.801 2.959 1.484 0.703

I* 1.550 2.399 - -

Table 1. Quantitative results for multi-frame settings with dual-
pixel (D1 ∼ D5) and conventional-image (I1 ∼ I5) using AFPE [4]
baseline and the proposed FCL. The top two methods for each
metric are highlighted in red and orange. We can observe that both
KLD and MSD notably improves the consistency metric MSD* for
all settings while preserving the accuracy. A † indicates that values
are from the reference article.

Alg. Type MAE RMSE MSD* TV

L2A D1 2.198 3.283 1.564 1.044
+FCL 2.057 3.070 1.224 0.730

L2A D2 2.058 3.042 1.344 0.689
+FCL 1.882 2.778 1.213 0.573

L2A D3 1.913 2.841 1.292 0.577
+FCL 1.798 2.716 1.081 0.429

L2A D4 1.811 2.719 1.231 0.484
+FCL 1.727 2.636 1.051 0.397

L2A D5 1.785 2.687 1.217 0.455
+FCL 1.704 2.534 0.967 0.326

L2A† D* 1.611 2.674 - -

Type MAE RMSE MSD* TV

I1 3.670 6.155 4.039 1.618
3.672 6.101 3.650 1.415

I2 3.613 5.892 3.561 1.507
3.388 5.491 2.875 1.223

I3 2.451 4.070 2.360 1.089
2.403 3.885 1.984 0.930

I4 2.207 3.734 2.075 0.953
2.149 3.452 1.649 0.758

I5 2.089 3.490 1.864 0.851
1.999 3.281 1.605 0.707

I* 1.600 2.446 - -

Table 2. Quantitative results for multi-frame settings with dual-
pixel (D1 ∼ D5) and conventional-image (I1 ∼ I5) using L2A [13]
baseline and the proposed FCL.

suspect that a better MSD* with FCL is a result of overfit-
ting to the metric using a similar loss function. We claim
that this is not such as case and prove that MSD* is a valid
metric that is not hacked by providing TV, which has a com-
pletely different functional form as the MSD or KLD loss.

We also report the existing accuracy measures: mean ab-
solute error (MAE) and root-mean-square error (RMSE).
We average the performance of all 49 starting positions of
the lens to account for the accuracy variations with respect
to the initial position. All accuracy metrics (MAE, RMSE)
and consistency metrics (MSD*, TV) indicate better perfor-
mance with lower values. By incorporating the focal consis-
tency metrics into evaluation, we can effectively assess our
model’s performance and the prediction consistency across
frames for each scene, allowing for gaining new insights on
the stability of an AF model.
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Figure 3. AF accuracy and consistency comparisons w.r.t. the number of input frames for the dual-pixel AFPE baseline for different types
of FCL. The results prove the effectiveness of all types of FCL (MSD, KLD, and the combined FCL).

Figure 4. Qualitative comparison our proposed FCL methods with the AFPE [4] baseline for the D1 (single-slice, dual-pixel) setting. The
leftmost graph illustrates the output focal index predictions for each input focal slice. The original AFPE is confused whether to focus on
the foreground (index: 32) or the background (index: 12), whereas AFPE+FCL methods (including AFPE+MSD and AFPE+KLD) show
more consistent predictions near the GT. Note that AFPE in this case encounters focus hunting, and the lens will oscillate between the
indices 12 and 31. The red numbers in each patch indicate the focal index, with 48 being the nearest and 0 being the furthest.

4.1. Quantitative Results

In Tabs. 1 and 2, we demonstrate the quantitative results
of the proposed focal consistency loss and the multi-frame
schemes on AFPE and L2A baseline models, respectively,
using dual-pixel inputs (D1 ∼ D5) and conventional input
images (I1 ∼ I5). Since the pretrained models are not avail-
able, we reproduced and extended the model to evaluate all
metrics for multi-frame settings.

For all settings across different metrics in Tab. 1, mod-
els trained with the proposed FCL outperform the corre-
sponding baselines. In particular, FCL improves the focal
consistency by 20% on the MSD* metric and 23% on the
TV metric for the D1 setting, and by 15% on the MSD*
metric and 19% on the TV metric for the I1 setting. Note
that this achievement is done without introducing any addi-
tional computational complexity or sacrificing any AF accu-
racy at test time. Using multiple consecutive frames is also
shown to be effective, as the focal consistency and accuracy
are steadily improved as we increase the number of input
frames. When it comes to the D5 setting, we argue that
the AF accuracy nearly matches the full-stack performance
with 0.833 MSD* and 0.290 TV, and we could observe al-

most no focus hunting issue at this scale except for some
extreme corner cases. This presents a much more practical
setting compared with the full-stack model, since capturing
only 5 consecutive frames instead of the full 49 frames is
significantly more efficient.

For Tab. 2, we could draw identical conclusion as for
Tab. 1, which means that our FCL is model-agnostic and
can be generalized across different baselines.

In Fig. 3, we visualize the accuracy (MAE and RMSE)
and the focal consistency (MSD* and TV) improvements
w.r.t. the number of input frames. As expected, all met-
rics are monotonically improved as we use more frames.
We could observe similar patterns regardless of the type of
our consistency loss, but the weighted combination of both
MSD and KLD (AFPE+FCL) demonstrated the best perfor-
mance. For more detailed quantitative results, please refer
to our supplementary document.

4.2. Qualitative results

In Fig. 4, we show visual examples of how our proposed
FCL can actually reduce the focus hunting issue. Specifi-
cally, for the target scene, we first draw a graph that marks
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Figure 5. Qualitative comparison of results from AFPE+FCL with different multi-frame settings: D1, D3, and D5. The left graph shows
that, while our FCL enhances prediction consistency, using only a single slice input (D1) may sometimes produce false answers for
challenging scenes. Our multi-frame models (D3, D5) can alleviate this issue and stably converge near the GT, as illustrated in the right.

all output focal index prediction for each input focal slice,
so that we can observe how the AF predictions fluctuate dur-
ing the full-range lens movement. The results demonstrate
that models trained with any type of FCL substantially re-
duce the prediction variance. In particular, if the initial lens
position is at focal index 12 in Fig. 4, the original AFPE will
suffer from focus hunting, while AFPE+{MSD/KLD/FCL}
are all able to give more stable predictions. Note that FCL
is only included during the training stage, which means the
computational complexity at the inference stage is the same
for all models. Thus, we can argue that the stability of any
learning-based AF models can be effectively enhanced at
almost no cost, by simply adding FCL to the loss function.

In Fig. 5, we show an example of the stability improve-
ment using our multi-frame approaches. Although the D1
setting of AFPE+FCL is considerably more consistent com-
pared with the baseline AFPE, it may still fail for difficult
corner cases e.g. regions with little texture. However, us-
ing multiple consecutive frames can successfully reduce the
prediction fluctuation with negligible additional computa-
tional complexity (see Sec. 4.3). For more qualitative re-
sults, please refer to our supplementary document (Sec. G),
where we provide more diverse visual comparisons.

4.3. Analysis

Intuitively, the proposed FCL can be understood through
the lens of the standard bias-variance tradeoff in machine
learning. Here, bias represents the error between the target
lens position and the model prediction, measured by MAE,
while variance represents prediction consistency, measured
by MSD*. The tradeoff between bias and variance is man-
aged by the FCL weights λKLD and λMSD. In Fig. 6, we
show an example case of how FCL affects the distribution
of the model prediction to mitigate focus hunting. While
this single case does not analytically guarantee the consis-
tency, we quantitatively and qualitatively demonstrate that

Alg. Type MAE RMSE MSD* TV

AFPE

D1

1.760 2.855 1.338 0.895
+MSD 1.739 2.782 1.175 0.780
+KLD 1.736 2.787 1.130 0.737
+FCL 1.735 2.744 1.070 0.691

AFPE

D5

1.456 2.236 0.954 0.368
+MSD 1.455 2.271 0.911 0.332
+KLD 1.439 2.259 0.852 0.306
+FCL 1.431 2.226 0.833 0.290

Type MAE RMSE MSD* TV

I1

3.629 6.083 3.947 1.534
3.570 6.019 3.631 1.407
3.533 5.898 3.471 1.285
3.506 5.902 3.356 1.246

I5

1.883 3.081 1.681 0.825
1.878 3.032 1.538 0.723
1.805 3.001 1.499 0.705
1.801 2.959 1.484 0.703

Table 3. Ablation study for with dual-pixel (D1, D5) and
conventional-image (I1, I5) using AFPE [4] baseline and the MSD,
KLD, FCL. FCL demonstrates the best performance in terms of
both accuracy and consistency metrics.

AFPE+FCL achieves the best results on average, using pa-
rameters optimized to the best of our efforts. Below, we
show further analysis on the empirical effects of each mod-
ule and hyperparameter choice of our proposed method.

Loss Ablation. Table 3 shows the effect of the type of
FCL on AF accuracy and consistency. On average, using
KLD as the consistency loss performs slightly better than
using MSD, and the combined FCL performs the best. This
result resolves the potential problem of overfitting to MSD*
by training with the MSD loss, because they have the same
formulation, only different batch sizes. However, since
AFPE+KLD achieves better MSD* than AFPE+MSD, we
can claim that MSD* can work as a good consistency met-
ric that is not prone to overfitting.

Multi-frame vs Multi-step. Table 4 presents a compar-
ative analysis of the multi-frame and multi-step formula-
tions. While D2 and 2-step settings use the same number
of frames, 2-step uses twice the parameters and inference
time, while D2 shows comparable MAE with negligible ad-
ditional complexity. The effects of FCL is orthogonal to
these settings; training with FCL consistently shows im-
proved MSD*, and D2 is beneficial for both 1- and 2-steps.
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Figure 6. Example analysis on the changes of the model prediction and the output probability distribution, with respect to the different
input focal slices. We show that AFPE+FCL can successfully alleviate the focus hunting issue of the original AFPE [4].

1-step

Alg. Type MAE RMSE MSD* TV Time(ms)

AFPE D1 1.760 2.855 1.338 0.895 3.63+FCL 1.735 2.744 1.070 0.691

AFPE D2 1.656 2.593 1.161 0.606 3.67+FCL 1.577 2.466 0.968 0.488

L2A D1 2.198 3.283 1.564 1.044 16.41+FCL 2.057 3.070 1.224 0.730

L2A D2 2.058 3.042 1.344 0.689 16.41+FCL 1.882 2.778 1.213 0.573

2-step

MAE RMSE MSD* TV Time(ms)

1.608 2.566 0.600 0.458 7.251.607 2.541 0.432 0.305

1.535 2.389 0.482 0.314 7.341.491 2.330 0.356 0.210

2.100 3.120 0.794 0.622 32.811.973 2.915 0.497 0.332

1.978 2.865 0.593 0.386 32.811.831 2.665 0.454 0.252

Table 4. Quantitative comparison for multi-frame (D2) and multi-
step (D1, 2-step) settings using AFPE [4] and L2A [13] baselines.
The D2 setting performs comparably to the 2-step setting in terms
of accuracy, maintains an inference time close to D1, while the
2-step setting requires double the inference time. Runtime is mea-
sured on the Samsung Galaxy A54 device.

Calculation time. In Tab. 4, we also report the on-device
inference time for each setting. In practice, AF algorithms
must run locally on-device in real-time. While the current
millisecond-level runtime may seem fast, there still exists
multiple risk factors in real world that can lower the speed,
for instance: focusing region-of-interest could be larger
than 128x128, there can be other processes that simultane-
ously use the on-device NPU resources (i.e. object/face de-
tection in the Camera App), high NPU temperature or lower
clocks, etc. Given that modern smartphones typically sup-
port 4K-60fps video capture, the computational resources
available for an AF model is extremely tight, often leav-
ing no room for 2-step inference. To this end, the proposed
multi-frame setting is practically much more beneficial in
that we show negligible runtime increase as we use more
number of frames, while the existing multi-step approaches
require linearly-increasing time complexity.

Effects on FCL Weight. Figure 7 illustrates the results of
the weight parameters w.r.t. MAE and MSD*. We found
that for certain range of λMSD and λKLD, MAE remains
flat or even decreases; this implies that using FCL with a

Figure 7. Effects of FCL weights λKLD and λMSD on the AF accu-
racy and consistency. We show the results using the AFPE baseline
(D1) for each hyperparameter while fixing the other. Our selected
values with optimal trade-offs are marked in dotted green.

properly chosen weight enables the model to improve per-
formance by leveraging the intra-scene semantic informa-
tion. However, too large values of λMSD or λKLD signifi-
cantly increase the MAE and give poor AF accuracy. On
the other hand, MSD* monotonically decreases w.r.t. in-
creasing λMSD or λKLD, and we select the optimal value that
shows the best trade-off between AF stability and accuracy.
Please refer to our supplementary document (Sec. D) for
the full quantitative results.

5. Conclusion

In this work, we proposed a novel loss function, Focal
Consistency Loss (FCL), designed to improve the stability
of autofocus in practical real-world scenarios. FCL enabled
the AF models to better understand the intra-scene geomet-
ric information, thereby enhancing both the accuracy and
the prediction consistency to reduce focus hunting. In ad-
dition, we introduced and explored a practical multi-frame
autofocus setting. Experimental results demonstrated the
effectiveness of our proposed novelties in handling chal-
lenging practical cases. For future work, we plan to exploit
the similarities between the consecutive focal slices for im-
proved stability and reduced focus hunting.
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