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Abstract

The growing interest in generating recipes from food
images has drawn substantial research attention in recent
years. Existing works for recipe generation primarily utilize
a two-stage training method—first predicting ingredients
from a food image and then generating instructions from
both the image and ingredients. Large Multi-modal Mod-
els (LMMs), which have achieved notable success across a
variety of vision and language tasks, shed light on generat-
ing both ingredients and instructions directly from images.
Nevertheless, LMMs still face the common issue of hallu-
cinations during recipe generation, leading to suboptimal
performance. To tackle this issue, we propose a retrieval
augmented large multimodal model for recipe generation.
We first introduce Stochastic Diversified Retrieval Augmen-
tation (SDRA) to retrieve recipes semantically related to the
image from an existing datastore as a supplement, integrat-
ing them into the prompt to add diverse and rich context to
the input image. Additionally, Self-Consistency Ensemble
Voting mechanism is proposed to determine the most confi-
dent prediction recipes as the final output. It calculates the
consistency among generated recipe candidates, which use
different retrieval recipes as context for generation. Exten-
sive experiments validate the effectiveness of our proposed
method, which demonstrates state-of-the-art (SOTA) perfor-
mance in recipe generation on the Recipel M dataset.

1. Introduction

With the rising focus on food and health, food computing
[49] has increasingly captured attention and spurred various
food related tasks, such as food recognition [3,7, 12,22,28,
30,43,48,59,68,75], cross-modal recipe retrieval [6,51,57,
66,76,77], recipe generation [ 1,46,56,64,65], food recom-
mendation [17, 19,60] and food logging [13, 55]. Previous
research on food understanding has primarily focused on
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classifying food and ingredient recognition [42,45, 54, 73].
However, due to the limited availability of detailed informa-
tion on prepared foods, a comprehensive visual food recog-
nition system should not only be able to identify the type
of diet or its ingredients but also generate cooking instruc-
tions. Therefore, the task of recipe generation has become
a significant task in the field of food computing.

Previous methods for recipe generation [9, 47, 56] typ-
ically use a two-stage approach: first extracting ingredi-
ents from images, then generating instructions based on
the embeddings of those ingredients and the images, which
is shown in Figure 1 (a). Due to limited training data
and poor multi-modal alignment, traditional methods often
yield unsatisfactory results. In contrast, Multi-modal Mod-
els (LMMs) [1, 2,8, 14, 44] can directly generate recipes
from images in one stage. FoodLMM [70] improved recipe
generation performance but still suffers from hallucinations,
affecting recipe quality. Figure | (b) compares the recipe
generation results of different methods. Compared to the
ground truth instructions, the results predicted by one of the
state-of-the-art LMMSs, LLaVA [44], exhibit clear halluci-
nations, as it incorrectly identifies crumbs as ‘beef’ and er-
roneously detects ‘tomatoes’ and ‘taco seasoning’ that are
not present in the image. Although the two-stage method
[56] accurately identifies the correct temperature, it fails to
precisely recognize the ingredients. FoodLMM [70] man-
ages to identify most of the correct ingredients but still hal-
lucinated, mistakenly recognizing ‘rice’. The result arises
due to inadequate multi-modal understanding and a lack of
effective use of context, which prevents the models from
learning sufficient information.

This paper addresses the limitation by introducing the
first retrieval-augmented large multimodal model to gener-
ate recipes from food images. The proposed architecture
consists of a retriever and a generator. The retriever lever-
ages an off-the-shelf cross-modal recipe retrieval model
[57] to identify semantically similar recipes from the image.
The generator is built upon LLaVA [44] with LoRA [26] to
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GT: Heat oven to 350f. mix baking crumbs and
butter; ...Beat cream cheese and granulated
sugar in large bowl with mixer until
blended...Sprinkle icing sugar over cheesecake
just before serving. Top with berries.

LLaVA-FT: preheat oven to 350 degrees f...Cook ground
beef, breaking up chunks, until browned throughout, about
10 min...Stir in tomatoes, taco seasoning...

Inverse cooking: Preheat oven to 350f. Mix all ingredients in
large bowl. cover and refrigerate overnight....Bake 350 f, for
1 hour or until bubbling in center.

FoodLMM: Heat oven to 350f...Mix crumbs, sugar, and
melted butter until well combined...cook rice according to...

Ours: Heat oven to 350f. Mix cookie crumbs,
butter and 1/4 cup sugar; ...Beat cream
cheese, sugar, vanilla and salt in large bowl
with mixer until blended....Top with berries
and powdered sugar just before serving.

(b)

Figure 1. (a) The structural differences between our retrieval-augmented framework and the “two-stage” [11,56] and “LMMs-based” [44,
70] approaches. “G” refers to the generator. (b) Recipe generation results comparison. “GT” refers to ground truth, “LLaVA-FT” denotes
the model using pre-trained LLaVA weights fine-tuned on RecipelM, “Inverse cooking” [56] represents a model trained with two-stage,
“FoodLMM?” [70] is the LMMs-based model for recipe generation, and “Ours” refers to our model, where yellow highlights indicate
ingredients that match those in the “GT”, blue signifies cooking instructions predictions matching the “GT”, and red font denotes incorrectly

predicted ingredients.

generate recipes based on the image and retrieved reference
recipes. On the one hand, we propose Stochastic Diversi-
fied Retrieval Augmentation (SDRA) to provide a rich and
diverse set of retrieved recipes as references, which could
provide relevant knowledge for the generation to reduce
hallucination [24, 29, 52]. Section 2 of the supplementary
materials compares retrieved recipes with the ground truth,
highlighting related content that helps alleviate hallucina-
tions and improve generation. On the other hand, we pro-
pose Self-consistency Ensemble Voting strategy to improve
generation quality during the inference phase. Specifically,
the generator produces multiple recipe candidates using dif-
ferent retrieved recipes and the image. Cosine similarity
scores are computed for these candidates to assess their mu-
tual agreement. The recipe with the highest score relative to
the others is selected as the final output. The consensus
among different candidates is capable of further reducing
the hallucination in the generated recipes, as detailed in Sec-
tion 5 of the supplementary materials, which explains why
the final output is superior. On RecipelM dataset [66], our
proposed model significantly outperforms existing meth-
ods and fine-tuned LLaVA. Moreover, our model demon-
strates strong generalizability, surpassing the state-of-the-
art (SOTA) benchmarks on the Recipe1M dataset for ingre-
dient recognition metrics.

Overall, our main contributions can be summarized as
follows:

* We propose the first retrieval-augmented large mul-
timodal model tailored for recipe generation. Our
model introduces a stochastic diversified retrieval-
augmentation technique to enhance the diversity and
richness of retrieval. Additionally, we employ a Self-
consistency Ensemble Voting strategy during the infer-
ence stage, using different retrieved recipes to ensure

agreement and consistency in the generated recipe.

* Our proposed model achieves SOTA recipe generation
performance on RecipelM dataset. We conduct com-
prehensive ablation studies to validate the effective-
ness of our design choices and demonstrate the contri-
butions of each component to the overall performance.
Our proposed model exhibits exceptional adaptabil-
ity, outperforming current SOTA results in ingredient
recognition on the RecipelM dataset.

2. Related work
2.1. Recipe Generation

The significance of food and the accessibility of com-
prehensive food datasets, including RecipelM [66], Vireo
Food-172 [6] and Food2K [50], have facilitated compu-
tational studies in the domain of food-related computing
tasks [49]. Recipe generation poses a significant challenge
due to the presence of multiple sentences in cooking in-
structions. It entails the complex task of generating food
recipes based on provided food images [25, 64, 65]. Ac-
curate recipe generation requires understanding food com-
ponents, images, and processes. Early methods generated
ingredients from images first, then instructions from these
ingredients and images. [56] used transformers for recipe
generation but missed some steps due to a lack of compre-
hensive structure. Previous efforts did not use Large Multi-
modal Models (LMMs). Recently, [70] fine-tuned the LMM
LISA [33] using multiple datasets, creating the first unified
food computing model, including recipe generation. How-
ever, FoodLMM still suffers from hallucination issues. This
paper aims to mitigate these issues with retrieval augmenta-
tion.
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Qiitle: Can you predict the food category of this image?
Agitle: The food is...

Qingredients: Can you list the ingredients present in this dish?
Aingredients: The ingredients are:. ..

Qinstructions: Can you provide the preparation instructions for
this image?

Ainstructions: Here are the instructions:. ..

Figure 2. Templates for Recipe Generation.

2.2. Vision-language Multimodal Models

Due to the increasing demand for versatile deep learn-
ing models, various large pre-trained models like BERT
[15], ViT [16], and GPT [67] have emerged. However,
their single-modality limits generalization, leading to the
development of multimodal models. Autoregressive lan-
guage models are now popular for vision-language tasks
[1,2,4,31,38,39,41,71,72]. For example, LLaVA [44]
integrates visual encoder output with LLaMA [61] using
synthetic data, while Vicuna [74] uses LLaMA for conver-
sational interactions. The rise of LMMs has expanded their
application in various domains. However, hallucination re-
mains an issue. [40] treats it as a binary classification prob-
lem, and [20] uses models to generate data for annotators
to identify hallucinations. Our model is built upon LLaVA
for recipe generation, equipped with a diversified stochastic
retrieval augmentation, that boosts the recipe generation ca-
pabilities by introducing additional relevant contextual in-
formation, enabling the model to learn more specialized and
comprehensive information.

2.3. Retrieval-Augmented Generation

Retrieval-augmented generation (RAG) enhances lan-
guage models (LMs) by incorporating knowledge from an
external datastore [35]. This involves fetching relevant doc-
uments from external storage to improve the LM’s predic-
tive accuracy [5,21,24,29,36,52]. While RAG is popular
in NLP tasks [34], it is less explored in multimodal mod-
els [23,32]. Some relevant works in retrieval-augmented
multimodal language modeling focus on caption generation
based on the encoded input image, as well as a collection of
retrieved texts which are used as a task demonstration, input
to the decoder as a prompt [53]. Recent works [27,69] train
generators with external multimodal information. While
RAG enhances language models by incorporating external
data, its use in vertical domains is limited [37,62]. We pro-
pose the first Retrieval-Augmented LMMs for recipe gen-
eration using a Stochastic Diversified Retrieval Augmenta-
tion (SDRA) method. This method employs a pretrained
retriever to fetch diverse recipes as supplemental inputs, im-
proving LMM capabilities in recipe generation.

3. Method
3.1. Preliminary

3.1.1 Retrieval Augmented Generation (RAG) Models

RAG models [24,52,69] are usually composed of a re-
trieval model R and a generator (language model) G. The
retriever R, based on the query (input sequence) x1, ..., Tp,
vectorizes the query to tokens and searches the Top K doc-
uments with the highest similarity to the query sequence
within the datastore M, denoted as M’ = (mq,...,mg).
M’ is then concatenated with the query to form a context-
rich prompt, which is fed into the language model to gen-
erate enhanced outputs. Next-token prediction is widely
adopted in language models. During the training process,
the autoregressive model aims to maximize the conditional
probability of the next word given the preceding sequence
of words, namely, by optimizing the parameters 6 to maxi-
mize:

p(mlw“umn) = Hp9($i|x<i)7 (1)
i=1

where z.; is the sequence of tokens preceding ;.
Retrieval-augmented language models make predictions
conditionally based on the retrieved documents M’. Specif-
ically, by simply merging the retrieved documents into the
input query to predict the continuation of the input:

p(ar, ) = [ [ po@il M (@<i);zi]), @)
i=1

where [a; b] denotes the concatenation of strings a and b.

3.1.2 Data Organization Strategy

We organize image-recipe pairs as dialogues, with each
image linked to three question-answer pairs (titles, ingredi-
ents, instructions). In the retrieval model, the image x is
the query; in the generator, questions about titles, ingredi-
ents, and instructions serve as queries. During the training
process, the model formats each multimodal document as
“[<Image> Conversations: Qtitles» Atitlesa Qingredients’
Aingredients, Qinstructionsa Ainstructions]”’ which Qtitles
denotes the title’s questions and Ay s denotes the title’s
answers of this image, and similarly for ingredients and in-
structions. We define these dialogues as ground truth con-
versations GG. See Figure 2 for more details of the templates
for our task.

3.2. Retrieval Augmented Recipe Generation
3.2.1 Stochastic Diversified Retrieval Augmentation

As depicted in Figure 3 (a), we utilize image-to-recipe re-
trieval model [57], to retrieve the top K most similar ingre-
dients and instructions from the data storage to the image x.
Unlike existing retrieval augmentation methods [29,35,53]
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(b) Inference stage.

Figure 3. Overview of our proposed model architecture. Our model consists of a retriever to search semantically similar recipes from
the image as reference, and a generator based on a frozen LLaVA [44] with a trainable LoRA [26] to generate recipe with the image and
retrieved recipes. Stochastic Diversified Retrieval Augmentation is introduced by using retrieved ingredients and instructions, to form
Recipe demonstration R, and fed into the generator for training. Self-consistency Ensemble Voting is proposed to select the final recipe
output based on mutual agreement among the recipe candidates, which are produced by using each recipe from top 1 to top s retrieved

recipes as context.

which directly use the retrieved results as context, to ensure
the diversity of retrieval information, we randomly sample
from the top K retrieval results, selecting three sets of ingre-
dients and one set of instructions as the final retrieval infor-
mation, as shown in Figure 3 (a). 1 set of ingredients refers
to the ingredients part retrieved from an image, specifically,
such as ‘oil, egg, milk, vanilla’. Two sets of retrieved in-
gredients are concatenated in sequence before Qipgredientss
and the instructions and remaining set of retrieved ingre-
dients are concatenated in sequence before Q;pstructions
while informing the model like this that it is a reference
result: “Search results for reference is ‘retrieved informa-
tion’. The search results are only for referring, please fo-
cus on the image.” Finally, they are normalized as recipe
demonstration IR according to the prompt in Figure 3 (a).
Here, the prompts “The food is”, “The ingredients are:” and
“Here are the instructions:” are similar to the simple, fixed
prompts used in other research [39].

3.2.2 Recipe Generation with Retrieval Recipes

Our generation model is built upon a Large Multi-modal
Model LLaVA [44] which takes image and text prompts as
input. The text prompt (i.e., questions) and the retrieved
recipes are concatenated and processed through a tokenizer,
then fed into a text encoder to obtain textual features, while
the image is processed through an image encoder to obtain

image features. The image features are further mapped into
the same embedding space as text features via a MLP. Upon
receiving both text and image embeddings, the decoder pro-
ceeds to produce caption tokens, which are contingent on
the image features X and the recipe demonstration R. To
reduce the compute requirements for training and to pre-
serve their generalization capabilities, we freeze the gen-
erator LLaVA model and only train its patch LoRA [26],
which allows the focus to then be on fine-tuning specific,
smaller aspects of the model to adapt to recipe generation
without the need for extensive computation. The model is
trained by minimizing the cross-entropy loss for next token
prediction as follows:

n
Lo ==Y po(uil[X; Riy<il; 0), 3)
i=1
where n is the index of the current tokens, and y.; denotes
represents the tokens in the sequence before position .

3.3. Self-consistency Ensemble Voting

To further improve the quality of recipe generation, we
propose self-consistency ensemble voting. As shown in
Figure 3 (b), we first retrieve the Top S sets of ingredi-
ents and instructions from the food image during the testing
phase. Each set is then concatenated before Q;ystructions
in the model input, following the Recipe denomination R
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in Figure 3 (a), which concatenates the retrieved data in
front of Q;nstructions- The S retrieved sets are sequentially
concatenated before @y, structions and input into the model,
producing S different outputs. This process generates S
different recipes, we note that the generated recipes could
be inconsistent with different retrieved recipes as context.
As a result, we introduce a score-based ensemble voting
method, which selects the best recipe from multiple predic-
tions to maintain self-consistency and improve the quality
of the generated recipes. Specifically, denote the generated
recipes as P = { Py, ..., Ps} by employing top 1 to top S as
retrieved recipes, where S is the number of recipes used for
inference. We compute the cosine similarity, BLEU, Sacre-
BLEU scores, or ROUGE L scores among these S recipes,
producing a S x S matrix where each row represents the
agreement of all other predictions with the current predic-
tion (excluding diagonal elements). By averaging the sum
of agreements in each row, we obtain a confidence score
for each recipe. Then, taking the calculation of confidence
scores using cosine similarity as an example, we select the
recipe with the highest confidence score as our final output
as follows:

s
Froc = g | g=3 > )L @)
’ g=tgz#i
where % refers to cosine similarity between two pre-
dictions. ’

4. Experiments
4.1. Experimental Settings

4.1.1 Dataset and Evaluation Metrics

Following prior works [11,70], we use the recipes with
images in RecipelM dataset [66] for experiments, includ-
ing 571,587 pairs for training and 51,304 for testing. In this
dataset, each image is associated with a title, ingredients,
and instructions. During training, each image corresponds
to three question-answer pairs as mentioned in Section 3.1.
Ingredients are clustered into 1,488 categories, and quanti-
fiers are removed, in line with [56]. For testing, the first im-
age of each recipe is used, formatted to one question-answer
pair per image, to separately test titles, ingredients, and in-
structions. Generating long recipes word by word is time-
consuming, so we randomly select 5,000 samples from test
set and fix the seed for all experiments. Similar to [69], we
use the RecipelM training set as our external datastore M
to ensure consistency and fairness, avoiding external data.

Following existing works [11, 65], we utilize F1 score
and Intersection Over Union (IOU) to evaluate the quality of
ingredients, as well as document-level evaluation metrics,
specifically BLEU, SacreBLEU, and RougeL, to evaluate
the quality of instructions in the generated recipes.

Table 1. Recipe generation performance comparison. “LLaVA-
FT” refers to fine-tuned LLaVA model.

Methods BLEU SacreBLEU ROUGE L
Chef Transformer [18] 18.08 4.61 17.54
InverseCooking [56] 7.23 5.48 19.47
TIRG [63] 7.95 — 324
VAL [10] 8.83 — 34.20
SGN [65] 12.75 — 36.90
FIRE [11] — 6.02 21.29
FoodLMM [70] 27.86 6.24 36.96
LLaVA-FT [44] 28.32 5.88 38.18
Ours 30.11 6.42 38.93

4.1.2 Implementation

In our retrieval module 2, we use the revamping cross-
modal recipe retrieval model [57] based on Transformers.
Our generator GG utilizes LLaVA [44] augmented with a
LoRA [26] patch. During training, we utilize LoRA to fine-
tune LLaVa based on the PyTorch framework, employing
the pre-trained weights from LISA-7B-v1-explanatory [33].
This process is carried out on four NVIDIA 80G A100
GPUs. For the baseline, which we named “LLaVA-FT,” we
fine-tuned LLaVA using LoRA without retrieval augmen-
tation, utilizing the same model architecture, training data,
and computational resources to ensure a fair comparison.

4.1.3 Training and Inference

During training, we retrieve the top 50 recipes for each
image, including titles, ingredients, and instructions. From
these, we randomly select three sets of ingredients and one
set of instructions to concatenate before Qingredients and
Qinstructions as described in Section 3.2. The generator’s
max sequence length of 4096 encompasses all the informa-
tion. We optimize the token prediction loss over the entire
sequence (Equation 3). Given the strong performance of our
cross-modal recipe retriever [57], which uses a transformer
to encode recipe components, we keep the retriever constant
and focus on training the generator. Future research could
explore co-training or fine-tuning the retriever.

During inference, we first use the images from the test
set as queries to retrieve from the 571,587 instances in
the train set, with the retrieval model and method as men-
tioned in Section 3.2. Then, using the retrieved instruc-
tions and ingredients, we concatenate them in front of
Qinstructions 1N the same pattern as during training. For
Self-consistency Ensemble Voting, we sequentially use the
tops = {topl, ..., tops} retrieved information, adding it be-
fore Qinstructions and then feeding the recipe demonstra-
tion R in the form of “[<Image> Conversations: Search
results,..[Ingre, Il’lStI‘] Qinstructions’ Ainstructions]” into the
generator to obtain s prediction results. The final predic-
tion is made using the Self-consistency Ensemble Voting
method.
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LLaVA-FT: Preheat oven to 350 degrees...with pork and kimchi in it. mix well. place in a 2 quart casserole dish
sprinkle with cheese. Bake for 1 hour. Sprinkle with cheese. Bake for 1 hour.

Inverse cooking: Preheat oven to 350 degrees f...Combine hash browns, sour cream, soup, milk, onion, salt and
pepper...Sprinkle with cheddar cheese. Bake in preheated oven for 30 minutes, or until cheese is melted and bubbly.

FoodLMM: Preheat oven to 400 degrees...Combine hash browns, sour cream, soup, milk, onion, salt and
pepper...Sprinkle with cheddar cheese. Bake in preheated oven for 30 minutes, or until cheese is melted and bubbly.

Ours: preheat oven to 350 degrees...Bring milk, water, and butter to a boil; mix in the potato ...Add corn and...half of
the cheese and onions over it...the rest of the potatoes...Bake for 10 to 15 minutes until the cheese has melted.

GT: Preheat oven to 350 degrees...Heat milk, water and butter to boiling; stir in contents of both pouches of potatoes...Stir in corn. Spoon half the potato
mixture in pan. Sprinkle half each of cheese and onions; top with remaining potatoes...Bake 10 to 15 minutes until cheese is melted. Enjoy !

LLaVA-FT: ...use white frosting and black decorating icing...Add candy corn to the top of each cupcake...beat the
eggs and mix in the melted butter, milk, and vanilla extract. Add the vanilla extract and beat until...

Inverse cooking: Preheat oven to 350f...Sift together flour, cocoa, baking powder and salt...Add flour mixture
alternately with chocolate, beating until just blended after each addition...Frost cupcakes with white frosting.

FoodLMM: Cream butter and sugar. Add eggs and vanilla. Mix in flour, salt, baking powder, and cocoa. Mix in milk
and nuts. Bake at 350 degrees for 15 minutes. Frost with chocolate frosting.

Ours: prepare cupcakes...cut licorice into 3 inch sections...frost the cupcakes with the white frosting. ..to make the legs
of the spider...place two pieces of candy corn on the front of the cupcake for fangs and use two red hots as eyes...

GT: prepare cupcakes...cut licorice into 3 inch pieces...frost the cupcakes with the white frosting. insert licorice pieces into the outer edges of the
cupcakes to make the legs of the spider...arrange two pieces of candy corn on the front of the cupcake for fangs and use two red hots as eyes...

Figure 4. Qualitative results. The ingredients in generated recipes that overlap with ground truth (“GT”) are highlighted in yellow, while
details in the instructions that match the GT are shown in blue. Otherwise, the incorrect generation results are displayed in red. Best viewed

in color.
The input food image ‘tuna and Ground truth:
tomato cream pasta sauce’. -Mince the garlic, and saute in olive oil until
fragrant.

-Season with salt and pepper to taste...crush
the tomatoes while...

-You can use this sauce not only for pasta,
but as sauce for omelets, meat or fish dishes.

Prediction:

-Cook the spaghetti in a large pot of boiling
salted water until al dente...add the onion
and garlic and cook...

-Add the tomatoes, basil, salt and pepper and
cook...

-Add the cooked spaghetti and toss to coat.

Figure 5. Comparison between generated recipes and GT recipes.
The highlights in yellow indicate ingredients that match those in
the GT, ingredients incorrectly identified by the model are signi-
fied in red.

4.2. Performance Comparison

4.2.1 Quantitative Comparison of Recipe Generation

Table 1 demonstrates that our proposed method out-
performs all the existing works by a noticeable mar-
gin. In particular, our method manages to surpass the re-
cent LMM-based models, including LLaVA-FT (fine-tuned
LLaVA) [44] and FoodLMM [70]. We achieve a relative
improvement of 2.25%, 0.18%, and 1.97% over FoodLMM
in BLEU, SacreBLEU and RougeL scores, respectively.
These results demonstrate that our proposed framework can
generate more precise and coherent recipes, confirming the

effectiveness of our model.

4.2.2 Quantitative Comparison of Ingredients Recog-
nition
For the inference of ingredients, the input for each im-
age is Qingredients, Which directly generates the answers
for the ingredients. Table 2 lists the performance of ingredi-
ent recognition with existing methods in Recipe 1M dataset.
Our proposed method is superior to all the methods, with
1.05% and 1.03% improvement in terms of both F1 and
IOU respectively, compared to FIRE [11]. Note that FIRE
and InverseCooking both specifically design an ingredient
recognition network. In contrast, our method is capable of
generating the ingredients and instructions in a conversa-
tional manner.

4.2.3 Qualitative Results

Figure 4 presents the qualitative results comparison be-
tween our proposed model and other models including
LLaVA-FT, inverse cooking [56], FoodLMM [70], as well
as the ground truth “GT”. It can be observed that our
model, compared to the other models, can predict ingre-
dients, preparation time, and temperature details more ac-
curately, and produce more detailed and precise instruc-
tions. For instance, for Figure 4 (a), our model success-
fully identifies ingredients that the LLaVA-FT model fails
to recognize, such as ‘milk’, ‘butter’ and ‘onions’, and it
makes more precise predictions regarding the timing, es-
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(c) Confusion matrix for ROUGE L score.

Figure 6. Confusion matrix of Self-consistency Ensemble Voting for 5,000 test samples. The horizontal axis represents the index sorted
from smallest to largest based on the scores calculated between each sample’s top 11 retrieval-augmented prediction results and the ground
truth, while the vertical axis represents the index sorted from smallest to largest based on the confidence levels obtained from voting among
these 11 predictions for each sample, using cosine similarity for the voting process.

Table 2. Comparison of ingredient recognition results in terms of
IOU and F1.

Methods 10U(%) | F1(%)

Ryor [58] 18.92 31.83
Rrorr [58] 19.85 33.13
FFrp [56] 29.82 45.94
InverseCooking [56] 32.11 48.61
FIRE [11] 32.59 49.27
Ours 33.62 50.32

pecially noting “10 to 15 minutes.” For Figure 4 (b), the
generated recipe by our model is quite semantically simi-
lar to the GT, whereas the other models erroneously pre-
dicted unnecessary ingredients, such as ‘flour’, ‘vanilla’ and
‘nuts’ in FoodLMM. These results demonstrate the effec-
tiveness of our model to alleviate the issue of hallucina-
tion in recipe generation. Figure 5 shows that our model,
while able to identify some correct ingredients like ‘toma-
toes” and ‘garlic’ for the food ‘tuna and tomato cream pasta
sauce’, still performs poorly in generating comprehensive
instructions. A significant reason is our textual evaluation
metrics cannot recognize ‘pasta’ and ‘spaghetti’ as the same
food; hence, even if the model correctly identifies ‘pasta’ as
‘spaghetti’, the difference in expression leads to low textual
metric scores. Similarly, leading models also struggle to
predict accurate recipes. We aim to improve our model’s in-
gredient recognition and text generation to match the train-
ing dataset’s vocabulary and style for more robust applica-
tion across various recipes.

4.3. Ablation Study

4.3.1 Stochastic Diversified Retrieval Augmentation
(SDRA)

We first investigate the effect number of retrieved recipes

K for randomization for SDRA. Note that we do not use

Table 3. Ablation study of Stochastic Diversified Retrieval
Augmentation (SDRA). "LLaVA-FT” denotes fine-tuned LLaVA,
which is used as our baseline. "SDRA(fixed top 1) refers to the
approach where specifically, the top 2 retrieved ingredients sets
and the top 3 ingredients along with top 1 instruction are pre-
appended to their respective query placeholders. "SDRA(top k)”
refers to the augmentation of the model by randomly selecting top
k retrieval information when using the SDRA method.

Methods BLEU  SacreBLEU = ROUGE L
LLaVA-FT 28.32 5.88 38.18
+SDRA(fixed top 1) 28.79 6.08 38.46
+SDRA(top 10) 28.52 6.07 38.46
+SDRA(top 50) 29.23 6.21 38.43
+SDRA(top 100) 28.67 6.04 38.36

Self-consistency Ensemble Voting during inference to en-
sure the fairness of the experiment. Instead, SDRA is di-
rectly added to LLaVA-FT by increasing K from 1, 10, 50
to 100 to investigate the effect of the number of retrieved
recipes for randomization. The results displayed in Table 3
indicate that SDRA (top 50) performs the best, demonstrat-
ing that our SDRA enhances its effectiveness by increasing
the diversity and richness of the retrieved recipes within a
certain retrieval scope. However, expanding the scope of
the search too broadly can introduce noise into the model,
thereby diminishing its performance. Specifically, for the
k = 1 case, the top 1 and top 2 retrieved sets of ingre-
dients are added before Qingredients, While the top 3 in-
gredients and retrieved instructions are concatenated before
Qinstructions- The results verify the effectiveness of our
SDRA by increasing the diversity and richness of the re-
trieved recipes.

Furthermore, we adopted two methods for concatenat-
ing retrieved information to verify the impact of the amount
of retrieved information on the model’s performance. The
first method is as shown in Figure 3 (a), where 3 sets of in-
gredients and 1 set of instructions are added. The second
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Table 4. Ablation study of the way concatenating retrieved infor-
mation. “(1 set)” and “(2 sets)” indicate Recipe demonstration R
as shown in Figure 7 and Figure 3 (a) respectively.

Methods BLEU SacreBLEU ROUGE L
LLaVA-FT 28.32 5.88 38.18
+SDRA(1 set) 28.79 6.08 38.46
+SDRA (2 sets) 29.23 6.21 38.43

Table 5. Ablation study of Self-consistency Ensemble Voting. ‘S’
refers to the number of generated recipes for ensemble voting.
‘Sum’ is the sum of cosine similarity scores.

Scoring metric | Number | BLEU SacreBLEU ROUGE L Sum
S=1 29.23 6.21 38.43 73.87

S=3 29.68 6.31 38.68 74.67

Cosine S=5 30.12 6.39 38.66 75.17
Similarity S=7 30.07 6.41 38.84 75.32
S=9 30.11 6.42 38.91 75.44

S=11 30.11 6.42 38.93 75.47

method involves adding only 1 set of retrieved ingredients
before Qingredients, and similarly, adding only 1 set of in-
structions before Q. structions as shown in Figure 7. Figure
7 shows the format of the training data. Although the title is
not required during the inference process, we include it dur-
ing training to increase the amount of information used for
training. During the inference phase, only 1 set of instruc-
tions is added before Q;ystructions- In this way, we com-
pare the use of the traditional RAG method, which involves
adding fixed retrieval information before Q;ngredients and
Qinstructions- Specifically, the top 1 and top 2 retrieved
sets of ingredients are added before Qi gredients, While the
top 3 ingredients and retrieved instructions are concatenated
before Qnstructions- 1able 4 indicates that incorporating 2
sets of retrieved recipes is more beneficial for the model’s
predictions than that of 1 set. However, due to the length
limitations of model input, we are not able to examine more
than two sets before each of the question.

4.3.2 Self-consistency Ensemble Voting

Table 5 shows the variation in recipe generation quality
when calculating the confidence of candidate recipes us-
ing cosine similarity. The table shows that as more candi-
date recipes are generated, the text metrics for recipe qual-
ity steadily improve. In addition to cosine similarity, we
also used BLEU, SacreBLEU, and ROUGE L as scoring
metrics, with results presented in Section 4 of the supple-
mentary materials. Our best result, as displayed in Table
1, is based on Cosine Similarity due to its consistent per-
formance. We choose S=11 because the BLEU and Sacre-
BLEU stopped improving at S=11. These results verify the
effectiveness of our Self-consistency Ensemble Voting. As
cosine similarity shows more steady and robust results in
improving BLEU, SacreBLEU, and ROUGE L scores with
the increase of .S, we report the results of cosine similar-
ity with S = 11 in Table 1. As the parameter S increases,
the computational cost scales linearly. We consistently ob-
serve performance improvements as S grows. However,
this comes with a trade-off between performance gains and

computational expense. For instance, while higher values
like S = 11 may yield better results, selecting S = 5 could be
a more practical choice when computational resources are
constrained, as it strikes a balance between efficiency and
performance.

Additionally, in Figure 6, we plot a confusion ma-
trix comparing the confidence ranking of seven predic-
tions—obtained through voting with cosine similarity on
the top 11 retrieval results from 5,000 test samples—with
their actual BLEU, SacreBLEU, and ROUGE L score rank-
ings. The shade of color represents the number of sam-
ples, for example, in Figure 6 (a), (1,3) indicates the num-
ber of samples with the highest confidence yet ranked third
in BLEU scores. The results show that the final prediction
selected by confidence and the actual prediction scores are
consistent, leading to consistently better performance, fur-
ther emphasizing the importance of introducing the voting
mechanism during inference.

<Image>
Qtitle
Aditle: The food is...
. Search results... [Ingre] Q; :
Conversations: [Ingre] Qingredients

Aingredients: The ingredients are:. ..
Search results... [Instr] Qinstructions
Ainstructions: Here are the instructions:...

Figure 7. One set for Recipe demonstration R.

5. Conclusion

We have presented the first retrieval augmented large
multimodal mode to mitigate the hallucination issue for
recipe generation. We introduce the Stochastic Diversified
Retrieval Augmentation to enable the model to better ac-
quire useful knowledge from retrieved retrieval and propose
Self-consistency Ensemble Voting, which optimizes the fi-
nal instructions by scoring predictions obtained from dif-
ferent retrieval information against each other. Experimen-
tal results validate our method’s effectiveness and potential
for widespread application in food computing. Future work
will introduce a self-reflection strategy to refine incorrect
generation results, improving recipe accuracy and reliabil-

ity.
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