
Flatness Improves Backbone Generalisation in Few-shot Classification

Rui Li1 Martin Trapp1 Marcus Klasson1,2 Arno Solin1,2

1Aalto University 2Finnish Center for Artificial Intelligence

Abstract

Deployment of deep neural networks in real-world set-
tings typically requires adaptation to new tasks with few
examples. Few-shot classification (FSC) provides a solution
to this problem by leveraging pre-trained backbones for fast
adaptation to new classes. However, approaches for multi-
domain FSC typically result in complex pipelines aimed at
information fusion and task-specific adaptation without con-
sideration of the importance of backbone training. In this
work, we introduce an effective strategy for backbone train-
ing and selection in multi-domain FSC by utilizing flatness-
aware training and fine-tuning. Our work is theoretically
grounded and empirically performs on par or better than
state-of-the-art methods despite being simpler. Further, our
results indicate that backbone training is crucial for good
generalisation in FSC across different adaptation methods.

1. Introduction
Deep neural networks have shown remarkable successes

when trained on large labelled data sets. However, in many
real-world applications, access to labelled data is limited
and, therefore, training a network with good generalisation
behaviour is challenging. This has sparked research on meth-
ods to adapt pre-trained models to new data domains and
concepts, i.e., classes, even if only a few examples exist.
Few-shot classification (FSC) methods [7, 53] have shown
promising performance in these scenarios. Earlier works
on FSC [18, 46, 50] focus on homogeneous/single-domain
learning tasks (e.g., [32, 50]), i.e., training data and test data
both come from the same domain. However, as later shown,
these elaborated methods can often be surpassed by simple
fine-tuning [7, 12, 47] when the distribution shift between
training and test data is sufficiently small. Consequently,
Meta-Dataset [49] was introduced as a heterogeneous, multi-
domain benchmark to reflect more realistic settings in which
models must be adapted to previously unseen data domains
with potentially large distribution shifts.

Existing approaches to tackle the multi-domain FSC prob-
lem can roughly be grouped into three categories: (i) learn
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Figure 1. Average test accuracy on the Meta-Dataset benchmark for
different backbone trainings using the adaptation by [34]. Across
different information fusion methods, sharpness-aware minimisa-
tion (SAM) leads to better performance than empirical risk minimi-
sation (ERM), showing flatness improves backbone generalisation.

to fuse information of independent backbones to obtain gen-
eralisable features [15, 36], (ii) learn an auxiliary network
that predicts parameters of task-specific layers added to the
backbone [2, 3, 43], or (iii) directly learn the parameters of
task-specific layers during adaptation [33, 34, 48]. Crucially,
all of those approaches heavily depend on the generalisa-
tion behaviour of the backbone(s) to be transferable to new
domains and concepts. However, investigating effective
backbone training with good generalisation behaviour is an
overlooked topic and still in its infancy.

Recently, the connection between model generalisation
and flat optimum in the loss landscape has been studied em-
pirically and theoretically [16, 27, 29] in the deep learning
community. To this end, optimisers that seek flat minima
have been proposed [19, 26] and have shown to improve
generalisation in various deep learning applications [1, 8].
Moreover, recent findings in domain adaptation [6] indicate
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that flatness can improve generalisation in domain general-
isation settings. Raising the question to what extend does
flatness improve generalisation in FSC.

An additional challenge introduced in multi-domain set-
tings is how to avoid domain conflicts when fusing informa-
tion. A simple approach that has shown to be effective is
to train one backbone per source domain rather than train-
ing one general backbone [15]. The information from each
backbone can then be fused to obtain multi-domain feature
representations that generalise to new tasks. However, as the
number of training samples from each domain can vary (e.g.,
in Meta-dataset), effective fusing of the information from
different backbones can be challenging.

In this work, we introduce a theoretically justified and
effective approach for backbone training and selection in
multi-domain FSC. The approach is based on (i) seeking
flat solutions during backbone training (e.g., [19, 39]) to
improve generalization, (ii) fusing information in the multi-
domain setting using fine-tuning, (iii) and selecting the most
compatible backbone for new tasks in cross-domain FSC set-
tings. As shown in Fig. 1, combining these seemingly simple
strategies results in a competitive approach compared to the
state-of-the-art methods without changes of the adaptation
method. Moreover, we observe that sharpness-aware training
(SAM) of the backbone consistently improves generalisation
in FSC over standard empirical risk-minimization (ERM).
We present theoretical and empirical findings indicating that
careful backbone training is crucial in FSC. Henceforth, we
advocate for more careful treatments of the used backbones
and a more competitive baseline.

Our contributions can be summarized as follows:

• We introduce an effective approach for multi-domain
FSC which performs on par or better than state-of-the-
art methods despite being simpler.

• We present theoretical results that flatness can improve
generalisation in FSC, motivating our approach to back-
bone training and selection.

• We show empirical evidence that (i) flatness helps gen-
eralisation in FSC, (ii) fine-tuning is an effective infor-
mation fusing method, and (iii) combining flatness and
fine-tuning in the backbone training results in better
performance compared to the state-of-the-art.

2. Background
We use calligraphic letters to denote sets (e.g., the query

set Q), denote domains using fraktur font (e.g., the target
domain T), and use bold letters for vectors. Further, we
denote the risk associated with a hypothesis/model fθ(·) as
E and use the hat-symbol Ê whenever the risk is calculated
w.r.t. an empirical distribution.

Bad
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SAM solution
(flat loss landscape)
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Train (empirical)
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Figure 2. Illustration that solutions in flat areas on the training loss
can result in better generalisation behaviour on the test loss.

2.1. Few-shot Classification

We assume to be given a training set D = {(xn, yn)}Nn=1

of N input–output pairs, where x denotes the input and y
its corresponding class label. In FSC, the goal is to learn a
model fθ(·) that can adapt to new classes or domains from
few examples. At test time, we are given multiple tasks
t = 1, . . . , T consisting of support St = {(xi, yi)}|St|

i=1 and
query sets Qt = {(xj , yj)}|Qt|

j=1 with Qt ∩ Sτ = ∅ and
|St| ≪ N . Support sets and query sets in FSC are similar to
training data and test data respectively in supervised learning.
Note the sets of classes at training and test time are disjoint
and we might have a domain shift.

Let the model parameters be given as θ = {ϕ,ψ}, where
we refer to ϕ as the task-agnostic backbone and ψ as task-
specific parameters. Task-agnostic parameters are learnt on
the training set and task-specific parameters are learnt on the
support set during evaluation. Specifically, learning a model
in FSC can be divided into three phases: (i) during training,
learning ϕ on the training set, (ii) at test time, injecting
task-specific layers parametrised by ψ, and (iii) learning ψ
during the adaptation on the support set of a sampled task
while keeping ϕ fixed. If the tasks are sampled from the
same domain as the training set, we refer to the setting as
in-domain and as cross-domain otherwise. If multiple train-
ing sets are available, e.g., in multi-domain setting, we may
have a backbone per data set or learn a general backbone.

2.2. Sharpness-aware Minimisation

Given a data set D, the empirical risk minimisation
(ERM) problem for a model fθ(·) and a pointwise loss func-
tion ℓ(·, ·) is defined as:

argmin
θ

ÊERM(θ;D, α) = argmin
θ

L(θ) + α

2
∥θ∥2, (1)

where L(θ) = 1
N

∑N
n=1 ℓ(fθ(xn), yn) and α

2 ∥θ∥
2 is a reg-

ularization term. The goal of sharpness-aware minimisation
(SAM) [19] is to reduce the generalisation error by addition-
ally accounting for the loss geometry in the ERM objective.
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Figure 3. Decomposition of fθ(·) with θ = {ϕ,ψ} into
task-agnostic layers parametrised by ϕ and task-specific layers
parametrised by ψ. Additional gates ◦ are used to switch between
task-specific layers and the identity function. Note that this con-
struction is only for theoretical purposes and does not imply any
additional operations in practice.

In particular, SAM aims to simultaneously minimise the loss
value and the loss sharpness by seeking parameters whose
entire neighbourhood have uniformly low loss values under
some ϵ perturbation with ∥ϵ∥ ≤ ρ, i.e.,

ÊSAM(θ;D, ρ, α) = max
∥ϵ∥≤ρ

L(θ + ϵ) +
α

2
∥θ∥2, (2)

where ρ > 0 defines the radius of the neighbourhood of θ.
Fig. 2 provides an intuition that solutions to the SAM

objective can result in improved generalisation behaviour
of the trained model. Optimising the ERM objective can
result in lower training loss compared to SAM. However,
in the case of a distribution shift between the training and
test sets, a solution in a flat loss landscape may yield better
generalisation on the test loss. Based on this intuition, we
study the use of SAM as a replacement of ERM in FSC.

3. Methods
We will now study the link between flatness and generali-

sation in the FSC in Sec. 3.1. Then in Sec. 3.2, we introduce
our backbone training protocol: based on our theoretical re-
sults, we use a flatness-seeking objective for backbone train-
ing and introduce a backbone selection method to choose the
best backbone for adaptation. For information fusion, we
propose to use a fine-tuning strategy to fuse information in
the multi-domain settings.

3.1. Flatness Leads to a Better Backbone for Adap-
tation

In FSC the backbone is trained using data from the source
domain D and later evaluated on data from the target domain
T. We assume test tasks are sampled independently from
sub-domains of the target domain Tt ⊂ T. Recall that the
source and target (sub)-domains have disjoint sets of classes
and a possible distribution shift.

Let ℓ(·, ·) be a bounded loss function where ℓ(y1, y2) = 0
iff y1 = y2. Given a model fθ(·), we denote the empirical

risk on the source domain as ÊERM(θ;D) where D ∈ D, the
SAM loss on D as ÊSAM(θ;D), and the risk on T as:

E(θ;T) ∆
= ETt∼T

[
E(x,y)∼Tt

[ℓ(fθ(x), y)]
]
. (3)

In the setting of domain generalisation, [6] showed the target
domain loss can be bounded by the SAM loss on the source
domain, the divergence between the source and the target,
and a confidence bound that depends on the hyperparameter
ρ of the SAM loss.

Theorem 3.1 ([6]). First, let {Θk ⊂ Rd, k = 1, . . . ,K},
where d is dimension of Θ, be a finite cover of the parameter
space Θ consisting of K closed balls with radius ρ/2 where

K
∆
= ⌈(diam(Θ)/ρ)d⌉. Denote the V C dimension of Θ and

Θk as v and vk, respectively. Then, for any θ ∈ Θ, the
following bound holds with probability at least 1− δ:

E(θ;T) ≤ ÊSAM(θ;D) +
1

2
Div(D,T)

+ max
k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N
. (4)

In Eq. (4), Div(D,T) is the divergence between source
and target domain. Building on their results, we show the
expected generalisation gap on the target domain over test
tasks in FSC can be upper bounded by the gap between the
SAM and the ERM loss.

For this, let us assume a global labeling function and let
fθ(·) be decomposed as follows: (i) task-agnostic functions
parametrised by ϕ, (ii) task-specific functions parametrised
by ψ, and (iii) gating functions that switch between task-
specific functions and the identity function. Note that gating
functions are only introduced to make the model contains
task-agnostic and task-specific parameters during both train-
ing and testing so we can ensure theoretically correctness
in the FSC setting. It does not add any extra operation in
practice. During training on the source domain, all gates
are set to choose the identity functions, while during adapta-
tion on the target, all gates are set to select the task-specific
layers. Fig. 3 illustrates our construction of the model func-
tions in the FSC setting with the decomposition of fθ(·) into
task-agnostic and task-specific parts.

Theorem 3.2. Let θ∗SAM denote the optimal solution of the

SAM loss ÊSAM(θ;D), i.e., θ∗SAM
∆
= argminθ ÊSAM(θ;D).

Then, the gap between the loss minθ E(θ;T) and the loss
of the optimal SAM solution on the training set, E(θ∗SAM;T),
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Figure 4. Our training protocol: 1. SAM-based backbone Y training on a large and diverse data set (e.g., ImageNet), 2. SAM-based
fine-tuning of Y on additional training data sets, 3. backbone selection and adaptation on the selected backbone Y →Y .

has the following bound with probability at least 1− δ:

E(θ∗SAM;T)−min
θ

E(θ;T)

≤ ÊSAM(θ
∗
SAM;D)−min

θ
ÊERM(θ;D)

+ ETt∼T [Div(D,Tt)] +

√
v ln(N/v) + ln(2/δ)

N

+max
k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N
, (5)

where N is the number of training examples and Div(D,Tt)
is the divergence between domain D and Tt. For further
details and the proof, see App. A.

Note that by our construction, θ∗SAM corresponds to the
optimal solution under the SAM loss with gates switching to
identity functions. Hence, Eq. (5) holds for any choice of ψ
and its closeness will depend on the influence of ψ on the
function value of fθ. In practice, only a very small portion
of fθ is task-specific, e.g., for TSA [34] less than 1% of the
parameters are task-specific, and we can consider the effect
of ψ to be negligible.

Theorem 3.2 shows that the expected generalisation gap
on the target domain can be bounded by: (i) the gap be-
tween the SAM and the ERM loss (in blue), (ii) the expected
discrepancy between the source domain and the target do-
main (in green), (iii) and confidence bounds depending on
ρ (in gray). Consequently, in the multi-domain FSC set-
ting, i.e., when we consider a collection of source domains
{D1, . . . ,DD}, the bound in Theorem 3.2 suggests that the
generalisation gap on the target depends on the selected
source domain. Henceforth, we will suggest a backbone
selection mechanism in Sec. 3.2 to minimise the expected
generalisation gap on the target domain.

When the domain discrepancy between D and T is not
large, the gap between SAM training loss and empirical
training loss will play an important role at the bound. Given

the complexity of loss landscapes in deep neural networks,
it is sensible to assume that SAM with a proper ρ will find
an optimal solution with similar training loss as ERM.

3.2. Backbone Training

In this section, we introduce our proposed backbone train-
ing protocol for FSC. First, we use a flatness-seeking objec-
tive based on the SAM loss to train the backbone. Then, we
propose to use a fine-tuning strategy to fuse information in
the multi-domain settings. Finally, we introduce a backbone
selection method that we use on unseen domains to choose
the best backbone for adaptation. The training protocol and
the respective steps are outlined in Fig. 4.

1. Flatness Aware Training Objective Motivated by
our theoretical result in Sec. 3.1, we propose to train the
backbone with a flatness-seeking objective. More specifi-
cally, we propose to use the SAM objective [19] or variants
thereof, e.g., Bayesian-SAM (b-SAM) [39] or adaptive SAM
[31]. This requires minor modification where we optimise
the SAM objective rather than ERM when training the back-
bones, where any gradient-based optimiser can be applied to
the SAM objective.

2. Information Fusing using Fine-tuning One key chal-
lenge in multi-domain FSC is effective information fusion
from different data sets. Simply training a single backbone
on all domains will suffer from task conflicts [33]. To avoid
this, we take inspiration from transfer learning where fine-
tuning is a simple yet effective way to transfer knowledge
between different data sets [42, 55]. Specifically, we propose
to first train a base backbone on a diverse and extensive train-
ing data set (e.g., ImageNet), then fine-tune the trained base
backbone on smaller data sets. We experiment with standard
fine-tuning and Low-Rank Adaptation (LoRA) [24].

3. Backbone Selection We propose using model selection
scores on the backbone bank to determine which backbone
is most suitable for feature extraction on unseen domain data.

1075



Table 1. Does flatness help generalisation? Yes. Our performance comparison on the Meta-Dataset indicates that the SAM objective
(SAM, b-SAM) results in better generalisation compared to ERM. Each trained backbone is combined with SUR or TSA for adaptation.
Performance differences against ERM are indicated by ↑ and ↓. For visual comparison, we include example images from each data set.

Adapted with SUR Adapted with TSA
Example images ERM SAM b-SAM ERM SAM b-SAM

Se
en

du
ri

ng
tr

ai
ni

ng

ILSVRC 2012 55.09±1.09 56.72±1.11 56.25±1.08 56.74±1.08 58.99±1.08 58.50±1.06

OMNIGLOT 94.38±0.44 94.69±0.44 93.95±0.46 94.64±0.43 94.87±0.42 94.19±0.46

AIRCRAFT 87.68±0.47 89.51±0.43 87.74±0.45 88.24±0.45 89.91±0.42 88.68±0.43

CU BIRDS 72.28±0.92 74.18±0.83 72.68±0.82 70.57±0.86 74.27±0.81 73.19±0.83

DTD 72.08±0.73 72.99±0.80 73.08±0.73 61.33±0.71 63.43±0.74 62.73±0.77

QUICKDRAW 83.36±0.56 83.86±0.55 83.75±0.56 83.64±0.58 84.10±0.57 84.00±0.58

FUNGI 68.68±0.97 70.52±0.95 70.67±0.95 68.45±0.96 70.50±0.93 70.54±0.92

VGG FLOWER 87.11±0.52 87.23±0.51 86.42±0.54 84.28±0.58 85.30±0.53 83.49±0.62

U
ns

ee
n

TRAFFIC SIGN 45.33±1.02 46.04±1.05 44.05±1.15 80.73±0.97 86.07±0.89 80.87±0.92

MSCOCO 50.41±1.03 50.28±1.08 48.54±1.03 56.07±1.05 57.14±1.07 55.87±1.02

MNIST 94.71±0.42 94.16±0.40 95.52±0.30 96.59±0.35 96.84±0.34 97.26±0.32

CIFAR10 68.76±0.76 66.93±0.86 68.93±0.94 79.62±0.73 80.47±0.71 80.04±0.71

CIFAR100 59.32±1.05 59.31±1.07 61.21±1.09 71.21±0.96 72.28±0.94 71.95±0.93

Average seen 77.58 78.71 ↑1.13 78.07 ↑0.49 75.99 77.67 ↑1.68 76.91 ↑0.92
Average unseen 63.71 63.34 ↓0.37 63.65 ↓0.06 76.84 78.56 ↑1.72 77.20 ↑0.36

As indicated in Theorem 3.2, the bound suggests that the gen-
eralisation gap on the target domain depends on the selected
source domain. To narrow this gap in the cross-domain FSC
setting, we use Pairwise Annotation Representation Com-
parison (PARC) [5] to select which backbone to use when
adapting to unseen domains. During evaluation, we calculate
the PARC scores for each backbone in the backbone bank on
support set, and select the backbone with the highest score
for current task. This only requires forward pass of trained
backbones without the need for additional training of the
backbones to compute the scores. See [5] for more details
on PARC.

Our training protocol is adaptation- and backbone-
agnostic, methodologically simple to allow easy integration
into existing works, and theoretically motivated by Theo-
rem 3.2.

4. Experiments

In this section, we first introduce the experimental setup
and then study the following questions: (i) Does flatness help
generalisation in FSC? (ii) How does fine-tuning compare
against information fusion approaches? (iii) How does our
proposed training protocol compare with the state-of-the-art
methods?

4.1. Experimental Setup

We use the Meta-Dataset [49], a multi-domain FSC bench-
mark for in- and cross-domain generalisation, including data
sets introduced by [43] for all evaluations. For this, we fol-
low the standard varying-way varying-shot protocol. The
Meta-Dataset contains the following training data sets: Im-
ageNet [10], Omniglot [32], Aircraft [38], CU Birds [51],
VGG Flower [40], Quickdraw [28], Fungi [44], and Describ-

able Textures [9]. For the cross-domain setting, we evaluated
based on Traffic Signs [23], MSCOCO [35], MNIST [11],
CIFAR-10 and CIFAR-100 [30].

To have a fair comparison with prior work, we use a
ResNet-18 [21] as the backbone in main text experiments. In
App. B, we also include results using a Vision Transformer
[14] in Table 7 to verify that our proposed training procedure
performs well for different network architectures. For the
ResNet-18 backbone, we adopt the recent backbone-agnostic
adaptation methods SUR [15] and TSA [34]. SUR combines
features extracted from independently trained backbones
and learns combination coefficients on the support set during
adaptation. TSA adds task-specific feature adapters to the
trained backbone and learns these on the support set. To
ensure a fair comparison, we use the default hyperparameters
provided for the adaptation. For unseen domains we select
backbone based on PARC score for each task. To classify
unseen classes during adaptation, we use a nearest-centroid
classifier as typically adopted in FSC [46].

We compare our backbone training strategy against the
following methods: (i) SUR [15] and URT [36] which learn
to fuse information of independent backbones to obtain gen-
eralisable features; (ii) Simple CNAPS (S-CNAPS) [3] and
Transductive CNAPS (T-CNAPS) [2] which learn an aux-
iliary network that predicts task-specific parameters of the
backbone; (iii) URL [33] and TSA [34] which directly learn
the parameters of task-specific layers during adaptation. We
use a paired t-test (p = 0.05) to bold results with significant
statistical difference. For more details, see App. C.

4.2. Does Flatness Help Generalisation in FSC?

To evaluate whether the flatness-seeking training leads
to more generalisable backbones, we compare backbones
trained with the SAM and ERM objectives, respectively.
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Table 2. Is fine-tuning effective? Yes. Our performance comparison on the Meta-Dataset indicates that fine-tuning (LoRA, Vanilla) is an
effective fusion strategy as it performs competitively against the other information fusion methods. We use TSA as the adaptation method,
except for late fusion which is based on SUR. Surprisingly, fine-tuning outperforms knowledge distillation in the cross-domain (unseen)
setting. Moreover, we observe that the performance on ImageNet deteriorates after knowledge distillation compared to no fusion.

(N , C) Late Fusion No Fusion Knowledge Distillation Ours (LoRA) Ours (Vanilla)
ILSVRC 2012 (11132759, 1000) 55.09±1.09 56.74±1.08 55.67±1.07 56.74±1.08 56.74±1.08
OMNIGLOT (32460, 50) 94.38±0.44 94.64±0.43 95.03±0.41 93.48±0.49 94.00±0.46
AIRCRAFT (10000, 100) 87.68±0.47 88.24±0.45 89.95±0.45 89.29±0.48 89.94±0.43
CU BIRDS (11788, 200) 72.28±0.92 70.57±0.86 82.08±0.72 80.84±0.74 81.46±0.68
DTD (5640, 47) 72.08±0.73 61.33±0.71 75.63±0.67 74.80±0.76 74.35±0.74
QUICKDRAW (50426266, 345) 83.36±0.56 83.64±0.58 82.33±0.62 80.96±0.65 83.08±0.60
FUNGI (89760, 1394) 68.68±0.97 68.45±0.96 67.62±0.97 61.39±1.04 68.23±0.96
VGG FLOWER (8189, 102) 87.11±0.52 84.28±0.58 92.90±0.43 92.41±0.45 92.33±0.41

TRAFFIC SIGN (39209, 43) 45.33±1.02 80.73±0.97 81.51±0.97 80.73±0.97 80.73±0.97
MSCOCO (860001, 80) 50.41±1.03 56.07±1.05 53.98±1.07 56.07±1.05 56.07±1.05
MNIST (10000, 10) 94.71±0.42 96.59±0.35 96.65±0.37 97.21±0.31 97.00±0.34
CIFAR10 (10000, 10) 68.76±0.76 79.62±0.73 78.93±0.77 79.62±0.73 79.62±0.73
CIFAR100 (10000, 100) 59.32±1.05 71.21±0.96 70.11±1.00 71.21±0.96 71.21±0.96

Average seen 77.58 75.99 80.15 78.74 80.02
Average unseen 63.71 76.84 76.24 76.97 76.92

Table 3. Trace and top eigenvalues of the Hessian of the loss
to measure the flatness of the trained backbones. Lower values
mean flatter solutions. SAM in general results in flatter backbones
compared with ERM.

Trace of Hessian Top Eigenvalues of Hessian
ERM SAM ERM SAM

ILSVRC 2012 8873.46 13780.30 237.13 373.42
OMNIGLOT 199.15 169.05 9.39 8.09
AIRCRAFT 274.93 170.70 12.71 11.53
CU BIRDS 229.89 341.53 4.37 10.60
DTD 134.64 63.58 7.60 2.67
QUICKDRAW 3508.08 1785.32 59.79 37.50
FUNGI 5359.20 3998.80 162.77 149.88
VGG FLOWER 130.46 89.39 7.03 6.66

For the SAM objective, we use vanilla SAM [19] and b-
SAM [39]. To assess the performance of varying adaptation
methods, we employ both SUR and TSA. For SUR, the multi-
domain features are fused during adaptation, while TSA
needs backbone selection for the unseen domains. Hence,
for TSA we employ our suggested backbone selection based
on PARC [5]. We evaluate whether our backbone selection
strategy chose the compatible backbone for unseen domain
and report results in App. B.1. As shown in Table 6, PARC
selects the most compatible backbone.

In Table 1, we observe that using the SAM objective dur-
ing backbone training results in better generalisation on both
seen and unseen domains in most cases. In particular, both
SAM and b-SAM combined with TSA achieve better aver-
age performance on the seen and unseen domains compared
to backbones trained with ERM. Note that for b-SAM, we
are only using the posterior mean for computational reasons
which might explain why it underperforms against SAM.
For SUR, the information fusion combined with SAM might
cause side effects that result in a slight drop in performance
for the unseen domains. Further, the improvements on seen

domains are larger than on the unseen domains in general.
This performance gap is potentially caused by large domain
shifts which would align with our theoretic findings, c.f. The-
orem 3.2. Nevertheless, these results indicate that seeking
flat minima during backbone training can improve generali-
sation in FSC.

Additionally, we measure the flatness of backbones
trained with SAM and ERM using the trace and top eigen-
values of the Hessian of the loss [19]. [54] show that in
the full-batch setting, SAM provably decreases the largest
eigenvalue of Hessian, while in the stochastic setting (when
batch size is 1), SAM provably decreases the trace of Hes-
sian. Though in our experiment we use mini-batches where
their theoretical results is inapplicable, we report trace and
top eigenvalues of Hessian of trained backbones as they still
measure the flatness in some degree. As shown in Table 3,
SAM finds flatter solution in general compared with ERM.

4.3. Is Fine-tuning Enough for Information Fusion?

To evaluate how well fine-tuning performs for informa-
tion fusion, we compare it against recent fusion methods.
Our fine-tuning strategy on Meta-Dataset involves two steps:
(i) train one backbone on the ImageNet data set, and (ii) fine-
tune copies of the ImageNet-trained backbone on the remain-
ing training data sets. We experiment with vanilla fine-tuning
referred to as Vanilla, as well as fine-tuning using LoRA
[24]. We compare against the following methods:

• Late Fusion: The multi-domain feature representation
from SUR that fuses information from all backbones.

• No Fusion: Using single-domain backbones directly.

• Knowledge Distillation: The backbone from URL
learned from distilling information from all backbones.

Note that all methods use TSA for adaptation, except for late
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fusion which is based on SUR. Moreover, all backbones are
trained with the ERM objective.

In Table 2, we observe that our fine-tuning strategy
performs competitively against other information fusion
methods, especially on the unseen domains in Meta-Dataset.
Compared to no fusion, both LoRA and vanilla fine-tuning
yield better backbones on the seen domains, which means
that the fine-tuning fuses information from ImageNet with
the different domains successfully. On the unseen domains,
our method and no fusion both select the ImageNet-
backbone for the color datasets and Omniglot-backbone for
MNIST, which is why their accuracies are similar.

When compared to the information fusion methods, our
vanilla fine-tuning outperforms late fusion and performs
competitively against knowledge distillation on both seen
and unseen domains. While the smaller data sets benefit
from using the universal backbone from knowledge distil-
lation, we observe that our vanilla performs slightly better
on the larger domains QuickDraw and Fungi. Furthermore,
our method performs better than Knowledge Distillation on
all unseen domains except Traffic Signs, which could be
because the fine-tuning strategy mitigates the risk of task
conflict when fusing the seen domains with ImageNet. These
results demonstrate that our fine-tuning strategy is an effec-
tive alternative to previous information fusion methods.

4.4. How Does Our Approach Compare with SoTA?

We combine SAM-based backbone training with fine-
tuning, which we denote as SAM+FT, and assess its perfor-
mance by comparing it against SoTA on the Meta-Dataset. In
addition, we combine SAM training with knowledge distilla-
tion based on URL [33], denoted as SAM+KD, to evaluate
the effect of SAM on SoTA information fusion. We report
the results with TSA adaptation for both approaches in Ta-
ble 4.

We observe that our training protocol (SAM+FT) outper-
forms SoTA methods on most domains (10 out of 13) despite
its simplicity. Furthermore, accounting for flatness in knowl-
edge distillation (SAM+KD) results in mild improvements
over TSA but is lacking behind our proposed approach. Our
results show that flatness can improve generalisation in FSC
across different information fusion strategies. To this end,
we suggest that our simple yet effective training procedure
be considered as a competitive baseline in FSC.

5. Related Work

Sharpness-aware minimisation The geometry of minima
in neural network training has long been hypothesized to in-
fluence the generalisation behaviour of neural networks (e.g.,
[22, 29]). Consequently, recent works studied theoretical
links between flatness and generalisation of neural networks.
Various algorithms accounting for the loss geometry have

been proposed. For example, [29] showed a negative cor-
relation between the sharpness of the loss landscape and
the generalisation ability of the learner. Later, [13] related
sharpness to the spectrum of the Hessian and [16] proposed
a PAC-Bayes bound-based optimisation scheme to find flat
minima. Recently, [52] introduced an augmented SAM loss
which aims to further encourage flat minima and proposed a
respective optimiser.

In the context of domain generalisation, [6] showed that
flat minima can lead to a smaller generalisation gap on the
target domain by leveraging results on generalisation in do-
main adaptation [4]. In the few-shot learning setting, [45]
showed that flatness can help in overcoming catastrophic for-
getting in the incremental learning setting and [17] recently
proposed to account for flatness in the prompt tuning of large
language models. However, to the best of our knowledge,
sharpness-aware loss functions have not been leveraged or
analysed in FSC settings.

Fine-tuning Transfer learning [42] involves utilizing and
transferring knowledge learned from a set of source tasks to
an unseen target task. For this, fine-tuning is a commonly
adopted strategy where a pre-trained neural network, or a
subset of its layers, is adapted to the target task. For example,
[55] showed that fine-tuning a pre-trained network on a new
data set can lead to better generalisation compared to training
from scratch. For multi-domain FSC, avoiding task conflicts
between different data sets during information fusing is an
important problem. Motivated by the effectiveness of fine-
tuning in transfer learning, fine-tuning has been adopted in
the FSC setting.

In particular, fine-tuning has been shown to outperform
elaborate methods in the adaptation stage (e.g., [7, 12, 47]),
in cases where the target domain is similar to the source
domain (in-domain setting). Further, recent works showed
that fine-tuning can be a successful adaptation strategy
in both in-domain and cross-domain settings [20, 25, 37]
and obtain competitive results compared with elaborate
adaptation methods. However, fine-tuning the backbone
before adaptation has received little to no attention.

Existing methods for Meta-Dataset FSC methods mainly
focuses on two perspectives: (i) task-agnostic backbone
training; (ii) adapting the task-agnostic backbone into a task-
specific few-shot classifier.

For task-agnostic backbone training, FLUTE [48] trains
a shared backbone jointly with domain-specific feature
adapters on all training domains. It entangles adaptation
with backbone training, limiting its applicability to other
adaptation strategies. Later, [33] proposed to use knowl-
edge distillation for information fusion, disentangling the
backbone training from the adaptation. However, knowl-
edge distillation is computationally expensive, and distilling
knowledge from multiple domains simultaneously can suffer
from task conflict.
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Table 4. A new baseline for FSC. Our assessment on the Meta-Dataset shows that SAM-based training combined with fine-tuning
(SAM+FT) outperforms SoTA methods in 10 out of 13 domains. Moreover, using SAM in conjunction with other information fusion
methods, e.g., knowledge distillation (SAM+KD), can improve generalisation performance. Henceforth, we advocate that our simple yet
effective training procedure should be considered as a competitive baseline for both in-domain and cross-domain FSC.

S-CNAPS T-CNAPS SUR URT URL TSA Ours (SAM+KD) Ours (SAM+FT)
ILSVRC 2012 56.03±1.11 56.61±1.08 55.09±1.09 55.17±1.08 55.65±1.07 55.67±1.07 57.03±1.07 59.01±1.08

OMNIGLOT 91.45±0.62 92.91±0.50 94.38±0.44 94.42±0.46 94.76±0.41 95.03±0.41 95.03±0.42 94.46±0.43

AIRCRAFT 80.90±0.73 82.11±0.63 87.68±0.47 88.16±0.47 89.57±0.45 89.95±0.45 89.34±0.46 92.63±0.35

CU BIRDS 75.10±0.86 77.35±0.77 72.28±0.92 79.04±0.77 81.51±0.69 82.08±0.72 82.58±0.70 85.57±0.60

DTD 68.90±0.72 68.76±0.73 72.08±0.73 73.05±0.67 74.66±0.65 75.63±0.67 76.96±0.66 75.35±0.72

QUICKDRAW 77.53±0.77 78.74±0.67 83.36±0.56 83.51±0.56 82.42±0.61 82.33±0.62 82.79±0.61 83.30±0.59

FUNGI 48.07±1.10 48.39±1.12 68.68±0.97 68.23±0.99 68.44±0.98 67.62±0.97 67.95±0.96 70.13±0.91

VGG FLOWER 91.45±0.52 92.25±0.45 87.11±0.52 90.09±0.46 91.55±0.44 92.90±0.43 93.41±0.43 93.59±0.39

TRAFFIC SIGN 58.33±1.03 56.83±1.13 45.33±1.02 47.11±1.02 60.15±1.18 81.51±0.97 82.83±0.93 86.04±0.89

MSCOCO 48.79±1.09 50.89±1.05 50.41±1.03 50.15±1.03 52.82±1.01 53.98±1.07 55.20±1.07 57.13±1.07

MNIST 93.81±0.42 95.13±0.30 94.71±0.42 88.89±0.48 94.84±0.42 96.65±0.37 96.71±0.37 97.05±0.30

CIFAR10 71.75±0.76 72.60±0.68 68.76±0.76 64.50±0.75 69.93±0.74 78.93±0.77 80.07±0.75 80.60±0.71

CIFAR100 61.62±1.05 62.35±1.02 59.32±1.05 55.85±1.07 61.58±1.09 70.11±1.00 71.34±0.98 72.38±0.95

Average seen 73.68 74.64 77.58 78.96 79.82 80.15 80.64 81.75

Average unseen 66.86 67.56 63.71 61.30 67.86 76.24 77.23 78.64

For adaptation strategies, [43] proposed CNAPS which
learns an auxiliary network that predicts parameters of
task-specific layers. Subsequently, [3] replaced the linear
classifier in CNAPS with a nearest-centroid classifier
using Mahalanobis distance inspired by ProtoNetwork
[46], which was later extended with transductive learning
[2]. However, learning an effective auxiliary network is
difficult and its performance may suffer from distribution
shift. Different approaches to adaptation are late fusion
through linear combinations of features extracted from
fixed backbones [15, 36], or learning task-specific layers
through optimisation [34]. Nevertheless, little effort has
been devoted to adaptation-agnostic backbone training.

6. Discussion and Conclusion

In this work, we have shown that flatness-seeking objec-
tives, such as the SAM loss [19], can improve generalisation
in few-shot classification (FSC). Combined with vanilla fine-
tuning, minimising the SAM loss instead of the empirical
risk results in a competitive baseline that outperforms cur-
rent state-of-the-art methods in 10 out of 13 cases on the
Meta-Dataset [49] benchmark (see Table 4).

In particular, we theoretically show that the generalisation
gap on the target domain is upper bounded by the gap be-
tween the SAM and the ERM loss on the source domain and
the difference between the domains. Motivated by this result,
we proposed a backbone training protocol consisting of three
steps: (i) SAM-based backbone training, (ii) information fu-
sion using fine-tuning of the backbone(s), (iii) backbone
selection in the multi-domain setting for unseen domains.
We empirically showed that our approach is effective despite
being methodologically simple, and that it can be combined
with any adaptation method in FSC. Furthermore, we demon-

strated that any information fusion method can potentially
benefit from flat minima.
Limitations Our empirical findings are limited to the Meta-
Dataset benchmark in which most data sets contain natural
images or black-and-white drawings and written characters.
As illustrated by the examples in Table 1, coloured train-
ing data sets can be considered similar (or even sub-sets) of
ImageNet, and unseen domains are close to the in-domain
data sets. Our additional results in Table 5 confirm this by
highlighting the importance of the ImageNet backbone in
the backbone selection. Moreover, our backbone selection
strategy requires multiple forward passes, and the limita-
tions of PARC [5] apply to our method. Lastly, SAM-based
optimisation brings additional computational costs during
backbone training.
Future directions Based on the improvement we have
shown, investigating whether flatness helps generalisation
in different model structures, e.g., foundation models, and
the wider few-shot learning context is a promising direction.
Further, in consideration of the limitation of Meta-Dataset, it
is important to investigate the performance of FSC methods
in cross-domain settings. In particular, the generalisation gap
on target domains with larger distribution shifts compared to
the training data sets. Additional future directions include:
leveraging the uncertainty estimates from b-SAM for more
robust adaptation and backbone selection, improving the
scalability of our approach, and assessing the performance
in real-world downstream settings.
Code Publicly available under MIT license: https://
github.com/AaltoML/FlatFSL
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Appendices

A. Proofs

To prove Theorem 3.2, we first prove Lemmas A.1 and A.2. Then we use Lemmas A.1 and A.2 to prove Lemma A.3. After
that, we use Lemma A.3 to prove Lemma A.4. At last, we use Lemma A.4 to prove Theorem 3.2.

For simplicity, in the bounded instance function ℓ : Y × Y → [0,m] where ℓ (y1, y2) = 0 if and only if y1 = y2, we set
m = 1 in the proof. We use proof techniques and results from [6].

A.1. Proof of Lemmas A.1 and A.2

We prove Lemmas A.1 and A.2 in this subsection.

Lemma A.1. Define a functional error for two functions f1(·) and f2(·) on a domain D as

E(f1, f2;D)
∆
= Ex∼PD

[ℓ(f1(x), f2(x))]. (6)

For any domain D and T(i), we have |ED(f1, f2)− ET(f1, f2)| ≤ 1
2Div(D,T(i)).

Proof. From the Fubini’s theorem, we have

Ex∼PD
[ℓ (f1(x), f2(x))] =

∫ ∞

0

PD (ℓ (f1(x), f2(x)) > t) dt. (7)

Then, ∣∣∣Ex∼PD
[ℓ (f1(x), f2(x))]− Ex′∼P

T(i)
[ℓ (f1(x

′), f2(x
′))]

∣∣∣
=

∣∣∣∣∫ ∞

0

PD (ℓ (f1(x), f2(x)) > t) dt−
∫ ∞

0

PT(i) (ℓ (f1(x
′), f2(x

′)) > t) dt

∣∣∣∣
≤

∫ ∞

0

|PD (ℓ (f1(x), f2(x)) > t)− PT(i) (ℓ (f1(x
′), f2(x

′)) > t)|dt

≤ M sup
t∈[0,M ]

|PD (ℓ (f1(x), f2(x)) > t)− PT(i) (ℓ (f1(x
′), f2(x

′)) > t)|

≤ M sup
f1,f2

sup
t∈[0,M ]

|PD (ℓ (f1(x), f2(x)) > t)− PT(i) (ℓ (f1(x
′), f2(x

′)) > t)|

≤ M sup
A∈A

|PD(A)− PT(i)(A)|

∆
=

1

2
Div(D,T(i)),

(8)

where A = {x,x′ | ℓ(f1(x), f2(x)) > t, ℓ(f1(x
′), f2(x

′)) > t, for t ∈ [0,M ]}.

Remark Because in FSC the source data and target data always have disjoint classes, we could assume there is a global
labelling function h(·) for both source and target domain. Then in Lemma A.1, if we let f1(x) be the model fθ(x) and f2(x)
be the global labelling function h(·), E(f1, f2;D) becomes E(θ;D) and ET(i)(f1, f2) becomes E(θ;T(i)), and we have

|E(θ;D)− E(θ;T)| ≤ 1

2
Div(D,T). (9)

Lemma A.2. Let θk ∈ argmaxΘk∩Θ E(θ;D) be a local maximum in the k-th ball Θk. For any θ ∈ Θ, the following bound
holds with probability at least 1− δ:

E(θ;D)− ÊSAM(θ;D) ≤ max
k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N
(10)

where N is the number of data points in the training set.
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Proof. We first prove the following inequality holds

E(θ;D)− ÊSAM(θ;D) ≤ max
k

[
E (θk′ ;D)− Ê (θk′ ;D)

]
, (11)

then we prove for εk
∆
=

√
(vk[ln(N/vk)+1]+ln(K/δ))

2N , ε
∆
= maxk εk, we have P

(
maxk

[
E (θk;D)− Ê (θk;D)

]
> ε

)
≤ δ.

Since for any θ there exists k′ such that θ ∈ Θk′ , we have

E(θ;D)− ÊSAM(θ;D) = E(θ;D)− max
∥ϵ∥≤ρ

ÊD(θ + ϵ)

≤ E(θ;D)− Ê (θk′ ;D)

= E(θ;D)− E (θk′ ;D) + E (θk′ ;D)− Ê (θk′ ;D)

≤ E (θk′ ;D)− Ê (θk′ ;D)

≤ max
k

[
E (θk′ ;D)− Ê (θk′ ;D)

]
,

(12)

where the second inequality holds because θk is the local maximum in Θk.
We now prove P

(
maxk

[
E (θk;D)− Ê (θk;D)

]
> ε

)
≤ δ. To do so, we first show the following inequality holds for the

local maximum of N covers:

P
(
max

k

[
E (θk;D)− Ê (θk;D)

]
> ε

)
≤

K∑
k=1

P
(
E(θk;D)− Ê(θk;D) > ε

)
≤

K∑
k=1

P
(

sup
θ∈Θk

[
E(θ;D)− Ê(θ;D)

]
> ε

)

≤
K∑

k=1

(
eN

vk

)vk

e−2Nϵ2 .

(13)

Then by the definition of ε, we have

P
(
max

k

[
E (θk;D)− Ê (θk;D)

]
> ε

)
≤

K∑
k=1

(
eN

vk

)vk

e−2Nε2

≤
K∑

k=1

(
eN

vk

)vk

e−2Nε2k

=

K∑
k=1

δ

N
= δ.

(14)

Since E(θ;D) − ÊSAM(θ;D) ≤ maxk

[
E (θk;D)− Ê (θk;D)

]
and P

(
maxk

[
E (θk;D)− Ê (θk;D)

]
> ε

)
≤ δ, the

following inequality holds with probability at least 1− δ:

E(θ;D)− ÊSAM(θ;D) ≤ max
k

[
E (θk;D)− Ê (θk;D)

]
≤ ε = max

k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N
.

(15)

A.2. Proof of Lemma A.3

We prove Lemma A.3 using Lemmas A.1 and A.2 in this subsection.
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Lemma A.3. Let
{
Θk ⊂ Rd, k = 1, · · · ,K

}
(d is dimension of Θ) be a finite cover of a parameter space Θ which consists

of K closed balls with radius ρ/2 where K
∆
= ⌈(diam(Θ)/ρ)d⌉. Let vk be a V C dimension of each Θk. Then, for any θ ∈ Θ,

the following bound holds with probability at least 1− δ,

E(θ;T) ≤ÊSAM(θ;D) +
1

2
Div(D,T(i))

+ max
k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N
.

(16)

Proof. We consider two cases.

Case 1: E(θ;T(i)) ≤ E(θ;D)

As E(θ;T(i))− E(θ;D) ≤ 0, Lemma A.3 automatically holds.

Case 2: E(θ;T(i)) > E(θ;D)

From Lemma A.1 and Eq. (9), we have

|E(θ;D)− E(θ;T(i))| = E(θ;T(i))− E(θ;D) ≤ 1

2
Div(D,T(i)). (17)

Combining it with Lemma A.2, we have

E(θ;T(i)) ≤ E(θ;D) +
1

2
Div(D,T)

E(θ;T(i)) ≤ E(θ;D)− ÊSAM(θ;D) + ÊSAM(θ;D) +
1

2
Div(D,T)

E(θ;T(i)) ≤ ÊSAM(θ;D) + max
k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N
+

1

2
Div(D,T).

(18)

A.3. Proof of Lemma A.4

We prove Lemma A.4 using Lemma A.3 in this subsection.

Lemma A.4. Denote the V C dimension of Θ as v. Let θ∗SAM denote the optimal solution of the SAM loss ÊSAM(θ;D), i.e.,

θ∗SAM
∆
= argminθ ÊSAM(θ;D). Then, the gap between the optimal test loss, minθ E(θ;T(i)), and the test loss of SAM optimal

solution on training set θ∗SAM, E(θ∗SAM;T
(i)), has the following bound with probability at least 1− δ:

E(θ∗SAM;T
(i))−min

θ
E(θ;T(i)) ≤ ÊSAM(θ

∗
SAM;D)−min

θ
Ê(θ;D) +Div(D,T(i))

+ max
k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N
+

√
v ln(N/v) + ln(2/δ)

N
.

(19)

Proof. We first prove

−min
θ

E(θ;T(i)) ≤ −min
θ

Ê(θ;D) +
1

2
Div(D,T) +

√
v ln(N/v) + ln(2/δ)

N
(20)

holds with probability at least 1− δ, then we combine it with Lemma A.3 to prove Lemma A.4.
Let θ̄ ∈ argminθ∈Θ E(θ;T(i)). From generalisation error bound of E(θ̄;D), the following inequality holds with probability

at least 1− δ,

Ê(θ̄;D)− E(θ̄;D) ≤
√

v ln(N/v) + ln(2/δ)

N
, (21)

where v is a VC dimension of Θ.
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Then, use Eq. (21) and Eq. (17), with probability at least 1− δ, we have

min
θ

Ê(θ;D) ≤ Ê(θ;D)

min
θ

Ê(θ;D) ≤ E(θ̄;D) +

√
v ln(N/v) + ln(2/δ)

N

≤ E(θ̄;T(i)) +
1

2
Div(D,T(i)) +

√
v ln(N/v) + ln(2/δ)

N

≤ min
θ

E(θ;T(i)) +
1

2
Div(D,T(i)) +

√
v ln(N/v) + ln(2/δ)

N

−min
θ

E(θ;T(i)) ≤ −min
θ

Ê(θ;D) +
1

2
Div(D,T(i)) +

√
v ln(N/v) + ln(2/δ)

N
.

(22)

Combine Eq. (22) with Lemma A.3, then with probability at least 1− δ we have

−min
θ

E(θ;T(i)) ≤ −min
θ

Ê(θ;D) +
1

2
Div(D,T(i)) +

√
v ln(N/v) + ln(2/δ)

N

E(θ∗SAM;T(i))−min
θ

E(θ;T(i)) ≤ ÊSAM(θ∗SAM;D) +
1

2
Div(D,T(i)) + max

k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N

−min
θ

Ê(θ;D) +
1

2
Div(D,T(i)) +

√
v ln(N/v) + ln(2/δ)

N

E(θ∗SAM;T(i))−min
θ

E(θ;T(i)) ≤ ÊSAM(θ∗SAM;D)−min
θ

Ê(θ;D) +Div(D,T(i))

+ max
k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N
+

√
v ln(N/v) + ln(2/δ)

N
.

(23)

A.4. Proof of Theorem 3.2

We prove Theorem 3.2 using Lemma A.4 in this subsection.

Proof. If we take expectation with respect to T(i) ∼ P(T) on both sides of Lemma A.4, we have

ET(i)∼P(T)

[
E(θ∗SAM;T(i))−min

θ
E(θ;T(i))

]
≤ ÊSAM(θ∗SAM;D)−min

θ
Ê(θ;D) + ET(i)∼P(T)

[
Div(D,T(i))

]
+max

k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N
+

√
v ln(N/v) + ln(2/δ)

N

E(θ∗SAM;T)−min
θ

E(θ;T) ≤ ÊSAM(θ∗SAM;D)−min
θ

Ê(θ;D) + ET(i)∼T[Div(D,T(i))]

+ max
k

√
(vk[ln(N/vk) + 1] + ln(K/δ))

2N
+

√
v ln(N/v) + ln(2/δ)

N
.

(24)

B. Additional Experimental Results
B.1. Backbone Selection

To investigate whether our backbone selection strategy selects a backbone that is compatible with data sets in unseen
domains, we report the performance of each trained backbone and their corresponding PARC score in Tables 5 and 6
respectively. In Table 5, we observe that the ImageNet-trained backbone gives the best performance on the coloured data sets,
while the Omniglot-trained backbone gives the best performance for MNIST, which is consistent with our backbone selection
result in Table 6.
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Table 5. We evaluate the performance of all backbones in the backbone bank on unseen domains. ImageNet-trained backbone gives the best
performance on coloured data sets (Traffic Sign, MSCOCO, MNIST, CIFAR-10 and CIFAR-100) and the Omniglot-trained backbone gives
the best performance on the monochrome data set (MNIST).

Backbone trained on:
ILSVRC 2012 OMNIGLOT AIRCRAFT CU BIRDS DTD QUICKDRAW FUNGI VGG FLOWER

TRAFFIC SIGN 86.02±0.89 49.18±1.28 58.54±1.23 62.57±1.16 69.91±1.17 80.85±1.10 63.17±1.20 61.25±1.20
MSCOCO 57.07±1.08 20.53±0.87 26.38±1.01 28.89±1.01 30.76±1.01 29.09±1.05 35.23±1.09 31.84±1.01
MNIST 94.35±0.56 96.84±0.34 86.70±0.85 90.91±0.77 91.30±0.67 96.32±0.38 92.22±0.69 90.29±0.70
CIFAR10 80.56±0.71 42.73±0.75 47.57±0.80 49.51±0.82 51.88±0.83 54.43±0.89 53.86±0.92 51.59±0.86
CIFAR100 72.32±0.94 25.47±1.01 31.88±1.13 37.44±1.17 38.16±1.19 37.27±1.22 45.24±1.24 40.29±1.18

Average unseen 78.07 46.95 50.21 53.87 56.40 59.59 57.94 55.05

Table 6. PARC scores on unseen domains in the Meta-Dataset for backbones in the backbone bank. Higher score means that the backbone is
more compatible to the unseen domain.

Backbone trained on:
ILSVRC 2012 OMNIGLOT AIRCRAFT CU BIRDS DTD QUICKDRAW FUNGI VGG FLOWER

TRAFFIC SIGN 22.22 8.22 19.57 19.91 20.92 19.90 17.91 17.66
MSCOCO 18.88 7.31 10.80 11.15 10.87 11.84 11.22 12.41
MNIST 34.14 45.05 27.65 27.00 30.67 42.44 27.32 26.71
CIFAR10 29.56 7.75 14.76 12.17 15.91 18.75 13.04 15.55
CIFAR100 18.26 4.80 7.88 9.31 8.88 10.37 11.13 11.31

B.2. Vision Transformer Experiment

To test whether our proposed training procedure works for different model architecture, we conduct experiment on Vision
Transformer (ViT) in this section. We use the ViT-small pre-trained with DINO [41] on ImageNet and fine-tune the pre-trained
backbones on MetaDataset with SAM and ERM respectively. After training, we evaluate the performance by using Prototype
classifier and the results are given in Table 7. Compared with ERM, SAM-trained backbones have better generalisation ability
on all data sets.

Table 7. We fine-tune the pre-trained ViT with SAM and ERM respectively on MetaDataset and evaluate the trained backbone directly with
Prototype classifier. SAM-trained backbones result in better generalisation than ERM.

SAM ERM
ILSVRC 2012 63.97±0.98 62.65±0.96
OMNIGLOT 86.86±0.77 86.32±0.81
AIRCRAFT 84.20±0.59 78.35±0.68
CU BIRDS 78.08±0.76 73.50±0.83
DTD 78.56±0.61 78.56±0.61
QUICKDRAW 84.13±0.53 83.70±0.55
FUNGI 72.46±0.91 68.45±0.94
VGG FLOWER 95.20±0.32 93.81±0.36

TRAFFIC SIGN 54.38±1.05 50.46±1.09
MSCOCO 64.74±0.88 64.33±0.87
MNIST 91.94±0.42 90.72±0.47
CIFAR10 89.27±0.46 88.49±0.45
CIFAR100 82.85±0.68 82.10±0.68

Average Seen 80.43 78.17
Average Unseen 76.64 75.22

C. Implementation Details

For a fair comparison with prior work, we use RestNet-18 as the backbone in all experiments. We use NVIDIA V100 GPUs
for backbone training and run the experiments on a cluster.

C.1. Implementation Details for Table 1

For ERM, we use the backbone provided by SUR where the SGD optimiser is used for all backbones. To eliminate the
influence introduced by different optimiser, we adopt SGD as well for SAM backbone training. For b-SAM, we follow the
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optimisation algorithm proposed in the paper. For both SAM and b-SAM, we use cosine annealing learning rate decay with a
restart and provide their hyperparameters in Table 8 and Table 9 respectively.

Table 8. Hyperparameters of SAM training in Table 1.

Batch Size Learning Rate Total Iterations Optimizer Restart ρ
ILSVRC 2012 128 0.01 480000 48000 0.05
OMNIGLOT 16 0.03 50000 3000 0.01
AIRCRAFT 8 0.03 50000 3000 0.1
CU BIRDS 16 0.03 50000 3000 0.1
DTD 32 0.03 50000 1500 0.1
QUICKDRAW 64 0.01 480000 48000 0.05
FUNGI 32 0.03 480000 15000 0.05
VGG FLOWER 8 0.03 50000 1500 0.1

Table 9. Hyperparameters of b-SAM training in Table 1. For all data sets, we set ρ = 0.01, γ = 0.1, and β1 = 0.9.

Batch Size Learning Rate Prior Precision Total Iterations Optimiser Restart

ILSVRC 2012 500 0.1 100 250000 50000
OMNIGLOT 200 0.1 100 10000 2000
AIRCRAFT 200 0.5 10 5000 1000
CU BIRDS 200 0.5 10 5000 1000
DTD 200 0.1 10 5000 1000
QUICKDRAW 200 0.5 50 30000 6000
FUNGI 200 0.1 50 30000 6000
VGG FLOWER 200 0.1 10 5000 1000

C.2. Implementation Details for Table 2

We use SGD optimisers and cosine annealing learning rate decay with a restart for both vanilla fine-tuning and LoRA
fine-tuning. For LoRA, we set the rank r = 10 for all data sets. The hyperparameters for vanilla and LoRA fine-tuning are
provided in Table 10 and Table 11 respectively.

Table 10. Hyperparameters for vanilla fine-tuning in Table 2.

Batch Size Learning Rate Iterations Optimizer Restart
OMNIGLOT 16 0.01 10000 2000
AIRCRAFT 8 0.001 10000 2000
CU BIRDS 16 0.001 10000 2000
DTD 32 0.001 10000 1000
QUICKDRAW 64 0.005 100000 5000
FUNGI 32 0.01 80000 5000
VGG FLOWER 8 0.001 10000 2000

Table 11. Hyperparameters for LoRA fine-tuning in Table 2.

Batch Size Learning Rate Iterations Optimizer Restart
OMNIGLOT 16 0.005 40000 2000
AIRCRAFT 8 0.005 40000 2000
CU BIRDS 16 0.005 10000 2000
DTD 32 0.001 10000 2000
QUICKDRAW 64 0.01 100000 5000
FUNGI 32 0.005 80000 5000
VGG FLOWER 8 0.001 10000 2000

C.3. Implementation Details for Table 4

We use SGD optimisers and cosine annealing learning rate decay with a restart for SAM objective fine-tuning. The
hyperparameters are given in Table 12 and we set ρ = 0.05 for all data sets. When combining SAM with knowledge
distillation, we use the provided hyperparameter setting for backbone training in URL.
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Table 12. Hyperparameters for SAM combined with vanilla fine-tuning in Table 4.

Batch Size Learning Rate Iterations Optimizer Restart
OMNIGLOT 16 0.01 20000 2000
AIRCRAFT 8 0.001 20000 2000
CU BIRDS 16 0.001 20000 2000
DTD 32 0.001 20000 1000
QUICKDRAW 64 0.01 100000 5000
FUNGI 32 0.01 80000 5000
VGG FLOWER 8 0.001 10000 2000
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