
TreeFormer: Single-view Plant Skeleton Estimation
via Tree-constrained Graph Generation

Xinpeng Liu1 Hiroaki Santo1 Yosuke Toda2,3 Fumio Okura1
1Osaka University 2Phytometrics 3Nagoya University

{liu.xinpeng,santo.hiroaki,okura}@ist.osaka-u.ac.jp yosuke@phytometrics.jp

(a) Unconstrained (c)          TreeFormer (ours)           (d)(b) Test-time constraint

7th day 9th day

Figure 1. We propose a method for single-image plant skeleton estimation combining learning-based graph generators with traditional
graph algorithm (i.e., MST). The red lines show the predicted graph edges. Compared to (a) an unconstrained graph generator and (b) a
naive tree-graph constraint implementation, (c) our method naturally imposes the constraint during the graph generation models’ training.
Our method can be directly applied to plant science and agricultural applications, such as (d) time-series reconstruction of botanical roots.

Abstract

Accurate estimation of plant skeletal structure (e.g.,
branching structure) from images is essential for smart
agriculture and plant science. Unlike human skeletons with
fixed topology, plant skeleton estimation presents a unique
challenge, i.e., estimating arbitrary tree graphs from im-
ages. While recent graph generation methods successfully
infer thin structures from images, it is challenging to con-
strain the output graph strictly to a tree structure. To
this problem, we present TreeFormer, a plant skeleton es-
timator via tree-constrained graph generation. Our ap-
proach combines learning-based graph generation with tra-
ditional graph algorithms to impose the constraints during
the training loop. Specifically, our method projects an un-
constrained graph onto a minimum spanning tree (MST)
during the training loop and incorporates this prior knowl-
edge into the gradient descent optimization by suppress-
ing unwanted feature values. Experiments show that our
method accurately estimates target plant skeletal structures
for multiple domains: Synthetic tree patterns, real botanical
roots, and grapevine branches. Our implementations are
available at https://github.com/huntorochi/
TreeFormer/.

1. Introduction

Skeletal structures of plants (e.g., branches and roots)
are key information for analyzing plant traits in agricul-
ture and plant science. In particular, single-view estima-
tion of plant skeletons has potential benefits for various
downstream tasks, such as high-throughput plant phenotyp-
ing [10, 18, 51] and plant organ segmentation [17, 45]. As
a similar task, single-view estimation of human poses has
been widely studied, e.g., OpenPose [11]. However, unlike
human skeletons, which have a fixed graph topology, the
plant skeleton is not organized because the number of joints
and their relationships are unknown, posing a unique prob-
lem of estimating an arbitrary tree graph from an image.

The estimation of graph structure from images has been
studied to extract thin structures such as road networks in
satellite images [23, 58, 59]. Recent end-to-end models
using recurrent neural networks (RNNs) [2], graph neural
networks (GNNs) [35, 36, 41], or transformers [7, 28, 34,
39, 52] show the ability to extract faithful unconstrained
graph structures from images. However, inferring tree-
constrained graphs with the existing graph generators be-
comes a non-trivial problem, where the output graph often
violates the required constraints, as shown in Fig. 1(a). One
reason for this difficulty is that tree graph generation, which
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requires finding a set of graph edges that satisfy the con-
straint defined on the entire graph, naturally falls into com-
binatorial optimization. A simple way to impose the con-
straints on the graph generation is to convert the inferred
unconstrained graphs to the closest graph that satisfies the
given constraint using traditional graph algorithms such as
Dijkstra’s shortest path or minimum spanning tree (MST)
algorithms. Such post-processing can work; however, be-
cause the graph generators are trained without any con-
straints, the output may be unrealistic, as shown in Fig. 1(b).

For tree graph generation from single images, we pro-
pose a simple yet effective way to integrate state-of-the-
art learning-based graph generation methods, which achieve
high-quality image-based graph estimation, and traditional
graph algorithms, which compute strictly constrained tree
graphs. Specifically, we propose to project an uncon-
strained graph into a tree graph by a non-differentiable MST
algorithm during each training loop. Our selective feature
suppression (SFS) layer then converts the inferred uncon-
strained graph to the MST-based tree graph by a differ-
entiable manner, thereby naturally incorporating the con-
straints into the graph generation.

By integrating our feature suppression layer with a state-
of-the-art transformer-based graph generator, we develop
TreeFormer, which infers tree structures from images cap-
turing plants. We evaluate the effectiveness of TreeFormer
on different classes of plant images: Synthetic tree patterns,
real-world root, and grapevine branch images. The results
show that our constraint-aware graph generator accurately
estimates the target tree structures compared to baselines.

Contributions Our contributions are twofold: First, we
propose a novel method that tightly integrates learning-
based graph generation methods with traditional graph al-
gorithms using the newly-proposed SFS layer, which mod-
ifies intermediate features in the network, effectively mim-
icking the behavior of the non-differentiable graph algo-
rithms. Second, building upon our constrained graph gener-
ation method, we develop TreeFormer, the first end-to-end
method inferring skeletal structures from a single plant im-
age, which benefits the agriculture and plant science field.

2. Related Work

We propose constraining the graph structures given by
image-based graph generators, whose primary goal is plant
skeleton estimation. We, therefore, introduce the related
work of plant skeleton estimation, graph generation from
images, and constrained optimization for neural networks.

2.1. Plant skeleton estimation

Plant skeleton estimation is actively studied since it be-
comes a fundamental technique for downstream tasks re-
lated to plant phenotyping and cultivation [47].

3D plant skeleton estimation Several methods are pro-
posed to derive plant skeletons from 3D observations [47].
These methods often use point clouds acquired by Li-
DAR [5, 57] or multi-view stereo (MVS) [51, 55]. Re-
gardless of the 3D acquisition method, these works gen-
erally use a two-stage pipeline: Skeletonization [9] fol-
lowed by graph optimization using MST or Dijkstra’s al-
gorithm [12, 15, 24, 45, 65], where the graph algorithms are
required to convert a set of skeleton positions into a graph.

2D plant skeleton estimation Compared to 3D methods,
skeleton estimation from a single 2D image poses signif-
icant technical challenges due to the lack of depth infor-
mation and severe occlusions despite the simplicity of data
acquisition. Like 3D methods, existing 2D methods use a
two-stage process involving skeletonization and graph op-
timization. To extract the skeleton regions on 2D images,
plant region segmentation is often used for plants with rel-
atively thin leaves [19]. Similarly, a neural network that
converts an input image into a map representing 2D skele-
ton positions is used to mitigate the occlusions [25]. To
reason about the direction of intersecting branches, a recent
work [18] proposes to use vector fields representing branch
direction instead of mask images, similar to the Part Affinity
Fields (PAFs) used in OpenPose [11].

Unlike existing two-stage methods, we propose an end-
to-end method that directly infers a tree graph representing
plant skeletons in a single image. Our experiments show
that our end-to-end method achieves better accuracy than a
recent two-stage method for 2D images.

2.2. Graph generation from images

Graph generation from images, sometimes called image-
to-graph generation, is studied for extracting thin structures
(e.g., road networks) or relations (e.g., scene graphs) from
images [2, 7, 14, 23, 28, 34–36, 39, 41, 52, 58, 59]. Recent
learning-based methods often use object detectors, which
detect graph nodes (e.g., intersections in road networks)
from images, and then aggregate the combinations of node
features to predict the edges defined between two nodes as
binary (i.e., existence of edges) or categorical (e.g., classifi-
cation of edge relations) values. Some studies use external
knowledge [1, 13, 48, 50] to improve the results.

Graph generators have usually taken autoregressive
methods (e.g., [7, 38, 42, 43, 63]) that output a graph
by starting at an initial node and estimating neighboring
graph nodes. Recent GNNs and transformers enable non-
autoregressive graph generators [14, 29, 31, 34, 60, 62] si-
multaneously estimating the entire graph. Autoregressive
methods are prone to errors during the estimation process,
and the state-of-the-art non-autoregressive method, Rela-
tionFormer [52], performs better than autoregressive meth-
ods, especially for medium to large graphs.
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A few recent studies consider graph generation with tree-
graph constraints in a different context. For the molecule
structure estimation [4, 26, 27], these methods assume au-
toregressive graph generation, making it hard to work with
complex and relatively large graphs like botanical plants.

2.3. Constrained optimization for neural networks

Constrained optimization is crucial for machine learning.
In particular, introducing constraints in neural networks has
become a recent trend [32].

Designing differentiable layers The most direct way to
introduce additional constraints to neural networks is to
make the constraints differentiable. In the continuous do-
main, it is known that a convex optimization can be imple-
mented as a differentiable layer [3]. However, the design of
differentiable layers for combinatorial optimization poses a
significant challenge due to the difficulty of differentiation.
Wilder et al. [54] propose a differentiable layer for linear
programming (LP) problems using continuous relaxation.
This method is extended to mixed integer linear program-
ming (MILP) [16] by splitting the problem into multiple
LPs. MST, which we want to use as constraints, is known
to be transformed into the class of MILP [46,49]. However,
using differentiable layers for these complex combinatorial
problems requires exponential computation time [32] to ob-
tain the exact solution and is practically unrealistic.

Reparameterization for constrained optimization If
the constraint function is difficult to differentiate, a simple
alternative is to project unconstrained inferences or model
parameters into constrained space, which can be considered
a use of reparameterization [30].

In gradient descent optimization, methods projecting un-
constrained optimization parameters (e.g., model param-
eters in neural networks) to the closest ones satisfying
the given constraint are called projected gradient descent
(PGD). PGD is often used for traditional optimization prob-
lems, directly optimizing the input variables [21,56]. While
PGD can be used for neural network optimization, such as
for generating adversarial examples [44], designing projec-
tion functions for neural networks is challenging. It requires
mapping a large number of model parameters into a space
satisfying complex constraints, where the constraints are of-
ten more naturally defined on the model output.

Instead of designing a projection function for the model
parameters, the model’s output can be projected onto the
subspace that satisfies the constraints during the training
loop. Since reparameterization for model output can be eas-
ily integrated with existing neural network models, they are
often used for domain-specific applications such as coded
aperture optimization with hardware constraint [61] and
internal organ segmentation with given parametric shape
models [8, 37]. We take this approach in our SFS layer,

easily plugging it into off-the-shelf end-to-end graph gen-
eration methods without preparing the differentiable imple-
mentation of the constraints (i.e., MST algorithm).

3. Tree-constrained Graph Generation
We here describe the constrained graph generation

method. Figure 2 summarizes the proposed SFS layer,
which casts the original unconstrained edge probabilities to
the constrained domain.

3.1. Problem statement

We here consider a simple setting of neural-network-
based graph generation, where the model outputs the pre-
diction of the edge probabilities (i.e., the edge exists or not)
defined for a pair of nodes, while this can be extended to a
multi-class classification setting straightforwardly.

Our goal is to design a tree-constrained graph generator
F that converts a given image I to a tree graph G as

G = (V,E) = F(I) s.t. E ∈ Etree, (1)

where the graph G consists of a set of nodes (or objects) V
and edges (or relations) E. Here, Etree denotes all possible
edge patterns forming a tree graph given the set of nodes V .

We consider a (non-differentiable) projection function P
that maps an unconstrained graph predicted by graph gener-
ators to the constrained graph G. Let the edge probabilities
defined between each node pairs as {ŷ(i,j)}(i,j)∈V×V .

ŷ(i,j) = [ŷ+(i,j), ŷ
−
(i,j)]

⊤ s.t. ∥ŷ(i,j)∥1 = 1, (2)

in which ŷ+(i,j) and ŷ−(i,j) respectively denote the edge exis-
tence and non-existence probabilities. The projection func-
tion P then read as

(V,E) = PE∈Etree
(V, {ŷ(i,j)}), (3)

which are given by traditional graph algorithms with combi-
natorial optimization. We assume the projection function P
converts the existence probability (or category prediction)
of graph edges while leaving the graph nodes V unchanged.
A typical example of P can be designed using the MST al-
gorithm we use in our TreeFormer implementation, which
projects an arbitrary graph into a tree structure by modify-
ing the existence of graph edges based on the costs defined
between each pair of nodes.

We aim to develop a differentiable function R that mim-
ics the non-differentiable projection P . Plugging with the
unconstrained graph generator F̂ , Eq. (1) is rewritten as

G = (V,E) = RE∈Etree(V, {ŷ(i,j)}),
(V, {ŷ(i,j)}) = F̂(I),

(4)

where the whole process is differentiable.
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Figure 2. Overview of reparameterization layer that can be easily plugged into off-the-shelf graph generators. Given unconstrained edge
predictions by graph generators, our method projects it to the closest constrained graph (i.e., tree) using a non-differentiable MST algorithm.
Comparing constrained and unconstrained edges, unwanted edge features are selectively suppressed so that the graph becomes the tree.

3.2. SFS layer

Here, we describe an implementation of the SFS layer
for constrained graph generation. As described in Eq. (2),
the unconstrained graph generator F̂ computes the proba-
bility of unconstrained edge existence between the i-th and
j-th nodes, ŷ(i,j) = [ŷ+(i,j), ŷ

−
(i,j)]

⊤. In neural networks,
ŷ(i,j) is usually computed through the softmax activation
σ applied to the output feature vector of the final layer
f̂(i,j) = [f̂+

(i,j), f̂
−
(i,j)]

⊤ ∈ R2 as

ŷ(i,j) = σ(f̂(i,j)). (5)

The set of unconstrained graph edges Ê are then obtained
by comparing the edge existence probabilities as

Ê = {(i, j) | ŷ+(i,j) > ŷ−(i,j)}, (6)

in which Ê records node pairs where the edge exists.
Suppose the projection function P converts the set of

unconstrained edge probabilities {ŷ(i,j)} to a set of con-
strained edges E. Let the difference of two sets be E+ =
E − Ê and E− = Ê −E, denoting the sets of edges newly
added and removed by the projection. To mimic discrete
(and non-differentiable) inferences by P in differentiable
end-to-end learning, we modify the edge features corre-
sponding to E+∪E− in the differentiable forward process.

Specifically, what we want to get is the edge probabilities
that approximate the constrained edges E, denoted as

y(i,j) =


[1− ϵ, ϵ ]

⊤
((i, j) ∈ E+)

[ ϵ , 1− ϵ]
⊤

((i, j) ∈ E−)[
ŷ+(i,j), ŷ

−
(i,j)

]⊤
(otherwise).

(7)

When ϵ is small enough, the constrained output y(i,j) per-
fectly mimics the output by the projection function P .
However, the direct modification of the edge probabilities

naturally disconnects the computation graph. Therefore,
we modify the unconstrained feature vector f̂(i,j) so that
the corresponding edge probabilities y(i,j) follows Eq. (7).
Specifically, since y(i,j) is computed through the softmax
function σ, it is achieved via the following minimal modi-
fication that selectively suppresses the feature values by re-
placing them with a constant1 as

f−
(i,j) := −Λ ((i, j) ∈ E+)

f+
(i,j) := −Λ ((i, j) ∈ E−),

(8)

where Λ is assumed to be large enough to make exp(−Λ) ∼
0. Given modified features f(i,j) = [f+

(i,j), f
−
(i,j)]

⊤, the
softmax activation σ normalizes and converts them to edge
probability y(i,j).

In summary, from Eqs. (5) and (8), the con-
strained edge prediction between i-th and j-th
nodes, yij = [yij+, yij−]

⊤, is obtained as

y(i,j) =


σ([f̂+

(i,j), −Λ ]⊤) ((i, j) ∈ E+)

σ([ −Λ , f̂−
(i,j)]

⊤) ((i, j) ∈ E−)

σ([f̂+
(i,j), f̂

−
(i,j)]

⊤) (otherwise).

(9)

After the reparameterization, the set of edges computed
from {y(i,j)} in the same way as Eq. (6) is guaranteed to
be equal to E inferred by the discrete projection function P
when Λ is large enough.

3.3. Analysis

The common auto differentiation libraries automatically
compute the gradient of the SFS layer. Although it can dis-
connect the computation path at a feature, since we keep at
least one of the original features (either f̂+

(i,j) or f̂−
(i,j)), the

backpropagation path to the backbone graph generation net-
work is not disconnected2. Here, we briefly analyze the be-

1See the supplementary materials for the derivation.
2This is akin to the dropout layer often used in neural networks.
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havior of the SFS layer. The supplementary materials pro-
vide a detailed analysis, including mathematical proofs.

When using the cross-entropy loss LCE to evaluate the
availability of the graph edges, the derivative to be back-
propagated to the backbone graph generator is approxi-
mated as3

∂LCE

∂ f̂
∼


[ 1− t+ , 0 ]

⊤
((i, j) ∈ E+)

[ 0 , 1− t− ]
⊤

((i, j) ∈ E−)

[y+ − t+, y− − t−]
⊤

(otherwise),

(10)

where t = [t+, t−]⊤ ∈ {0, 1}2 denotes the ground truth
edge existence and non-existence for the node pair (i, j).
Our method modifies the computation graph of the network
when the MST algorithm disagrees with the output of graph
generation model (i.e., (i, j) ∈ E+ ∪ E−), but in different
ways for derivatives of each feature value ∂LCE

∂f̂+
or ∂LCE

∂f̂− .
Without loss of generality, we consider the case when the

MST algorithm adds an edge, i.e., (i, j) ∈ E+. When the
MST correctly modify the edge availability (i.e., t+ = 1),
the gradient vector becomes small, ∂LCE

∂ f̂
∼ 0, which is the

behavior we expect. On the other hand, if the MST incor-
rectly adds the edge (i.e., t+ = 0), the gradient becomes
[1, 0]⊤, which strongly penalizes the positive edge probabil-
ity, where the norm of the gradient vector is always larger
than unconstrained ones4. Therefore, the behavior of our
simple reparameterization strategy is reasonable in practice.

4. TreeFormer: A Plant Skeleton Estimator
We develop TreeFormer, an implementation of the SFS

layer to a state-of-the-art graph generator. This section first
recaps the graph generator [52] and then details how we
introduce tree structure constraint.

4.1. RelationFormer: A brief recap

RelationFormer [52] is the state-of-the-art non-
autoregressive graph generation method. This method uses
an end-to-end architecture that combines an object (node)
detector and relation (edge) predictor, which shows supe-
rior performance for unconstrained graph generation. The
object detection part is based on deformable DETR [64],
which is trained to extract graph nodes (e.g., objects) and
global features from a given image. Specifically, given the
extracted image features, the transformer decoder outputs
a fixed number of object queries ([obj]-tokens) represent-
ing each of the nodes and a relation query ([rtn]-token)
describing the global features, including node relations.

The relation prediction head outputs the relationship
(i.e., edge existence or category) from the detected pairs
of objects (i.e., [obj]-tokens) and the global relation (i.e.,

3We omit the subscript (i, j) for simplicity.
4See supplementary materials for the mathematical proof.

[rtn]-tokens). This module is implemented as a multi-layer
perceptron (MLP) headed by layer normalization [6]. Rela-
tionFormer is trained using the sum of loss functions related
to object detection and edge (relation) estimation, where
edge (relation) loss Ledge

5 evaluates the edge existence or
category between node pairs using cross-entropy loss.

4.2. Tree-constrained graph generation

To introduce the tree structure constraint, we use
Kruskal’s MST algorithm [33] implemented in NetworkX6.
To extract a tree from an unconstrained graph predicted by
RelationFormer, we use the edge non-existence probabili-
ties {ŷ−(i,j)} as the edge cost for the MST algorithm to span
the tree on edges with higher existence probabilities.

We implement the SFS layer on top of the rela-
tion prediction head in the RelationFormer. Specifi-
cally, the output features from the MLP after layer nor-
malization are regarded as unconstrained features {f̂}.
In our experiments, we use Λ = 10 during training,
where exp(−Λ) = 4.5× 10−5. We show an ablation study
changing Λ in the supplementary materials.

Loss function Our SFS layer affects the evaluation of the
edge loss Ledge in the graph generator, while the compu-
tation of other loss functions, such as for node detection,
remains the same as in the original implementation. Our
implementation uses both loss functions for original (un-
constrained) and constrained edges. Denoting the ground-
truth edges as EGT = {(i, j) | t+(i,j) > t−(i,j)}, where
t(i,j) = [t+(i,j), t

−
(i,j)]

⊤ ∈ {0, 1}2, the loss function for edge
availability Ledge is modified as follows

Ledge =
∑
(i,j)

LCE(ŷ(i,j), t(i,j))︸ ︷︷ ︸
Lunconst

+
∑
(i,j)

LCE(y(i,j), t(i,j))︸ ︷︷ ︸
Lconst

,

(11)
where LCE denotes the cross-entropy loss.

5. Experiments
To assess the effectiveness of the proposed method and

TreeFormer implementation, we perform experiments using
synthetic and real image datasets.

5.1. Datasets

We use one synthetic and two real datasets, where exam-
ples are shown in Fig. 3. Supplementary materials describe
the details of the datasets.

Synthetic dataset To systematically demonstrate the per-
formance of our method, we perform an experiment using
a large synthetic dataset. We automatically generate images

5Denoted as Lrln in the original paper [52], we use Ledge for generality.
6https://networkx.org/, last accessed on July 15, 2024.
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(a) Synthetic (c) Grapevine(b) Root

Figure 3. Example images from the dataset we used for our exper-
iments. Annotated graphs are superimposed. Yellow dots and red
lines indicate nodes and edges.

of tree patterns using pre-defined rules of Lindenmayer sys-
tems (L-system) [20,40], which generate structural patterns
using recursive processes. We add randomness of branch-
ing patterns, branch length, and joint angles to increase the
dataset variation. The number of nodes in the graph is con-
trolled at less than 100. The resolution of the generated
images is 512 × 512 pixels. We generated 100000 images
for training, 20000 for validation, and 20000 for testing.

Root dataset We use photographs of early-growing roots
of Arabidopsis, which are often important targets of analy-
sis in plant science. In this dataset, the graph structures are
manually annotated. The dataset contains 781 root images,
and we randomly divide them into 625 training, 78 valida-
tion, and 78 test images. Each graph contains up to 117
nodes. The image resolution is 570 × 190 pixels. We use
data augmentation involving rotation, flipping, and crop-
ping for the training dataset, which collectively expands the
training dataset to 62, 500 images.

Grapevine dataset [18] We use 3D2cut Single Guyot
Dataset [18] containing grapevine tree images captured in
an agricultural field with annotated branch patterns. The
dataset contains relatively complex structures; the graph
contains up to 205 nodes. The resolution is 504×378 pixels.
The dataset contains 1503 images, and we use the dataset
split the same as [18], where 1185 images are for training,
and 63 and 255 images are for validation and testing, re-
spectively. We use data augmentation in the same manner
as the root dataset, resulting in 118, 500 training images.

5.2. Evaluation metrics

We use different metrics to capture spatial similarity
alongside the topological similarity of the predicted graphs.

Street mover’s distance (SMD) [7] SMD is a metric to
assess the accuracy of the positions of graph edges, which
is computed as the Wasserstein distance between the pre-
dicted and the ground truth edges. In our implementation,
the distance is computed between densely sampled points
on the edges, which is the same procedure as in the original
paper proposing the SMD [7].

TOPO score [22] We compute the TOPO scores to eval-
uate the topological mismatch of the output graph. This
metric consists of the precision, recall, and F1 scores of
the graph nodes, which are evaluated considering the edge
topology. We use the implementation used in Sat2Graph
paper [23], while we only evaluate the nodes with the de-
gree ̸= 2 that affect the tree structure, i.e., we only evaluate
joint and leaf nodes in the graphs.

Tree rate To evaluate how well the output graph satisfies
the constraint, we calculate the probability that the output
graph forms a tree structure. While it is obvious that the
tree rate becomes 100 % for constrained methods, includ-
ing ours, we are interested in how well the output of the
unconstrained graph generation model can reflect the con-
straint by training on datasets that contain only tree graphs.

5.3. Baselines

Since the constrained graph generation task is new in this
paper, there are few established baseline methods. We com-
pare our method with the state-of-the-art methods for 2D
plant structure estimation and unconstrained graph gener-
ation. Also, as an ablation study, we compare a simpler
alternative to our method. Supplementary materials pro-
vide additional comparisons with other baseline methods,
including autoregressive graph generation.

Two-stage [18] We implement a 2D plant skeleton es-
timation method based on a two-stage method involv-
ing skeletonization and graph optimization with reference
to [18]. Specifically, vector fields of branch directions are
generated by a neural network, followed by graph optimiza-
tion to generate branch structure, in which we find our im-
plementation outperforms the naive re-implementation of
the existing method [18]. Specific implementations and
analyses are described in the supplementary materials.

Unconstrained [52] We compare the state-of-the-art
(unconstrained) graph generation method, Relation-
Former [52]. This method is identical to our method
without applying the tree structure constraint.

Test-time constraint As a straightforward implementa-
tion of constrained graph generation, we apply MST only
in the inference phase, where the graph generator is trained
using the same procedure as the unconstrained method.

5.4. Implementation details

For RelationFormer in our method and the baseline com-
parison, we use the official implementation7 on PyTorch.
For other hyperparameters, we follow the original Relation-
Former implementation used for road network extraction.

7https://github.com/suprosanna/relationformer,
last accessed on July 15, 2024.
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Ground truth Test-time  constraintInput image Unconstrained OursTwo-stage

Figure 4. Visual results for the synthetic tree pattern dataset. From left to right: Input images, results of the two-stage method (similar
to [18]), the unconstrained method (identical to RelationFormer [52]), a naive implementation with test-time constraint, and ours are shown.
We translucently overlay the estimated and ground truth edges with red and blue lines, respectively. While all methods accurately detect
nodes, only our method accurately predicts the availability of edges from given images compared to the baseline methods.

Table 1. Quantitative results. Our method significantly improves
both the shape and topology of the predicted graph while enforcing
the given constraints. The best scores are highlighted bold.

Dataset Method SMD ↓ TOPO score ↑ Tree rate
Prec. Rec. F1 [%]

Synthetic

Two-stage [18] 1.91× 10−3 0.940 0.886 0.912 100.0
Unconstrained [52] 1.43× 10−5 0.978 0.929 0.953 36.2
Test-time constraint 6.26× 10−6 0.977 0.953 0.965 100.0

Ours 4.78× 10−6 0.986 0.968 0.977 100.0

Root

Two-stage [18] 4.83× 10−4 0.767 0.732 0.749 100.0
Unconstrained [52] 1.19× 10−4 0.831 0.633 0.719 35.9
Test-time constraint 1.52× 10−4 0.829 0.771 0.799 100.0

Ours 8.82× 10−5 0.861 0.807 0.833 100.0

Grapevine

Two-stage [18] 4.24× 10−4 0.677 0.589 0.630 100.0
Unconstrained [52] 1.45× 10−4 0.963 0.559 0.708 0.0
Test-time constraint 1.47× 10−4 0.896 0.840 0.867 100.0

Ours 1.03× 10−4 0.899 0.843 0.870 100.0

We used early stopping for all datasets and methods by se-
lecting the model with the best validation performance and
terminating training after 30 epochs without improvement.
The training of our method takes approximately 141 hours
for the synthetic dataset, 10 hours for the root dataset, and
98 hours for the grapevine dataset, all conducted on eight
NVIDIA RTX A100 GPUs.

5.5. Results on synthetic dataset

Figure 4 shows visual results for the synthetic dataset,
where the red and blue lines indicate the predicted and
ground truth edges, respectively. Since they are shown
translucently, if the estimated edge overlaps the true edge,
it is displayed in purple. Similarly, cyan and yellow dots
indicate the nodes, which merge into green if correctly es-
timated. From the results, all methods correctly estimate
the node positions. The existing unconstrained method out-
puts isolated edges and cycles. Although the two-stage and
test-time constraint methods enforce the tree structure con-

straint, they often produce incorrect edges. Compared to the
baselines, our method accurately generates the graph edges.

The above trend can be quantitatively confirmed in Ta-
ble 1. The unconstrained method produces tree structures
with only about 30 % probability, even though all the train-
ing graphs form tree structures. Although introducing the
test-time constraint and two-stage methods improves the
shape and topology, there are still many incorrect estimates.
Compared to those baseline methods, our method signifi-
cantly improves both edge positions and graph topology.

5.6. Results on real datasets

Figure 5 show results of skeleton estimation for two
real-world datasets. For these figures, red lines, yellow
dots, and cyan dots indicate the edges, nodes, and key-
points (i.e., joints and leaf nodes), respectively. In agree-
ment with the synthetic results, our method predicts visu-
ally better structures, while the unconstrained model hardly
produces tree structures. The method with test-time con-
straint clearly produces false edges, as shown in the results
for the grapevine images. The two-stage method is often
sensitive to the node detection error, leading to unneces-
sary (cf. Fig. 5a) or missing (cf. Fig. 5b) keypoints. In these
practical settings, our end-to-end pipeline especially bene-
fits from the simultaneous optimization of edge and node
detection, resulting in faithful predictions at both nodes and
edges for real-world datasets.

The quantitative results in Table 1 confirm the advantage
of our method for real-world scenes. Our method shows
particularly compelling results on grapevine datasets with
relatively complex branching structures, outperforming the
second-best method (test-time constraint) by approximately
30% improvement on the edge accuracy evaluated by SMD.
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Ground truth Test-time  constraintUnconstrained OursTwo-stageInput image

(a) Visual results for the root dataset.

Ground truth Test-time  constraintUnconstrained OursTwo-stageInput image

(b) Visual results for the grapevine dataset.
Figure 5. Visual results for the real image datasets. Red lines, yellow dots, and cyan dots indicate the predicted graph edges, nodes,
and keypoints (i.e., joints and leaf nodes). Our method accurately estimates the target plant structures compared with baseline methods,
demonstrating the applicability of our method for practical uses in plant science and agriculture.

(a)

(c)

(b)

(d)

Figure 6. Results for the additional test images of (a) a grapevine
tree under a natural background and (b–d) other tree species.

Generalization ability We test our model on additional
test datasets to validate the out-of-domain performance of
our method, using the model trained on the Grapevine
dataset. Although the model is trained with grapevine trees
with few background textures, it successfully works for
grapevine images with background textures (Fig. 6(a)) and
for other tree species (Fig. 6(b–d)). These results highlight
the generalizability of our method.

6. Conclusion
We present the first attempt at tree-constrained graph

generation from a single image, especially for plant skeleton
estimation. We combine modern learning-based graph gen-
erators and traditional graph algorithms via the SFS layer,
easily integrated with off-the-shelf graph generators.
Limitations We use graph algorithms during each train-
ing iteration, taking a longer training time than uncon-
strained methods, where fast GPU-based MST implemen-
tations (e.g., [53]) can improve computational performance.
The success of our method depends on the accuracy of the
underlying graph generation model, as we see a few unde-
tected nodes in the visual results. Unlike universal human
skeleton estimation such as OpenPose [11], our method re-
quires domain-specific training due to the excessive variety
of real-world plant appearances and structures, although we
show certain generalizability in our experiments.
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