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Abstract

Supervised object detection requires annotated datasets
for training and evaluation purposes. However, human
annotation of large datasets is error-prone, and frequent
mistakes are erroneous labels, missing objects, and impre-
cise bounding boxes. The main goals of this work are to
quantify the extent of annotation noise in terms of corner-
wise discrepancies, assess how it impacts evaluation met-
rics for object detection, and propose noise-aware alter-
natives that serve as upper and lower bounds for a base-
line metric. We focus our analysis on the Microsoft COCO
dataset and re-evaluate several state-of-the-art object de-
tectors using the proposed metrics. We show that the Av-
erage Precision (AP) metric might be considerably over or
under-estimated, particularly for small objects and restric-
tive IoU acceptance thresholds. Our code is available at
https://github.com/Artcs1/Error-Aware.

1. Introduction
Object detection is a core component in many high-level

tasks, such as autonomous driving, surveillance, healthcare,

and object tracking. With the widespread adoption of deep

learning for supervised object detection [34], several datasets

have been proposed in the past years, such as VOC [5],

COCO [13], LVIS [7], Open Images Dataset (OID) [11],

DOTAv1.0-2.0 [4], to name a few.

The size of available datasets has also increased. For

example, OID v4 [11] presents over 1.7M images and 16M

bounding boxes in the train split. At this scale, the evaluation

of object detectors has relied more and more on objective
quality metrics, and the most popular is the mean average

precision (AP). This metric explores the Intersection-over-

Union (IoU) to assess if the predictions made by the detector

match a ground truth (GT) annotation based on an accep-

tance threshold, but the choice for the IoU threshold or even

the use of the IoU itself has been questioned by several re-

searchers in recent years [8,9,12,20,25], leading to an effort

for evaluating and rethinking metrics that provide a better

Figure 1. Discrepancies of bounding boxes (BBs) between two

annotators.

alignment with the human-perspective.

A closely related problem is the lack of annotation consis-

tency in existing datasets for object detection. This problem

is inherent to the subjectivity of the annotation task, which

relies on human annotators. For instance, many big datasets

such as OID [11] and DOTA [30] present missing annota-

tions due to human fatigue. Also, datasets often contain

erroneous labels: a recent work [23] identified at least 34,

96, 50, and 23 label errors for BDD, Kitti, COCO, and VOC

datasets, respectively. Finally, the process of annotating

bounding boxes (HBBs – horizontal or OBB – oriented) is

subject to fatigue or even annotator biases. For example, Fig-

ure 1 shows the bounding boxes produced by two different

human annotators, which were requested to draw bounding

boxes from eight classes (keyboard, mouse, monitor, laptop,

tablet, cellphone, microphone, vehicle) of an image from the

Objects365 dataset [24]. We can note that some discrepan-

cies might be due to a lack of proper care (see laptop and

keyboard boxes), but others indicate an intrinsic ambiguity

in the process, as the vehicle in the top-left: should the rear

mirror be included in the annotation (and add a significant

portion of the background) or not?

Annotation discrepancies affect the quality metrics used

to benchmark object detectors. Absent or wrongly labeled an-

notations impact the AP since they generate misleading false

positives or negatives. However, imprecise (noisy) bounding

box annotations must also be considered: as shown by sev-

eral authors [15,17,18], even subtle annotation discrepancies

might impact the IoU and hence the AP.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Discrepancies of oriented bounding boxes (OBB) based on DOTAv1.0 (red) and DOTAv1.5 (green).

One potential solution to mitigate annotation discrepan-

cies is to hire multiple evaluators and integrate their anno-

tations with a voting mechanism. However, this approach

introduces a dilemma in determining the definitive bounding

box parameters, and involves considerable costs in terms of

money and time. While some studies [14, 32] aim to address

noisy annotations, they assume noise levels that might devi-

ate significantly from typical human errors: they introduced

a uniform error between 10% to 40% of the original object

size on COCO2017 [13] and VOC2007 [5] datasets.

The main goal of this work is to tackle noisy annotations,

which correctly capture the object locations and the category

labels but might contain imprecision in the bounding box.

We aim to quantify this noise, evaluate its impact on the

evaluation metrics, and propose alternatives that account for

annotation imprecision. Although we focus on HBBs (HBBs

will be referred to as BBs from this point on), the same

problem happens – and might be even amplified – in OBB

or 3D object detection. For example, Figure 2 illustrates

some OBB annotations of the same objects in two versions

of the same dataset, namely DOTAv1.0 (red) and DOTAv.15

(green) [30]. Even objects with well-defined rectangular

oriented shapes, such as tennis courts or small vehicles,

present annotation noise due to fatigue or pixel variations

that were improved in the latter version. Other objects, such

as airplanes and roundabouts, exhibit even higher error rates

due to ambiguous boundary definitions or orientation.

In summary, the main contributions of this work are: i)

We derive upper and lower bounds for any similarity metric

for comparing BBs that satisfy the triangle inequality as a

function of annotation noise, focusing on the IoU; ii) based

on a set of original and corrected annotations for the same

dataset (Microsoft COCO), we quantify the corner-wise an-

notation noise; iii) for a given corner-wise annotation noise

distribution, we define noise-aware IoU metric that yields

bounds for computing the AP; iv) we evaluate recent ob-

ject detectors using the proposed noise-aware metrics, and

conclude that the AP can be considerably under- or over-

estimated due to annotation noise.

2. Related Work

The literature on object detection is vast, and a recent

survey can be found in [34]. Next, we provide a critical

analysis of existing work that deals with evaluation metrics

and annotation inconsistencies in datasets.

Evaluation metrics: The most popular evaluation metric

for object detection is the mean Average Precision (AP) [34].

A key issue when computing the AP is the definition of a

correct detection, which involves comparing the Intersection-

over-Union (IoU) between the prediction and the ground

truth (GT), and comparing it with a pre-defined threshold

T . In the VOC2007 protocol [5], a single value T = 0.5
is used, whereas the COCO protocol [13] suggests the av-

erage of several thresholds T ∈ {0.5, 0.55, ..., 0.95}. Some

datasets propose class-related IoU threshold values, such as

the evaluation protocol in the KITTI dataset [6]1. They use

a 0.7 overlap for cars, and 0.5 for pedestrians and bicycles

in both birds-eye and 3D object detection challenges.

Despite being widely (and sometimes blindly) used, both

IoU and the AP have received several criticisms in the past

years. Some authors mention that choosing the IoU threshold

is arbitrary in the context of object detection or image seg-

mentation [8,20]. Other authors advocate the use of instance-

dependent thresholds. For instance, Jeune and Mokraoui [9]

propose an adaptive scale IoU to better discriminate small

objects in the context of few-shot object detection.

The use of the IoU itself as a metric has also been ques-

tioned by several authors. Strafforello and colleagues [25]

argue that humans go beyond a simple IoU number when

visually evaluating object detectors. Another limitation of

the IoU relates to non-overlapping objects, for which the

IoU is zero, regardless of whether the objects are close or

far apart. The Generalized IoU (GIoU) [22] mitigates the

non-overlapping issue by also considering bounding boxes

that encompass the two objects. The subset case (i.e., when

one object is inside another) is another known limitation

of the IoU, which yields the same value regardless of the

relative location. The Probabilistic IoU (ProbIoU) [19] was

recently introduced as an alternative metric to the IoU for

both HBB and OBB detectors, mitigating both the subset

and non-overlapping issues. Finally, some limitations of

the AP metric have also been questioned recently: Jena

and colleagues [8] noted that significant gains in AP can be

achieved even if several false positives are introduced in the

high-recall range.

Inconsistencies in datasets: Several authors studied the

1http://www.cvlibs.net/datasets/kitti/
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effect of dataset annotation inconsistencies in the trained

models. Papadopoulos et al. [21] introduced the “extreme

clicking” annotation strategy for BBs and noted an average

IoU of 0.88 compared to VOC 2017 GT annotations. An

experiment comparing 50,000 boxes annotated by different

humans was reported in [11], with a very similar result of

0.87 IoU. Murrugarra et al. [18] pointed out that annotation

noise is more harmful w.r.t. the IoU for smaller objects,

which has also been noted in [3, 26] when benchmarking

small object detection. Jiaxin et al. [17] identified several

annotation errors in the popular datasets COCO [13] and

OID [11], and provided corrected annotations. They show

that training detectors with such a fix yields significant im-

provements in both datasets. In contrast, Agnew et al. [1]

aimed to empirically relate the effect of annotation noise

on the AP by training object detectors with noisy bounding

boxes. They noted an AP degradation of 0.185 when the

largest amount of uniform noise was injected.

Another recent trend is to propose noise-aware object de-

tectors, which should inherently deal with imprecision. For

instance, DISCO [32] analyzes the distribution of proposal

boxes to overcome noise. The methods proposed in [15, 29]

treat detection as a multiple instance learning (MIL) ap-

proach where the classifier aims to filter inaccurate bounding

boxes. Nevertheless, these methods introduce non-human

or exaggerated errors, which may obscure their conclusions

regarding annotation errors present in current datasets.

In this work, we propose a generic framework for noise-

aware evaluation of object detection that provides upper and

lower bounds for a baseline similarity metric. The frame-

work can be applied to different object representations (2D

or 3D HBBs, or OBBs) and any baseline similarity metric

that induces a mathematical distance metric satisfying the

triangle inequality, such as IoU, GIoU, or ProbIoU. We focus

our analysis on 2D HBB object detection using the IoU, and

evaluate recent object detectors using the proposed metrics.

3. The proposed approach
This section proposes an alternative evaluation metric

for comparing bounding boxes that account for annotation

uncertainty. We first discuss the importance of having actual

mathematical metrics in the evaluation process and how they

can be used to estimate error bounds. We then focus the

analysis on the IoU, and how corner-wise annotation noise

impacts the IoU computation. We explore a set of corrected

bounding box annotations for the COCO dataset provided

in [17] to estimate how annotation noise behaves in practice,

and how such noise impacts the IoU. Finally, we propose

noise-aware versions for the IoU based on these estimates.

3.1. Bounds for evaluation metric errors

As noted by Nguyen and colleagues [20], one of the

requirements for designing a trustworthy evaluation metric

is having consistency with mathematical requirements, such

as the metric properties. In particular, the triangle inequality

is a required property for a distance metric. For a given space

S , a distance metric d : S × S → [0,∞) must satisfy

d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ S. (1)

As an immediate consequence of the triangle inequality,

we have that

d(x, z) ≥ d(x, y)− d(y, z), ∀x, y, z ∈ S. (2)

If S is the space of bounding boxes, there are pairs of

similarity/distance metrics that satisfy the triangle inequality.

For example, dIoU = 1− IoU, where IoU ∈ [0, 1], dGIoU =
1−GIoU

2 , where GIoU ∈ [−1, 1] [22], and dProbIoU = 1 −
ProbIoU, where ProbIoU ∈ [0, 1] [19]. We will proceed

with our analysis with the IoU, which is the most popular

metric, but analogous reasoning can be applied to ProbIoU

and GIoU.

Let us consider that Det ∈ S is a prediction produced

by an object detector, Ann ∈ S is a possibly noisy annota-
tion, and GT ∈ S is the ground truth (GT). The following

relationships are immediate from Inequalities (1) and (2):

IoU(Det,GT) ≥ IoU(Det,Ann)︸ ︷︷ ︸
Observed

− dIoU(Ann,GT)︸ ︷︷ ︸
Noise

, (3)

IoU(Det,GT) ≤ IoU(Det,Ann)︸ ︷︷ ︸
Observed

+ dIoU(Ann.GT)︸ ︷︷ ︸
Noise

. (4)

The RHS of Inequalites (3) and (4) provide lower

and upper bounds, respectively, for the actual similarity

IoU(Det,GT) between the prediction and the GT consider-

ing the observed similarity IoU(Det,Ann) and the annota-
tion noise distance dIoU(Ann,GT). Since the latter term is

typically unknown, it must be estimated.

3.2. Annotation Noise vs. IoU

A key issue in Inequalites (3) and (4) is to provide an

estimate for dIoU(Ann,GT). We follow the idea presented

in [18] and provide a probabilistic relationship between the

annotation noise of the top-left and bottom-right coordinates

and the corresponding IoU value.

Without loss of generality, let us consider a canonical GT

bounding box with top-left coordinates xgt
tl = (0, 0) and

bottom-right coordinates xgt
br = (W,H), where W and H

are the width and height, respectively. The coordinates of a

related noisy annotation are given by xann
tl = (x1, y1) and

xann
br = (W + x2, H + y2), where η = (x1, x2, y1, y2) is

the corner-wise annotation noise. The intersection and union

of the two boxes can be written as a function of the GT box
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(a) erronous class labels (b) absence of annotations

(c) different interpretations (d) bounding box imprecision

Figure 3. Different types of errors/ discrepancies among annotators.

size s = (W,H) and the annotation noise η as

Is(η) = (W + x−
2 − x+

1 )(H + y−2 − y+1 ),

Us(η) = HW + (W + x2 − x1)(H + y2 − y1)− Is(η),

(5)

where x+ = max{x, 0} and x− = min{x, 0}. We assume

that noise is small and |x1|, |x2| ≤ W/2, |y1|, |y2| ≤ H/2.

Hence, the corresponding IoU is given by

IoUs(η) =
Is(η)

Us(η)
. (6)

Since the noise parameters η are unknown for a given an-

notation, we follow a probabilistic approach. More precisely,

we compute the expected value IoUs = E[IoUs] as

IoUs =

∫
η

IoUs(η)p(η)dη, (7)

where p is PDFs of the random variable η.

If we know the distribution p(η), we can compute the ex-

pected value for each bounding box dimension s = (W,H).
Hence, we can find an estimate for the expected value of

dIoU(Ann,GT), which depends on the dimensions of the GT

bounding box.

3.3. Estimating the annotation noise

As mentioned in Section 1, errors or discrepancies among

annotators might relate to different class labels, absence of

annotations, different interpretations of where exactly the

boundaries of the objects are, or bounding box noise, as

illustrated in Figure 3. This work focuses on the effect of

bounding box noise, as shown in Figure 3d.

To empirically determine the behavior of annotation noise

caused by human error, we need sets of images with bound-

ing boxes annotated by two or more humans. Although we

are not aware of any publicly available dataset with these

characteristics, we can explore efforts that try to refine exist-

ing datasets for object detection. For instance, Ma et al. [17]

provided “corrected” annotations for a subset of categories

in two popular datasets: Microsoft COCO [13] and Open

Images Dataset (OID) v4 [11], with a much larger number

of reannotated BBs for COCO (569,309 vs. 24,995 for OID

v4). Hence, we restrict our analysis to the COCO dataset.

Since the corrections also include mislabeled classes and

missing objects, we present an approach for automatically

filtering only bounding box localization corrections. We ini-

tially perform a per-image alignment of the original bound-

ing box annotations and the corrected versions, which we

assume to be the actual GT. Since the number of annotations

per image might be different, we use the Hungarian algo-

rithm [10] to perform bipartite graph matching using dIoU

as the cost function. In the original annotations of COCO, a

single bounding box was used to annotate several instances

of the same category for some images, whereas the corrected

annotations pinpoint each instance, as illustrated in Figure 4.

Hence, the Hungarian algorithm might still provide wrong

alignments, as shown in the middle of Figure 4. To fur-

ther refine the alignment step, we remove pairs of BBs that

present IoU smaller than a threshold (empirically set to 0.1),

as illustrated in the right of Figure 4. This process leads to a

total of 284,392 paired BBs.

Figure 4. Pairing original (red) and corrected (green) annotations.

Left: raw images with all annotations. Middle: pairing after Hun-

garian algorithm. Right: filtering wrong matches based on IoU

threshold.

With the set of paired BBs, we compute the top-left

(x1, y1) and bottom-right (x2, y2) annotation discrepan-

cies, yielding four distributions – one for each coordi-

nate. Since these values originated from annotation im-
precision, we assume that they follow i.i.d. distributions

according to a single individual PDF pi, so that p(η) =
pi(x1)pi(x2)pi(y1)pi(y2).

To estimate pi, we initially consider all the samples

x1, y1, x2, y2 obtained from the BB pairing procedure. We

noticed a very long-tailed distribution, with some values

around -500 or +500. Considering that the maximum di-

mension (width or height) in the paired dataset is 640, such

large noise values are clearly outliers. To further refine

the dataset with paired BBs, we used Tukey’s fence [27]

based on interquartile distances to remove outliers. A value
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z ∈ {x1, x2, y1, y2} is considered an outlier if

z < Q1 − 1.5IQR or z > Q3 + 1.5IQR, (8)

where Q1 and Q3 are the first and third quantiles of the

distribution, respectively, and IQR = Q3 − Q1 is the in-

terquartile range. A pair of BBs is kept if all the four noise

estimates x1, y1, x2, y2 are considered inliers by Tukey’s

fence, which leads to a total of 165,840 pairs of BBs. The

average pair-wise IoU of the refined set is 0.89, which is very

close to the results comparing human annotation discrepan-

cies reported in [11,21], and more information regarding the

refined dataset is provided in the supplementary material.

The histogram of the resulting noise estimates for the re-

fined dataset with paired BBs is shown at the top of Figure 5.

We note a sharp peak at the origin and an apparently exponen-

tial decay along the tails, which leads us to choose a Laplace

distribution as a parametric approximation. More precisely,

we adopt a zero-mean truncated Laplace distribution pi(x)
whose PDF is given by

pi(x) = p(x;σ,M) =
e−

x−M
σ

2σ
(
e

M
σ − 1

) , (9)

where [−M,M ] is the support of the distribution and σ is

the scale parameter. The fitted PDF is shown as an orange

line at the top of Figure 5, providing a good representation

of the empirical histogram. Note that the sharp peak at the

origin might be due to unchanged annotations in [17] and

could be removed when fitting the PDF.

Figure 5. Histogram of noise bounding box (BB) components Top:

overall distribution with all BBs. Bottom: individual histograms

based on the size of the BB dimension D.

We used a single distribution to model the behavior of the

corner-wise annotation noise η = (x1, y1, x2, y2) regardless

of the BB dimension. On the other hand, previous works

that explore annotation noise [15, 29] assumed a uniform

perturbation proportional to the BB dimension. To better

assess the dependency of the annotation noise as a function

of the BB size, we have grouped the coordinate-wise noise

values for each dimension (x1, x2 for width and y1, y2 for

height) based on their size following the definition of small

(S), medium (M) and large (L) boxes of the COCO evaluation

protocol. More precisely, we consider that a dimension

D ∈ {H,W} is small if D < 32, medium if 32 ≤ D < 96,

and large if D ≥ 96. For each of these three groups, we

computed the histogram of the noise values, shown at the

bottom of Figure 5. The plots indicate that the dimension

size has some impact on the noise distribution, but it is far

from being uniform as suggested in [15, 29].

Finally, we sample integer values of s ∈ [1, 640]2,

which is the range of BB dimensions in COCO. Then,

estimate IoUs by numerically integrating Eq. (7) using

p(η) = pi(x1)pi(x2)pi(y1)pi(y2), where pi is the fitted

truncated Laplacian PDF. For sizes that were not sampled,

we used bilinear interpolation.

3.4. Noise-aware IoU

As shown by Inequalities (3) and (4), the IoU value

of a predicted BB might be either over or underestimated

due to annotation noise. In any case, the difference be-

tween the actual and the observed IoU values is bounded

by dIoU(Ann,GT) = 1 − IoUs(η), where s = (W,H) is

the size of the GT bounding and η = (x1, x2, y1, y2) are the

corner-wise annotation error.

Although it is impossible to know IoUs(η) for each

GT bounding box, we can estimate the expected value

based on empirical or theoretical models for the corner-

wise annotation errors. Since the values depend on H
and W , an empirical estimation would require many sam-

ples for each combination of height and width, which is

unfeasible. On the other hand, the analysis provided in

the previous sections allows us to estimate the expected

value for any combination of height and width by using

a parametric model for the noise distribution, such that

E[dIoU(Ann,GT)] = 1− E[IoUs(η)] = ε̄(s) = ε̄(W,H).
Table 1 shows a comparison between the empirical and

theoretical estimation of E[IoUs(η)]. For the empirical es-

timations, GT BBs were grouped into nine 2D bins based

on the individual dimensions H and W , with three 1D bins

for each dimension (small, medium, and large, as done in

Figure 5). The theoretical estimation for each 2D bin was

computed by averaging IoUs for all values s = (W,H)
within the bin. The smallest IoU values were obtained when

both H and W are small, and the theoretical estimate is a

little lower (∼ 5%) than the empirical estimate. For the

remaining bins, the theoretical and empirical estimations are

very close, with discrepancies around 1% or smaller.

For a detection Det and annotation Ann with dimension

H ×W , the expected upper and lower IoU values between

Det and the corresponding noise-free GT are given by

IoU
u
(Det,GT) = IoU(Det,Ann) + ε̄(H,W ),

IoU
l
(Det,GT) = IoU(Det,Ann)− ε̄(H,W ),

(10)
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H/W S M L

S 0.8048/0.7631 0.8732/0.8667 0.9062/0.9116

M 0.8850/0.8742 0.9214/0.9280 0.9433/0.9534

L 0.9097/0.9064 0.9464/0.9549 0.9711/0.9789

Table 1. Comparison of the empirical/theoretical estimation of

E[IoUs] for small (S), medium (M) and large (L) values for the

width W and height H .

Figure 6. Noise-aware IoU values considering a baseline IoU of

0.5 for different annotation sizes, along with bounding box regions

for small (S), medium (M), and large (L) objects.

and both estimates are clipped in the range [0, 1] to keep

the valid range of IoU values. The noise-aware IoUs are

then used to compute adjusted APu
T and APl

T metrics for

evaluating an object detector, which provide upper and lower

bounds for the baseline APT .

4. Noise-Aware Evaluation of Object Detectors
In this section, we re-evaluate several state-of-the-art

object detectors using the proposed noise-aware metrics.

We selected four detectors that have different checkpoints

available in the MMDetection2 framework [2], namely Rep-

points [31], the YOLOv10 family [28], the RTMDET fam-

ily [16] and CO-DETR [33] with different backbones. CO-

DETR-SwinL∗ has the same backbone as CO-DETR-SwinL

but was pre-trained with Objects365 dataset.

We evaluated these detectors using the COCO 2017 val-

idation split using the traditional (baseline) APT metrics

(Table 2) and the proposed upper- and lower-bounds APu
T

and APl
T (Table 3). The results are also discriminated based

on object size (small, medium, or large) and different IoU

thresholds T . As expected, the largest discrepancies between

the baseline and adjusted metrics are observed for restric-

tive thresholds (in particular, see the results for T = 0.95).

This effect is aggravated for small objects, and we see that

APl
95 = 0 for small objects in all detectors because it is

impossible to guarantee a 0.95 IoU for the estimated noise

level. On the other hand, the differences between APT and

the bounds APu
T , APl

T for larger objects and less restric-

tive thresholds T are considerably smaller, which corrob-

orates the results in Table 1 and Figure 6. In fact, the

2https://github.com/open-mmlab/mmdetection

AP gap between the upper and lower bounds, given by

ΔAPT = APu
T − APl

T , can be viewed as an uncertainty
estimate of the actual AP for an IoU threshold T . For in-

stance, the average value for ΔAP50 considering all detec-

tors is ∼1.1, ∼3.4, and ∼13.5 for large, medium, and small

objects, respectively. Hence, even for a conservative IoU

threshold of 0.5, the AP estimates for small objects might be

misleading. We also note that the rankings can change for

some object sizes. For example, YOLOv10 S outperforms

Reppoints X-101 FPN-DCN in AP50:95 for small objects,

but the opposite happens in APu
50:95.

Analyzing the consolidated AP results considering all

object sizes and IoU thresholds (last column of the tables),

we note that all detectors are more negatively affected by APl

than positively affected by APu. For instance, the Yolov10 X

AP50 for small objects is 55.6, and the corresponding APu
50

and APl
50 values are, 60.0 (+3.4) and 46.3 (-9.3). We observe

that the gain in the upper bound is smaller than the loss in

the lower bound, which might indicate that the detector

produces instances with IoU above 0.5 with GT annotations

that are disregarded by the lower bound, but not so many

instances with IoU below 0.5 that would be considered by

the upper bound. A similar behavior can be observed for

other IoU thresholds T and detectors, particularly for small

and medium objects.

Some visual results of object detection with Yolov10 X

are shown in Figure 7. We can observe that several predic-

tions look visually good and coherent with the annotation

(in red) but can yield relatively low IoU values. For in-

stance, the mouse in the middle of the fourth image presents

an IoU smaller than 0.7, generating a false detection for

more restrictive thresholds. Figure 8 shows the compari-

son of Yolov10 X with the original annotations (red) and

the corrected ones (green) in COCO. In the first two im-

ages, IoU(Det,Ann) > IoU(Det,GT), meaning that the

observed IoU is overestimated. On the other hand, the op-

posite happens for the last two images. Without knowing

the actual GT annotation, which is typically the case, we

cannot tell if the observed IoU is better or worse than the ac-

tual value, which highlights the importance of the proposed

bounds. More visual results are provided in the supplemen-

tary material.

5. Discussion and Limitations
Discussion: Although we focused our analysis on HBB

object detection using the IoU as the similarity metric, the

formulation provided in Section 3.1 can be applied to generic

object representations (OBBs, 3D HBBs or OBBs) and dif-

ferent similarity metrics that induce metric distances sat-

isfying the triangle inequality, such as GIoU [22] or Pro-

bIoU [19]. However, changing the object representation (2D

or 3D OBBs) or evaluation metric requires a different model

to relate corner-wise noise η with the chosen metric.
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Detector
Small Medium Large All

AP50 AP75 AP95 AP50:95 AP50 AP75 AP95 AP50:95 AP50 AP75 AP95 AP50:95 AP50:95

Reppoints R-50 FPN 35.6 20.4 0.5 20.4 62.8 44.4 1.6 41.0 68.7 53.8 3.8 49.0 37.0

Reppoints R-101 FPN 39.8 23.8 0.7 23.4 67.1 48.6 2.1 44.7 74.0 58.8 5.3 53.2 40.5

Reppoints R-101 FPN-DCN 42.4 25.5 0.5 25.1 70.0 52.2 2.4 47.1 76.7 63.3 7.9 57.0 42.9

Reppoints X-101 FPN-DCN 45.0 26.4 0.5 26.2 71.3 52.8 3.0 48.4 78.2 65.1 7.3 58.5 44.2

YOLOv10 N 31.2 19.9 0.5 18.9 60.2 46.7 5.1 42.4 69.1 59.4 14.7 54.6 38.5

YOLOv10 S 42.7 28.7 0.9 26.8 69.7 56.7 7.5 51.0 77.9 69.2 21.5 63.8 46.3

YOLOv10 M 51.8 36.2 2.5 33.8 74.5 63.2 9.6 56.5 80.3 71.9 25.5 66.9 51.1

YOLOv10 B 53.6 37.9 2.3 35.1 75.9 64.2 10.4 57.8 81.2 73.9 27.4 68.4 52.5

YOLOv10 L 54.0 38.6 2.6 35.8 76.6 65.1 10.6 58.5 82.3 74.7 28.5 69.3 53.1

YOLOv10 X 55.6 40.4 2.9 37.1 77.9 66.4 11.9 59.9 84.1 76.4 29.6 71.0 54.4

RTMDet-tiny 35.2 21.5 0.5 21.0 65.0 50.4 4.6 45.5 73.8 63.6 14.4 58.3 41.1

RTMDet-s 41.3 26.6 1.4 25.3 68.2 53.9 5.6 48.7 77.8 68.5 16.7 62.6 44.6

RTMDet-m 48.1 33.1 1.9 30.7 73.6 60.5 7.0 54.1 80.5 72.5 21.9 66.5 49.4

RTMDet-l 52.2 36.6 2.6 34.0 75.3 62.5 8.6 56.2 82.0 74.5 24.3 68.5 51.5

RTMDet-x 54.7 39.4 2.1 36.0 76.5 63.9 9.0 57.4 82.8 74.6 24.9 69.2 52.8

CO-DETR R-50 52.1 38.4 2.2 34.8 73.7 61.9 9.6 55.6 80.3 72.8 24.3 67.1 52.0

CO-DETR SwinL 62.7 46.8 3.0 42.6 81.1 69.9 12.5 62.7 88.7 80.6 31.5 75.1 58.9

CO-DETR SwinL∗ 70.5 55.3 5.1 49.9 84.9 75.2 15.4 67.6 90.5 84.2 35.7 78.4 64.1

Table 2. APT values (%) for different object detectors in COCOval with the standard APT metric.

Detector
Small Medium Large All

APu
50 APu

75 APu
95 APu

50:95 APu
50 APu

75 APu
95 APu

50:95 APu
50 APu

75 APu
95 APu

50:95 APu
50:95

Reppoints R-50 FPN 39.6 31.7 15.5 30.7 (+10.3) 64.7 50.9 14.5 48.0 (+7.0) 69.3 56.7 11.0 52.0 (+3.0) 43.7 (+6.7)
Reppoints R-101 FPN 44.5 36.4 18.1 35.0 (+11.6) 69.0 55.4 17.6 52.3 (+7.6) 74.6 60.9 14.0 56.7 (+3.5) 48.4 (+7.9)

Reppoints R-101 FPN-DCN 47.1 38.2 19.7 37.0 (+11.9) 71.9 58.2 19.5 55.1 (+8.0) 77.2 65.3 18.2 60.4 (+3.4) 51.1 (+8.2)
Reppoints X-101 FPN-DCN 49.7 40.3 20.5 39.1 (+12.9) 73.2 59.9 20.8 56.5 (+8.1) 78.7 67.1 19.8 62.1 (+3.6) 52.9 (+8.7)

YOLOv10 N 35.6 28.4 15.2 27.8 (+8.9) 61.9 52.0 21.1 48.9 (+6.5) 69.6 61.0 27.0 57.5 (+2.9) 44.6 (+6.1)
YOLOv10 S 47.3 40.0 23.1 38.5 (+11.7) 70.9 61.7 28.5 58.2 (+7.2) 78.3 70.5 35.0 66.6 (+2.8) 53.6 (+7.3)
YOLOv10 M 56.7 48.8 30.2 47.3 (+13.5) 75.8 67.6 34.3 64.0 (+7.5) 80.7 73.1 40.8 69.8 (+2.9) 59.3 (+8.2)
YOLOv10 B 57.9 50.3 31.6 49.0 (+13.9) 77.0 68.5 36.7 65.3 (+7.5) 81.6 75.0 42.6 71.4 (+3.0) 60.9 (+8.4)
YOLOv10 L 58.4 51.3 32.9 49.8 (+14.0) 77.7 69.5 37.0 66.0 (+7.5) 83.2 76.0 43.9 72.4 (+3.1) 61.5 (+8.4)
YOLOv10 X 60.0 53.0 34.5 51.4 (+14.3) 79.1 70.4 38.9 67.5 (+7.6) 84.4 77.3 45.0 73.9 (+2.9) 63.0 (+8.6)
RTMDet-tiny 40.1 31.7 15.7 30.8 (+9.8) 66.6 55.8 21.7 52.5 (+7.0) 74.1 65.4 27.2 61.3 (+3.0) 47.7 (+6.6)

RTMDet-s 46.1 37.8 19.5 36.5 (+11.2) 69.5 59.5 24.2 55.8 (+7.1) 78.2 70.2 30.9 65.8 (+3.2) 51.8 (+7.2)
RTMDet-m 53.3 44.9 25.9 43.6 (+12.9) 74.8 65.4 30.9 61.9 (+7.8) 80.9 74.2 36.3 69.6 (+3.1) 57.3 (+7.9)
RTMDet-l 57.2 48.8 30.1 47.5 (+13.5) 76.5 68.1 33.6 64.0 (+7.8) 82.4 75.7 39.6 71.5 (+3.0) 59.7 (+8.2)
RTMDet-x 59.3 51.6 32.6 50.2 (+14.2) 77.7 68.5 34.8 65.3 (+7.9) 83.0 76.3 40.7 72.3 (+3.1) 61.3 (+8.5)

CO-DETR R-50 56.3 49.6 33.5 48.4 (+13.6) 74.7 66.6 34.6 63.0 (+7.4) 80.9 73.9 39.9 70.2 (+3.1) 60.4 (+8.4)
CO-DETR SwinL 67.2 60.5 41.6 58.6 (+16.0) 82.3 74.4 40.7 70.6 (+7.9) 89.0 82.0 47.8 78.3 (+3.2) 68.4 (+9.5)
CO-DETR SwinL∗ 74.2 68.5 49.6 66.3 (+16.4) 85.9 79.5 47.1 75.7 (+8.1) 90.7 85.3 52.9 81.5 (+3.1) 73.8 (+9.7)

Detector
Small Medium Large All

APl
50 APl

75 APl
95 APl

50:95 APl
50 APl

75 APl
95 APl

50:95 APl
50 APl

75 APl
95 APl

50:95 APl
50:95

Reppoints R-50 FPN 27.2 6.1 0.0 10.7 (-9.7) 60.4 34.3 0.1 33.5 (-7.5) 68.1 50.9 0.8 45.8 (-3.2) 29.8 (-7.2)
Reppoints R-101 FPN 31.0 6.9 0.0 12.2 (-11.2) 64.6 38.5 0.0 36.7 (-8.0) 73.1 56.0 0.1 49.8 (-3.4) 32.3 (-8.2)

Reppoints R-101 FPN-DCN 32.4 9.4 0.0 13.4 (-11.7) 66.9 41.8 0.0 38.8 (-8.3) 76.0 60.1 1.2 53.3 (-3.7) 34.2 (-8.7)
Reppoints X-101 FPN-DCN 33.7 8.5 0.0 13.6 (-12.6) 68.7 42.2 0.1 39.7 (-8.7) 77.2 62.5 1.2 54.8 (-3.7) 35.1 (-9.1)

YOLOv10 N 24.7 7.2 0.0 10.4 (-8.5) 58.3 38.8 0.2 35.6 (-6.8) 68.5 57.8 4.9 51.6 (-3.0) 32.2 (-6.3)
YOLOv10 S 35.1 10.1 0.0 14.9 (-11.9) 67.6 48.0 0.3 43.0 (-8.0) 77.4 67.5 9.1 60.4 (-3.4) 38.1 (-8.2)
YOLOv10 M 42.7 14.8 0.0 19.1 (-14.7) 72.8 54.4 0.5 47.6 (-8.9) 79.7 70.3 11.2 63.4 (-3.5) 41.7 (-9.4)
YOLOv10 B 43.9 15.9 0.0 19.6 (-15.5) 73.9 56.2 0.7 48.9 (-8.9) 80.7 72.6 12.1 65.0 (-3.4) 42.7 (-9.8)
YOLOv10 L 44.9 15.9 0.0 20.2 (-15.6) 74.9 56.4 0.6 49.4 (-9.1) 81.6 73.6 12.8 65.8 (-3.5) 43.3 (-9.8)
YOLOv10 X 46.3 17.0 0.0 21.0 (-16.1) 76.0 58.3 0.7 50.6 (-9.3) 82.9 75.2 13.0 67.2 (-3.8) 44.3 (-10.1)
RTMDet-tiny 28.2 7.5 0.0 11.7 (-9.3) 62.9 40.9 0.2 37.9 (-7.6) 73.3 61.6 5.0 55.0 (-3.3) 34.2 (-6.9)

RTMDet-s 33.8 9.3 0.0 14.1 (-11.2) 66.3 44.5 0.2 40.7 (-8.0) 77.4 66.9 6.0 59.1 (-3.5) 37.0 (-7.6)
RTMDet-m 39.9 12.3 0.0 17.2 (-13.5) 71.8 51.1 0.2 45.4 (-8.7) 80.1 70.1 8.4 62.8 (-3.7) 40.6 (-8.8)
RTMDet-l 43.6 15.7 0.0 19.3 (-14.7) 73.6 53.0 0.3 47.2 (-9.0) 81.5 73.3 9.2 64.8 (-3.7) 42.1 (-9.4)
RTMDet-x 45.6 14.5 0.0 20.3 (-15.7) 74.7 55.5 0.3 48.3 (-9.1) 82.4 73.3 10.5 65.5 (-3.7) 43.1 (-9.7)

CO-DETR R-50 42.9 15.3 0.0 19.1 (-15.7) 71.8 52.6 0.3 46.5 (-9.1) 79.9 71.2 10.4 63.6 (-3.5) 41.8 (-10.2)
CO-DETR SwinL 52.5 18.3 0.0 23.4 (-19.2) 79.5 61.1 0.4 52.8 (-9.9) 87.7 79.4 13.8 71.2 (-3.9) 46.9 (-12.0)
CO-DETR SwinL* 59.5 22.6 0.0 27.7 (-22.2) 83.7 66.8 0.6 57.1 (-10.5) 89.7 83.0 16.3 74.3 (-4.1) 50.7 (-13.4)

Table 3. APu
T and APl

T values (%) for different object detectors in COCOval, related to the IoU upper and lower bound metrics.
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Figure 7. Detections results of Yolov10 X (blue) and annotations (red), along with the corresponding IoU values (in %). Best seen zoomed.

Figure 8. Image crops with detections results of Yolov10 X (blue),

original (red) and corrected annotations (green) with their corre-

sponding IoU (in %).

The empirical comparison between original and reanno-

tated BBs performed in Section 3.3 yields an average IoU

of 0.89, which is very close to inter-annotator experiments

reported in [11, 21]. Our analysis presented in Section 4 is

also aligned with the findings in [20], which show that object

detection evaluation based on AP can be strongly affected

by annotation noise at higher IoU thresholds. However, we

show that the IoU degradation is strongly related to the BB

dimensions, as shown in Table 1 and Figure 6. In particular,

smaller objects are more sensitive to annotation noise, which

can severely over- or under-estimate the traditional APT met-

ric, particularly for more restrictive thresholds. We hope that

the proposed noise-aware metrics, which are adjusted based

on the BB dimensions and expected noise level, can provide

a more comprehensive evaluation of object detectors.

Limitations: Eq. (7) can be used to estimate the expected

IoU degradation caused by corner-wise perturbations assum-

ing a generic PDF, and several assumptions/simplifications

were assumed in this work. We used a single truncated Lapla-

cian distribution as the PDF for every HBB, but Figure 5

indicates some variation depending on the bounding box

dimensions. Also, we used the noise distribution from only

five categories to formulate the class-agnostic metrics. Al-

though the findings of Kuznetsova et al. [11] that imprecise

boxes are quite evenly spread over classes corroborate our

assumption, further studies might be needed. We also as-

sumed that the reannotated boxes for Open Images provided

by [17] reflect the GT boxes, but they might also contain

noise. Finally, it would be interesting to evaluate how the

noise distribution behaves for different datasets, i.e., if we

can use the noise-aware metrics estimated from COCO to

evaluate a different dataset.

6. Conclusions and Future Work

This paper presented a noise-aware framework for evalu-

ating object detectors. From a baseline similarity metric that

induces a mathematical distance metric, we deduced upper

and lower bounds based on annotation noise. For HBB ob-

ject detection and the IoU as the similarity metric, we relate

the corner-wise noise level with the IoU degradation, show-

ing that it can be significantly under- or over-estimated. In

particular, smaller objects can be strongly affected by noise.

Based on a reannotated version of the COCO dataset pro-

vided in [17], we estimated the corner-wise noise distribution

and computed the expected IoU degradation for a bounding

box based on its dimensions H ×W . Then, we introduced

noise-aware expected upper and lower bounds for the IoU

based on noise levels and BB dimensions, which are used

to compute the corresponding APT upper and lower bounds

(APu
T and APl

T ). Finally, we evaluated state-of-the-art object

detectors in the validation split of the COCO dataset using

the traditional APT metrics and the proposed error-aware

bounds, showing the results for different IoU thresholds T
and object dimensions (small, medium, and large). As ex-

pected, the largest discrepancies between the baseline APT

and the proposed bounds APu
T and APl

T were observed for

small objects and more restrictive thresholds T . As an over-

all trend for all tested object detectors, the lower bound APl
T

was more pessimistic than the upper bound APu
T was op-

timistic. In future work, we plan to explore the proposed

bounds for defining object-aware thresholds instead of us-

ing a single value for all instances. Since smaller objects

are more affected by noise, we can use more relaxed IoU

thresholds compared to larger objects.
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