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Abstract

Despite remarkable achievements in video synthesis,
achieving granular control over complex dynamics, such
as nuanced movement among multiple interacting objects,
still presents a significant hurdle for dynamic world mod-
eling, compounded by the necessity to manage appearance
and disappearance, drastic scale changes, and ensure con-
sistency for instances across frames. These challenges hin-
der the development of video generation that can faithfully
mimic real-world complexity, limiting utility for applica-
tions requiring high-level realism and controllability, in-
cluding advanced scene simulation and training of percep-
tion systems. To address that, we propose TrackDiffusion,
a novel video generation framework affording fine-grained
trajectory-conditioned motion control via diffusion models,
which facilitates the precise manipulation of the object tra-
jectories and interactions, overcoming the prevalent limita-
tion of scale and continuity disruptions. A pivotal compo-
nent of TrackDiffusion is the instance enhancer, which ex-
plicitly ensures inter-frame consistency of multiple objects,
a critical factor overlooked in the current literature. More-
over, we demonstrate that generated video sequences by our
TrackDiffusion can be used as training data for visual per-
ception models. To the best of our knowledge, this is the
first work to apply video diffusion models with tracklet con-
ditions and demonstrate that generated frames can be ben-
eficial for improving the performance of object trackers. 1

1. Introduction
Benefiting from the development of the diffusion mod-

els, video generation has achieved breakthroughs, partic-
ularly in text-to-video (T2V) generation models [16, 41].
The utilization of diffusion models and large-scale text-
video pairs markedly expanded the ability to generate di-
verse video content [2,5,11,17,26,46] enabling a more nu-

1∗ Equal contribution. †Corresponding author.

anced interpretation of textual prompts and translating them
into dynamic, visually compelling narratives. Although tex-
tual descriptions provide a friendly interactive manner for
image generation, it is not easy for them to impose fine
control over generated content. Several control signals have
been employed to generate images with more flexibility and
higher quality, such as control signals from segmentation,
content edges [47], and object boxes [6, 10, 20] to spec-
ify object or image layout. Considering video’s nature of
continuity and temporal dynamics, textual descriptions also
can not provide sufficient information to guarantee highly
realistic details, even Sora [30] may fail in case of sponta-
neous appearances of objects [3]. Approaches like MOFA-
Video [29] and MotionClone [23] have been proposed to
address these issues by introducing additional motion con-
trol signals, allowing for enhanced control over the gener-
ated content. However, fine-grained motion control could
contribute much to high-quality video generation. Such
fine-grained control not only enhances visual quality but
also has the potential to enable applications like perception
model training, animated storytelling, and advanced user in-
terfaces.

While fine-grained motion control is a natural interac-
tion for video generation, it is still under-explored, espe-
cially for diffusion-based video generation models. Despite
the progress [40, 45] in the field, existing generative mod-
els often fail to maintain instance-level consistency across
frames critical for reproducing the complex temporal dy-
namics found in natural settings. Consequently, they strug-
gle to capture the dynamic interplay among multiple ob-
jects, especially in complex scenarios marked by occlusion,
overlapping objects, and unpredictable rapid movements as
depicted in Fig. 1.

In this work, we introduce TrackDiffusion, a novel
framework specifically designed to fill this lacuna. Inte-
grating with video diffusion models, TrackDiffusion enables
fine-grained motion control of generated contents with ob-
ject boxes. Specifically, we first introduce instance-aware
location tokens for each object, which embed identity infor-
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(b) Prompt:  A man in a red shirt maintains a central position in the frame while
riding a mountain bike along the ground.

ModelScope

Ours

ModelScope

Ours

(a) Prompt:  A black and tan dog and its three puppies play in the center of a sunny
grass field.

(c) Prompt:  A train is entering the station, passing another stationary train slowly,
approaching the camera.

ModelScope

Ours

Figure 1. Qualitative comparison on the trajectory-conditioned motion control. ModelScope [37] does not support controls other than
text. In contrast, the generation results of TrackDiffusion are more consistent with the input prompts.

mation of boxes into boxes across frames, and are helpful
in addressing the object occlusion and re-occurrence. Be-
sides, one distinctive component of our framework is the
instance enhancer module. This simple yet effective com-
ponent provides inter-frame consistency of objects, ensur-
ing remarkable instance-level consistency. Finally, gated
cross-attention is employed to seamlessly integrate the box
conditions into a pretrained video diffusion model such that
the huge amount of computation for training from scratch
could be avoided.

Our extensive experiments demonstrate that TrackDiffu-
sion surpasses prior methods in the quality of the generated
video data. Furthermore, ablation studies confirm the ne-
cessity of introducing instance-aware location tokens and
instance enhancer for achieving these results. Our experi-
ment also shows that generated videos by TrackDiffusion,
as augmented data, could benefit tracking tasks and bring
further improvement on the performance of tracking mod-
els.

The main contributions of this work contain three parts:

1. We present the very first known application of DMs to
generate continuous video sequences directly from the
tracklets, a methodological innovation that transcends

the capabilities of existing video generative models.

2. A novel component of our framework, the instance en-
hancer, is proposed to provide consistent inter-frame
object identity, even in challenging conditions such as
occlusion and rapid movement.

3. Our experimental results demonstrate that by incorpo-
rating tracklet constraints, the quality of the videos im-
proves substantially, and the track average precision
(TrackAP) score of the object tracker, which assesses
the alignment between the given boxes and the gen-
erated objects, experiences a significant boost, under-
scoring the efficacy of motion control.

2. Related Work
2.1. Layout-to-Image Generation

Layout-to-image (L2I) generation, focusing on convert-
ing high-level graphical layouts into photorealistic images,
has witnessed considerable advancements. GLIGEN [20]
enhances the pre-trained diffusion models with gated self-
attention layers for improved layout control, while Layout-
Diffuse [8] employs novel layout attention modules tailored
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for bounding boxes. Instead, GeoDiffusion [6] enables var-
ious geometric controls directly via text prompts to support
object detection [12, 19] data generation, which is further
extended for concept removal by Gemo-Erasing [24], and
3D geometric control by MagicDrive [10].
2.2. Text-to-Video Generation

Text-to-video (T2V) generation, following the success-
ful trajectory of the text-to-image (T2I) generation, has
achieved significant advancements. Most of the T2V
methodologies [13, 14, 49] tend to focus on depicting the
continuous or repetitive actions from textual prompts, rather
than capturing the dynamics of multiple, changing actions
or events. However, these methods generally lack the abil-
ity to generate complex transitions and diverse event se-
quences. On the other hand, recent works such as LVD [21]
employ large language models to create dynamic scene lay-
outs for video diffusion, concentrating on text-driven layout
generation. VideoComposer [38] enables conditions such
as sketches, depth maps, and motion vectors. VideoDirec-
torGPT [22] and DriveDreamer [39] have furthered multi-
scene video generation, showcasing advancements in the
field.
2.3. Point-based editing

To enable fine-grained editing, several works have been
proposed to perform point-based editing. DragNUWA [45]
suggests video generation conditioned on an initial image,
provided trajectories, and text prompts. DragDiffusion [33]
studies drag-based editing with diffusion models. MotionC-
trl [40] propose a unified motion controller that can use ei-
ther the camera poses and object trajectories to control the
motion of generated videos. However, these methods did
not provide a precise way to define objects, which makes it
difficult to select and manipulate larger or composite objects
within an image. Additionally, trajectories fail to account
for an object’s shape and size, both of which are essential
for representing changes in movements.

3. Method
In this section, we first introduce the latent diffusion

model (LDM [32]), on which our method is based, in Sec-
tion 3.1. Then, we introduce the TrackDiffusion pipeline,
the instance-aware location tokens and temporal instance
enhancer, in Section 3.2. We also present our methods
for enhancing instance consistency across frames, particu-
larly in the video clips with noticeable spatial changes. An
overview of TrackDiffusion is shown in Fig. 2.

3.1. Preliminary: Latent Diffusion Models (LDM)

Recent advancements in image synthesis have been sig-
nificantly driven by LDM. These models excel by focusing
on the distribution within the latent space of images, mark-
ing a notable leap in performance in this domain. The LDM

comprises two main components: an autoencoder and a dif-
fusion model.

The autoencoder is responsible for compressing and re-
constructing images, utilizing an encoder E and a decoder
D. Specifically, the encoder projects an image x into a
lower-dimensional latent space z, followed by the decoder
reconstructing the original image from this latent represen-
tation. The reconstruction process yields an image x̃ =
D(z), approximating the original image x. Given that the
data distribution z0 ∼ q (z0) is progressively corrupted by
Gaussian noise over T steps, this process follows a variance
schedule denoted by β1, . . . , βT :

q (zt | zt−1) = N
(
zt;

√
1− βtzt−1, βtI

)
, t = 1, . . . , T

(1)
with a U-Net, ϵθ (zt; t), trained to predict this added noise
using a loss function:

L(θ) = Et∼U(1,T ),ϵt∼N (0,1)

[
∥ϵt − ϵθ (zt; t,y)∥2

]
, (2)

where xt is the noisy sample of x0 at timestep t. The con-
dition y can be ∅ (unconditional generation), text [32] or
images [15], etc.

3.2. Tracklet-Conditioned Video Generation

3.2.1 Overview.

Our method, TrackDiffusion, introduces an innovative ap-
proach to video generation from tracklets, addressing the
challenges of instance consistency and spatial-temporal co-
herence in complex video sequences. The methodological
backbone of TrackDiffusion consists of four pivotal compo-
nents: Instance-Aware Location Tokens, Temporal Instance
Enhancer, Motion Extractor, and Gated Cross-Attention.
Together, these components form a synergistic framework
that not only captures the intricacies of individual frames
but also preserves the natural flow and continuity of multi-
object interactions across a video sequence.

3.2.2 Task Definition.

The primary objective of TrackDiffusion is to generate high-
fidelity video sequences from tracklets, where a track-
let refers to a sequence of object bounding boxes across
frames, coupled with their respective category information.
Formally, given a set of tracklets T = {τ1, τ2, . . . , τn},
where each tracklet τi corresponds to an object instance
across T frames, our task is to generate a video se-
quence V that accurately represents the motion and ap-
pearance of these instances. Each tracklet τi is defined as
τi = {(bi,1, ci,1), (bi,2, ci,2), . . . , (bi,T , ci,T )}, where bi,t
denotes the bounding box coordinates of the i-th instance in
frame t, and ci,t represents the category of the instance. The
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Figure 2. Model architecture of TrackDiffusion. The framework generates video frames based on the provided tracklets and employs the
Instance Enhancer to reinforce the temporal consistency of foreground instance. A new gated cross-attention layer is inserted to take in
the new instance information.

generated video V is a sequence of frames {v1, v2, . . . , vT },
where each frame vt is a synthesis of the instances as per
their tracklet descriptions at time t.

3.2.3 Instance-Aware Location Tokens.

To fully leverage the condition of object layouts, the coor-
dinates of a 2D object box bi,t in a frame are projected into
the embedding space similarly to the positional encoding
in GLIGEN [20]. This projection, Bi,t = Fourier(bi,t), is
then concatenated with the box’s category embedding and
transformed into the conditioning representation Hi,t, as:

Hi,t = MLP([ci,t, Bi,t]), (3)

where ci,t denotes the category embedding of the i-th
bounding box computed with the CLIP model [31], and
Fourier(·) refers to Fourier embedding [28].

To encourage consistency of instances across frames,
we further complement the layout condition representation
with instance identity information. In this way, the trajec-
tories of various instances in the sequence could be dis-
tinguished, and the continuity of instances across frames
would be reinforced. The enhanced instance-aware location
token is represented as H ′

i,t = Hi,t + ei, with ei represent-
ing a learnable token for the instance denoted by the i-th
box in the frame.

Subsequently, a gated self-attention [20] is employed to
impose conditional layout information into visual features
as shown below:

Vt = Vt + tanh(β) · TS(SelfAttn(
[
Vt, H

′
:,t

]
)), (4)
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Figure 3. Illustration of Motion Extractor. We perform self-
attention on the Fourier-encoded bounding box coordinates to in-
tegrate motion information.
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Figure 4. Illustration of Temporal Instance Enhancer. Each
instance’s latent features, after ROI Align, are concatenated with
motion tokens and then processed through self-attention layers.
We demonstrate the specific enhance operation using the yellow
instance as an example.

where Vt denotes the visual feature tokens in frame t, H ′
:,t

represents the enhanced location tokens for all boxes at time
t, β is a trainable parameter, and TS(·) is the token selection
operation focusing only on visual tokens at each time frame.
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We refer readers to check [20] for more details.

3.2.4 Temporal Instance Enhancer.

In the context of tracklet conditioned video generation, a
significant challenge is to maintain consistency of generated
instances across frames, especially when instances have
large spatial displacement in the sequence. Existing works
employ temporal attention to encourage temporal consis-
tency over frames where attention works at each position
along time. However, when there is dramatic motion with
the object or the camera, the attention computed on the same
position would not work very well (see Fig. 5). To address
this challenge, we propose a novel temporal attention called
Temporal Instance Enhancer where attention is computed
on the same instance instead of position, as explained in the
following.

I. Instance-Level Feature Extraction. Let Fi represent
the multi-dimensional feature tensor for the i-th instance,
constructed by temporally concatenating features extracted
from each frame t using the provided bounding box through
ROIAlign. This process aligns the features of the same in-
stance across all temporal frames to the same spatial size:

Fi =

T⊕
t=1

ROIAlign(Vt, Bt,i), (5)

where
⊕

denotes the concatenation operation, T is the
number of frames, and Vt represents the latent of the current
U-Net block, as shown in Fig. 4. We simultaneously use a
box consistent with the latent shape to perform ROIAlign,
representing the background feature tensor.

II. Motion Extractor. Furthermore, we aim to integrate
trajectory representation into instance-level features to en-
hance its capacity for capturing temporal dynamics. The
trajectory representation is computed by applying self-
attention to a sequence of box embeddings, each represent-
ing the same instance across successive frames, as shown in
Eqn. 6 and Fig. 3. This method not only captures the spatial
coordinates of the instance at each time step (i.e., the lo-
cation information) but also, by analyzing these sequences,
discerns the movement of the instance over time (i.e., the
motion information). The inclusion of self-attention enables
the model to effectively track objects smoothly through oc-
clusions and interactions by inferring the continuity of ob-
ject presence and movement. It is the model’s ability to
detect subtle shifts in position and temporal dependencies
through self-attention that facilitates the accurate model-
ing of motion trajectories, as it comprehends the dynamic
changes in an instance’s location from frame to frame.

Similar to temporal attention, self-attention is then ap-
plied to the feature representation for each instance along
time, as shown in Eqn. 7 and Fig. 4.

Pi = SelfAttn(B1,i, B2,i, . . . , BT,i) (6)

F ′
i = SelfAttn(Fi ⊕ Pi), (7)

where F ′
i represents the enhanced features for i-th instance,

which plays an important role in promoting accurate and
consistent video generation.

III. Instance-Level Feature Integration. To integrate
the enhanced instance features in video generation, we
borrow the idea from GLIGEN and design a gated cross-
attention layer which is inserted after the gated self-
attention layer. This layer can make full use of temporally
enhanced instance features for consistent video generation.
The visual feature tokens from the gated self-attention layer
are represented as V = [v1, . . . , vM ], where M denotes the
total number of tokens in the flattened latent. Then the gated
cross-attention layer could be simply formulated as below:

V = V + CrossAttn([V, F ′
i ]), (8)

where F ′
i denotes the enhanced instance features. This in-

sertion ensures that the visual tokens in the LDM frame-
work are now additionally informed by the aggregated in-
stance features, thereby maintaining the consistency of in-
stance appearance across different frames.

4. Experiments
Given that the traditional text-to-video (T2V) datasets

(e.g., MSR-VTT [42] and UCF101 [34]) typically do not
contain bounding box annotations, we turn to adopt tracking
datasets that offer precise tracklet annotations. This allows
us to appraise our model’s performance in generating text-
to-video content within the multi-object tracking scenarios,
where tracklet-conditioned video synthesis is essential. Our
primary quantitative evaluations are conducted using a ver-
sion of our model that extends the ModelScopeT2V [37]
framework.

4.1. Implementation Details

4.1.1 Dataset.

Our experiments purposefully utilize both the
YTVIS2021 [43] and the MOT-17 [27] datasets with
a unified objective: to validate effectiveness of our ap-
proach in maintaining the consistency across multi-object
generation. The YTVIS2021 dataset, serving as a corner-
stone in VIS literature, includes 2,985 training videos with
high-quality bounding box annotations from 40 semantical
classes. On the other hand, the MOT-17 is a prominent
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Method Output Frames Latency (s/frame) YoutubeVIS

Res. FVD↓ TrackAP↑ TrackAP50↑

Oracle∗ - - - - 45.4 64.1
CogVideo(Eng.) [16] 160×160 16 - 1384 - -
LVDM [13] 256×256 16 - 1011 - -
ZeroScopeT2V [37] 576×320 16 - 750 - -
Show-1 [46] 576×320 16 - 704 - -
VideoCrafter [4] 256×256 16 - 690 - -
ModelScopeT2V [37] 256×256 16 0.19 786 2.7 9.4
ControlVideo [48] 512×512 16 0.26 760 10.5 19.1
VideoComposer [38] 256×256 16 0.29 738 19.8 30.6
Vanilla 256×256 16 0.26 603 36.0 56.2
TrackDiffusion 256×256 16 0.28 605 39.4(+3.4) 62.0(+5.8)
TrackDiffusion 480×320 16 0.32 548 44.7(+8.7) 68.0(+11.8)
TrackDiffusion(SVD [1]∗∗) 512×320 25 0.77 312 45.1(+9.1) 69.3(+13.1)

Table 1. Comparison of generation fidelity on YoutubeVIS datasets. Vanilla is our customized baseline, similar to DriveDreamer [39],
fine-tuned on the YTVIS2021 dataset. *: represents the real image Oracle baseline. **: We use Stable Video Diffusion as the base
generation model instead of ModelScope.

VideoComposer

Vanilla

Ours

VideoComposer

Vanilla

Ours

Prompt: Two race cars speed along the track, a car passes by another car closely.

 Prompt: Two white planes are flying, preparing to land at the airport.

Figure 5. Qualitative comparison among different methods. The input text prompt is shown on the bottom side of the figure.

dataset in MOT research, encompassing over 10,000 frames
that focus on the pedestrian tracking. For the YTVIS2021
dataset, due to the absence of annotations for the validation
set, we have randomly selected 160 videos from the training

set to serve as our validation set. Regarding MOT-17, we
divide the MOT-17 training dataset in half, using one half
for training and the other half for validation, following
common practice. To compensate the absence of captions
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in the YTVIS2021 and MOT-17 datasets, we utilized the
VideoBLIP [18] model to generate captions for each video
clip.

4.1.2 Evaluation metrics.

In our evaluation, we utilize the captions and box annota-
tions from the validation sets of YTVIS. We adopt FVD [35]
to evaluate video quality. To evaluate the grounding accu-
racy, which is the correspondence between the input bound-
ing box and the generated instance, we use the Tracking
Average Precision (TrackAP [44]). This involves using pre-
trained QDTrack [9] model to track objects in the gener-
ated videos, which are then compared with the ground truth
tracklets. It’s important to note that since previous text-to-
video methods do not support incorporating the box anno-
tations as input, it is not equitable to compare them on this
metric. Therefore, we limit our comparison to report FVD
scores for reference. FVD scores on more datasets (e.g.,
UCF101) are provided in Appendix A.

4.1.3 Baseline.

We introduce a baseline model, Vanilla, in Tab. 1, con-
ceptually motivated by the DriveDreamer [39] framework.
This model represents our specialized adaptation for layout-
conditioned video generation, incorporating key principles
from the DriveDreamer methodology, yet distinctly engi-
neered to align with the realm of layout-conditioned video
generation on YoutubeVIS.

4.1.4 Details.

We implement our approach based on the Diffusers [36]
code base for ModelScopeT2V. Our training methodology
comprises two stages. In Stage 1, we focus on single-image
layout controllability by removing all temporal layers and
employing gated self-attention. Stage 2 extends the ap-
proach to video data, introducing temporal attention, tem-
poral convolution, and an instance enhancer for video-level
control. We trained the Stage 1 on the corresponding train-
ing set for 60,000 steps, the Stage 2 for 50,000 steps. The
training process was carried out on 8 NVIDIA Tesla 80G-
A800 GPUs. During generation, frames are sampled us-
ing the DPM-Solver [25] scheduler for 50 steps with the
classifier-free guidance (CFG) set as 5.0.

4.2. Comparison with Existing T2V Methods

In this section, we conduct a comprehensive evaluation
of the proposed TrackDiffusion with regard to video qual-
ity and trajectory controllability, which demands a realistic
representation of objects while being consistent with geo-
metric layouts.

4.2.1 Video Quality.

Tab. 1 compares our TrackDiffusion model with a range
of recent video synthesis methods on the YTVIS dataset.
Our approach demonstrates a significant advancement in the
field, evidenced by competitive FVD scores which serve
as a metric for video quality. Specifically, TrackDiffu-
sion at a resolution of 256×256 achieves an FVD score
of 605, showcasing its effectiveness in synthesizing high-
fidelity videos. Notably, an enhanced version of TrackDif-
fusion, operating at a higher resolution of 480×320, fur-
ther improves the FVD score to 548. This performance
surpasses several contemporary models, including Vanilla,
VideoCrafter, and others, underscoring the significance of
the fine-grained control and consistency mechanisms im-
plemented in TrackDiffusion. Notably, while the standard
version aligns with the resolution of many counterparts, the
high-resolution variant sets a new benchmark in the field.
This is primarily because, at higher resolutions, the instance
enhancer can extract cleaner instance features, laying a solid
foundation for improved video quality. These results under-
score the capability of TrackDiffusion to not only maintain
but also enhance the quality of video synthesis, even when
scaling to higher resolutions. This indicates that the model
can effectively handle increased complexity and detail, a
critical factor for realistic video generation.

Furthermore, as demonstrated in Fig. 5, we present the
generation results of VideoComposer, Vanilla, and TrackD-
iffusion. For VideoComposer, we control video generation
using depth maps. Vanilla struggles to maintain consistency
in the appearance of instances. The color of the racing car
changes in the first example, and in the second example,
the object is even lost. Despite the control signals provided
by the depth maps, VideoComposer’s granularity remains
coarse. Due to the absence of box-level control, the quality
of the generated objects is somewhat inferior, and it fails to
accurately produce high-quality videos that align with the
user intended motion control.

4.2.2 Trajectory Controllability.

Tab. 1 also showcases the trajectory control precision of
various video synthesis models, with a particular focus on
the TrackAP metric from the YoutubeVIS dataset. Track-
Diffusion, in both its standard and high-resolution variants,
demonstrates a superior ability to precisely control trajec-
tory. The standard 256×256 resolution version of TrackD-
iffusion achieves a TrackAP score of 39.4, which is an im-
provement of 3.4 points over the Vanilla model. When the
resolution is increased to 480×320, TrackDiffusion’s per-
formance further improves, reaching a TrackAP score of
44.7, which marks an 8.7 point increase. It’s important to
note that TrackAP scores in our experiments do not equate
to the success rate in trajectory control. For comparison, we
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Setting Instance-Tokens Instance-Enhancer Motion-Extractor FVD↓ TrackAP↑ TrackAP50↑

(a) 741 34.2 60.4
(b) ✓ 765 35.0(+0.8) 61.7(+1.3)
(c) ✓ ✓ 729 38.7(+4.5) 64.3(+3.9)
(d) ✓ ✓ ✓ 698 38.9(+4.7) 64.6(+4.2)

Table 2. Ablation of the instance-aware location tokens, the temporal instance enhancer and the motion extractor. Defaults are
marked in gray .

tested tracker performance using real data, as indicated by
the Oracle results, which we consider an approximate upper
bound for TrackAP scores. The closer our TrackAP scores
are to the Oracle benchmark, the better the generated data’s
fidelity. Therefore, we should concentrate on the compar-
ative difference in TrackAP scores between methods rather
than their absolute values.

4.3. Ablation Study

To ascertain the effectiveness of our proposed design
moudles, we conducted an ablation study focusing on cru-
cial components of the model, such as the instance tokens
and the instance enhancer. These evaluations were carried
out using the YTVIS validation set, as discussed in Sec. 4.1.

4.3.1 Setup.

We conduct ablation studies primarily focusing on fidelity
and report the results for FVD and TrackAP metrics. To
balance training duration and the adverse effects of lower
resolutions on the tracker, our experiments in this section
generate videos at a resolution of 384 × 256. We employ
Mask2Former [7] to evaluate TrackAP, mitigating the im-
pact of data noise.

4.3.2 Effectiveness of Consistency Module.

The ablation study in Tab. 2 examines the impact of in-
corporating instance embeddings on instance consistency,
using FVD and TrackAP as metrics. In Setting (a), with-
out instance embeddings, the model shows baseline per-
formance. However, introducing instance embeddings in
Setting (b) leads to a slight increase in FVD (from 741 to
765), suggesting a minor trade-off in video quality. De-
spite this, TrackAP improves by 0.8, indicating enhanced
instance consistency. This trade-off may be attributed to
the additional parameters and not yet fully optimized train-
ing. Notably, when provided with sufficient training time,
as shown in Tab. 1, instance embedding does not negatively
impact FVD. The most significant improvements are seen
in Setting (c), where both instance embeddings and tempo-
ral instance enhancer are employed, further confirming the
effectiveness of these features in improving instance consis-
tency.

4.4. Effectiveness of Motion Extractor.

We manually curate a subset of 23 videos from the
validation set, ensuring that each video encompasses in-
stances of target overlap or re-occurrence to varying de-
grees. We aim to demonstrate the effectiveness of the pro-
posed motion information extraction through experiments
on this subset. Results indicate a marked improvement
when the motion extractor is employed. Specifically, the
inclusion of the motion extractor yields a decrease in FVD
to 774 from 793 and an increase in TrackAP by 2.0 points,
achieving a score of 36.5. This enhancement is also re-
flected in the TrackAP50 score, which sees an increase of
2.5 points, reaching 59.0. These results corroborate the ef-
ficacy of the motion extractor in our model, signifying its
essential role in capturing and maintaining coherent motion
trajectories in complex video scenes.

5. Conclusion

In conclusion, our work presents TrackDiffusion, a
novel approach to generating continuous video sequences
from tracklets, effectively utilizing diffusion models for
video synthesis in the context of multi-object tracking.
Our model introduces innovative mechanisms, including
Instance-Aware Location Tokens and Temporal Instance
Enhancer, which together facilitate the generation of high-
quality and temporally consistent video sequences. The
experimental results also show the potential of TrackDiffu-
sion in enhancing the training of perception models, thereby
marking a significant step forward in the realm of synthetic
video data generation. Future work will focus on address-
ing the outlined limitations, further improving the model’s
generalization capabilities, and exploring its applicability in
a broader range of real-world scenarios.
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