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Figure 1. Example applications of our makeup encoder (BeautyBank). We have successfully explored a variety of applications,
including using (a) images with reference makeup to (b) generate facial images with makeup injection, (c) measure makeup similarity, and
(d) transfer makeup, and (e) remove makeup. Additionally, BeautyBank can utilize two different facial identity references (Source Img 1
and 2) and two different makeup references (Ref Img 1 and 2) to (f) simultaneously interpolate identity and makeup. The images generated
using the makeup code from BeautyBank show high-quality details such as makeup colors, patterns, and textures across various makeup
applications.

Abstract

The advancement of makeup transfer, editing, and im-
age encoding has demonstrated their effectiveness and su-
perior quality. However, existing makeup works primar-
ily focus on low-dimensional features such as color dis-
tributions and patterns, limiting their versatillity across a
wide range of makeup applications. Futhermore, exist-
ing high-dimensional latent encoding methods mainly tar-
get global features such as structure and style, and are less
effective for tasks that require detailed attention to local
color and pattern features of makeup. To overcome these
limitations, we propose BeautyBank, a novel makeup en-
coder that disentangles pattern features of bare and makeup
faces. Our method encodes makeup features into a high-
dimensional space, preserving essential details necessary
for makeup reconstruction and broadening the scope of
potential makeup research applications. We also propose
a Progressive Makeup Tuning (PMT) strategy, specifically
designed to enhance the preservation of detailed makeup
features while preventing the inclusion of irrelevant at-

tributes. We further explore novel makeup applications,
including facial image generation with makeup injection
and makeup similarity measure. Extensive empirical exper-
iments validate that our method offers superior task adapt-
ability and holds significant potential for widespread ap-
plication in various makeup-related fields. Furthermore, to
address the lack of large-scale, high-quality paired makeup
datasets in the field, we constructed the Bare-Makeup Syn-
thesis Dataset (BMS), comprising 324,000 pairs of 512x512
pixel images of bare and makeup-enhanced faces.

1. Introduction

The rapid progress of various generative models, such
as GANs and diffusion models, has significantly advanced
makeup-related visual tasks [14, 20, 21, 27]. Despite their
impressive performance, the algorithms are specifically de-
signed for certain makeup tasks, such as makeup trans-
fer and editing [17, 25, 50, 56, 59]. The primary reason is
that they tend to model low-dimensional representations of
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Figure 2. Typical issues in generated images using the baseline method. When DualStyleGAN [51] is utilized for makeup transfer
tasks, the generated images often exhibit inconsistencies in the facial identity compared to the source images. There is also a lack of detail
in makeup attributes, such as local colors and patterns, and an entanglement with features that are not related to the makeup pattern.

makeup features, such as color distributions, local details,
and pattern styles [25,32,50]. Consequently, these methods
struggle to handle the diverse and intricate demands of real-
world makeup applications, such as facial image generation
with makeup injection and makeup similarity measure.

On the other hand, the latent code representation has
shown its great performance in image generation, style
transfer, and image editing [33, 51, 52]. In paticular, these
methods generate high-quality style images by encoding
high-dimensional style features and subsequently manip-
ulating latent codes in semantically meaningful ways. It
should be noted that these methods primarily focus on
global features, including structural elements and overall
color styles. However, makeup-related tasks emphasize the
consistency of identity features between makeup and bare-
face images, as well as the details of local colors and pat-
terns in makeup. Directly applying existing methods to
makeup encoding tasks can lead to significant facial identity
changes or loss of local makeup details, as shown in Fig. 2
(a) and (b). Additionally, without disentangling makeup-
irrelevant information, the generated images also exhibit
significant alterations in non-facial areas such as hair and
background, as shown in Fig. 2 (c).

In this paper, we propose a novel makeup encoding
method that efficiently encodes facial makeup features into
a high-dimensional latent space. Our method adapts to vari-
ous makeup applications while preserving detailed informa-
tion essential for high-quality makeup reconstruction. We
initially introduce BeautyBank, a makeup encoder featuring
separate paths for bare-face and makeup styles. During the
training of the bare-face style path, we applied a facial en-
hancement loss to maintain the consistency of identity fea-
tures in the bare-face code. The refined bare-face code can
subsequently improve the makeup style path’s ability to en-
code makeup representations independently. Additionally,
we introduce a Progressive Makeup Tuning (PMT) strategy
that employs varied training strategies and loss functions

at different stages to progressively fine-tune the makeup
code. BeautyBank achieves stable makeup encoding, pre-
serves rich makeup detail features, and effectively disen-
tangles unrelated features, such as hair and background,
from the makeup encoding process. Furthermore, given
the current lack of large-scale, high-quality paired makeup
datasets, we construct the Bare-Makeup Synthesis Dataset
(BMS), comprising 324,000 pairs of 512x512 pixel bare-
face to makeup face images. This dataset provides a di-
verse array of makeup data for makeup encoding tasks. We
generate the makeup data in the BMS dataset using LED-
ITS++ [6] based on style and color prompts collected from
the FFHQ [20] dataset, encompassing a wide variety of
makeup styles, colors, and patterns.

In summary, our contributions are threefold:

• We introduce BeautyBank, a novel makeup encoder
that effectively disentangles bare-face features from
makeup style features. This facilitates the encoding
of makeup in a high-dimensional feature space. Our
experiments demonstrate that our method expands the
range of makeup applications beyond existing meth-
ods, enabling facial image generation with makeup in-
jection and makeup similarity measure, as shown in
Fig. 1.

• We design the PMT strategy that incrementally fine-
tunes makeup encoding. This strategy ensures the
preservation of essential makeup detail features, such
as color textures, while reducing the influence of
makeup-unrelated features.

• We construct the BMS datasaet, a large-scale, high-
resolution makeup dataset that ensures diversity in
makeup encoding. To our knowledge, this is the first
large-scale dataset of its kind, consisting of paired
512x512 pixel images of bare and made-up faces. We
will make this dataset publicly available and hope it
can assist future makeup-related research.
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2. Related Work
2.1. Facial Makeup Tasks

Facial makeup is an important aspect of human appear-
ance. In computer vision and graphics, mainstream research
focuses on makeup transfer [7–9,13,17,18,22,25,26,28,32,
40, 41, 48–50, 59], 3D makeup [16, 24, 30, 38, 54–56], and
face verification [15, 39].

The task of makeup transfer is transferring a makeup pat-
tern in a specified reference face image to a source face
image. Early research focused on the color distribution of
makeup [25], while more recent studies attempt to transfer
complex makeup patterns [59]. In addition, several stud-
ies have analyzed factors in facial images, which allows for
makeup transfer to accommodate variations such as light-
ing [56], occlusion [28], and head pose [17, 50]. How-
ever, most methods are limited to low resolutions, such as
256 × 256. 3D makeup research primarily focuses on the
3D makeup estimation or the beautification and stylization
of avatars [5]. Tasks related to makeup in face verifica-
tion [15,39] underscore the importance of security and face
protection. They achieve this by adding makeup to faces,
thereby generating images that aid in privacy protection.
It’s also worth noting that research dedicated specifically
to makeup recommendation is somewhat limited [4].

Although certain image generation models provide the
option to generate makeup images, they typically treat
makeup as a unified face feature, without offering con-
trol over its type and style [34, 45, 46, 57]. Recent studies
have combined CLIP [35] or diffusion model [14] to gen-
erate high-quality images with a certain level of makeup
control [5, 6, 31, 39, 44]. However, these language-based
makeup image generation methods cannot precisely control
makeup details, and often, the same prompt does not pro-
duce consistent makeup results.

Our method aims to encode facial makeup to obtain dis-
entangled makeup features. Our makeup encoding can be
applied to various applications and expand makeup-related
research, enabling new tasks such as enhanced facial im-
age generation with makeup injection and makeup similar-
ity measure.

2.2. StyleGAN-based Stylized Portrait

Stylized portrait generation has seen significant advance-
ments [23,33,51,52,58], particularly through the use of the
StyleGAN model [20,21] for high-resolution image genera-
tion and flexible style control. Approaches like Toonify [33]
fine-tune a pre-trained StyleGAN on cartoon datasets, com-
bining layers from the fine-tuned and original models to
generate cartoon-like faces. The pSp method [36] trains
an encoder to project real face images into cartoon faces,
while DualStyleGAN [51] adds an extrinsic style path for
exemplar-based style transfer. StyleGAN-NADA [12] uses

Figure 3. The workflow of latent code optimization. We en-
hance the encoding of identity information to optimize the bare-
face code (see Section 3.2.2 for details). Subsequently, based on
the encoded bare-face code, we use the specially designed ob-
jective function to enhance the encoding of makeup details and
avoid encoding features unrelated to the makeup, achieving the fi-
nal makeup encoding (see Section 3.3.2 for details).

CLIP to guide StyleGAN into new artistic domains with-
out real cartoon datasets, enabling text-driven toonification.
StyleGAN inversion techniques [1–3, 11, 36, 37, 42, 43, 46,
47, 53] further enhance these capabilities by projecting real
face images into StyleGAN’s latent space for editing.

In contrast to the challenges faced by stylized portrait
methods, such as misalignment caused by artistic styles,
our focus is on realistic face images, specifically within
two domains: bare-face and makeup-face. We build upon
the StyleGAN-based stylized portrait framework [51] and
leverage StyleGAN inversion techniques to capture high-
dimensional representations of makeup.

3. Methodology

Our objective is to develop an enhanced model, named
BeautyBank (in Section 3.1), which is inspired by Dual-
StyleGAN [51]. It encodes makeup to cater to a broader
range of makeup-related applications. Our core idea in-
volves incorporating prior knowledge of identity encoding
and makeup as supervision, extracting the bare-face code of
makeup portraits (in Section 3.2). Building on the bare-face
code, we employ a progressive fine-tuning strategy specifi-
cally designed to optimize makeup codes, preserving more
detailed makeup features and reducing unrelated informa-
tion. (in Section 3.3). The workflow is illustrated in Fig. 3.
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3.1. BeautyBank

Drawing from the network architecture of DualStyle-
GAN [51], BeautyBank is designed to extract bare-
face and makeup features. It includes two independent
style paths—a bare-face style path and a makeup style
path—along with a fusion module F .

The bare-face style path features a bare-face encoding
module Eb, constructed based on the pSp encoder [36],
which maps the input facial features to Z+ space. This
initial latent code z+ (z+ = Eb(I)) is refined to obtain
the bare-face code z+b (z+b ∈ R18×512), capturing facial
identity and structural features. The input image I can be
replaced with the reference makeup image Im if there is
no corresponding bare-face image available. Similar to the
bare-face style path, the makeup style path incorporates a
makeup encoding module, Em, also constructed based on
the pSp encoder, which maps makeup features of Im to Z+

space. This results in an initial makeup code, Em(Im),
that prepares for subsequent makeup encoding of Im. Eb

and Em are both pretrained on the FFHQ dataset. The fu-
sion module F incorporates two mapping networks for z+b
(the bare-face style path) and Em(Im) (the makeup style
path) separately, and a synthesis network to fuse the two
latent codes after mapping. This module generates facial
images that merge identity features from z+b with makeup
features from Em(Im). After refining z+b , we further op-
timizes the initial makeup code to obtain the final makeup
code z+m (z+m ∈ R18×512), which allows for more flexible
control over specific makeup features (color and structural
features) of the generated image. The style adjustment pa-
rameter w (w ∈ R18), used in F , serves as a weight vector
for the flexible blending of style features from z+b and z+m,
and is preset to 1. When w is set to 0, F degrades to a
standard StyleGAN generator g for face generation.

3.2. Identity-Optimized Bare-face Encoding

Bare-face encoding aims to disentangle bare face fea-
tures from the reference makeup image Im to guide the sub-
sequent encoding and reconstruction of makeup features. In
this section, we first provide a concise introduction to Dual-
StyleGAN [51] in Section 3.2.1, which outlines the method-
ology for facial destylization. We then present a detailed
explanation of our bare-face code optimization method in
Section 3.2.2.

3.2.1 Overview of DualStyleGAN

Our bare-face encoding method is an extension of the facial
destylization approach proposed in DualStyleGAN [51].
To balance between face realism and fidelity to the por-
traits, DualStyleGAN proposes a multi-stage destylization
method to obtain an intrinsic style code containing facial
structure features.

(a) Ref Img 𝐼!     (b) 𝑔(𝐸"(𝐼!)) (c) 𝑔(�̂�"#) (d) 𝑔(𝑧"#) 

Figure 4. Example of bare-face encoding. Bare-face encoding
results from (a) in the preliminary stage (in Section 3.2.1) are
shown in (b), while results from bare-face code optimization (in
Section 3.2.2) are shown in (c) and (d). Bare-face encoding pro-
gressively disentangles the makeup information contained in (a)
while maintaining consistent identity features.

Initially, DualStyleGAN performs the latent initializa-
tion of an artistic portrait. Due to the robustness of Z+ space
compared to W+ space in handling background details un-
related to the face and distorted shapes, the encoder Eb is
utilized to encode the artistic portrait into the Z+ space.
Then the initial reconstructed facial image is generated us-
ing g, which is pretrained on FFHQ.

Subsequently, the latent codes are refined to better match
the facial structures. Although the output of g at this stage,
as shown in Fig. 4 (b), closely resembles the original face
due to g’s limitations in fully reconstructing the artistic por-
trait, certain artistic style features are encoded into Z+.
Therefore, DualStyleGAN performs the latent code opti-
mization, and then applies the latent code of gf back to g
to achieve the transfer from the artistic portrait domain to
the original face domain. gf is obtained by further fine-
tuning g using makeup images from the BMS dataset. For
more details, please refer to the paper [51].

3.2.2 Bare-face Code Optimization

In the process of latent code optimization (as shown in
Fig. 3), although DualStyleGAN incorporates an identity
loss, inconsistencies remain between the identity features
of the reconstructed images and the reference makeup (as
discussed in Section 4.4). This discrepancy is primar-
ily attributed to the facial recognition model used (Arc-
Face [10]), which does not focus exclusively on the fa-
cial region, thereby impacting the accuracy of identity
matching. To mitigate the effects of inaccurately encoded
bare-face codes on subsequent makeup encoding, we im-
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Ref Img (a) Facial Mask
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(b) Eye mask
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Figure 5. Example of the Masks Utilized in BeautyBank. Dur-
ing Bare-face Code Optimization, the objective function employs
mask (a) (in Section 3.2.2). Stage 1 of Progressive Makeup Tun-
ing utilizes masks (a), (b), and (c), while Stage 2 employs masks
ranging from (a) to (f) (in Section 3.3.2).

prove the focus on identity features within the facial re-
gion during the optimization of the bare-face code. This
is achieved by employing a facial mask (Mface) as shown
in Fig. 5 (a) and integrating it into the objective func-
tion. Specifically, we introduce a facial enhancement loss
Lfm(gf (z

+), Im,Mface) = ∥(Im − gf (z
+)) ⊙ Mface∥1,

where ⊙ denotes the Hadamard product. This calculates the
loss for the facial mask Mface region. The full objective
function for optimizing the latent encoding is

Lb =λp1Lperc(gf (z
+), Im) + λidLid(gf (z

+), Im)

+ λfm1
Lfm(gf (z

+), Im,Mface) + ∥σ(z+)∥1,

where Lperc denotes perceptual loss [19], Lid is the iden-
tity loss [10], and σ(z+) represents the standard error of 18
different 512-dimension vectors in z+, to avoid overfitting
during training. The parameters λp1

, λid, λfm1
are set to 1,

0.1, and 0.0001, respectively. By minimizing Lb, we obtain
the optimized latent ẑ+b .

Since gf is a model fine-tuned on the BMS dataset and
g is pre-trained on FFHQ, they can be regarded as image
generators for the makeup domain and bare-face domain,
respectively. Therefore, using the optimized ẑ+b , we obtain
g(ẑ+b ) as a bare face image that has removed makeup and
retains facial features from Im. The reconstructed facial im-
age by g is shown in Fig. 4 (c). Finally, we use the encoder
Eb to encode this bare face image, obtaining the bare-face
code, z+b = Eb(g(ẑ

+
b )). Fig. 4 (d) shows the reconstructed

facial image of z+b .
Furthermore, as the BMS dataset contains paired data

of bare faces Ib and makeup Im, encoding makeup within
the BMS dataset simply requires the use of z+b = Eb(Ib) to
obtain the bare-face code. However, for in-the-wild makeup
images that lack paired data, the aforementioned bare-face
encoding process is still necessary.

3.3. Conditional Fine-Tuning Makeup Encoding

To obtain a high-dimensional makeup code enriched
with detailed makeup information, we perform the pre-
training and fine-tuning of BeautyBank, as discussed in
Section 3.3.1, and implement the Progressive Makeup Tun-
ing (PMT) strategy for makeup encoding optimization, as

outlined in Section 3.3.2.

3.3.1 Pre-training and fine-tuning of BeautyBank.

Following DualStyleGAN [51], we conduct pre-training
and fine-tuning of the fusion module in BeautyBank to pre-
pare for makeup encoding. To ensure stable and smooth
model training, we initially performed the pre-training of
the fusion module using the FFHQ dataset. This stage is
implemented through color transfer and structural transfer
training. Color transfer can stabilize the network parame-
ters without deviating from the original generative space,
achieving color migration within the original generative
space. Structural transfer involves style mixing operations
in the intermediate layers, ensuring the effective capturing
and mimicking of detailed structural features while main-
taining the color style. To enable the fusion module to uti-
lize the bare-face code and the makeup code to generate fa-
cial images in the makeup domain, we fine-tune the fusion
module using facial images from the BMS dataset. Specifi-
cally, we input paired bare-face code z+b and initial makeup
code Em(Im) into the fusion module to reconstruct facial
makeup. The objective function for this stage is

Lm1 = λadvLadv + λp2Lperc + λstyLsty + λcon1Lcon,

where parameters λadv , λp2
, λsty , and λcon1

are set to 1.
Ladv , Lsty , and Lcon denote adversarial loss, style loss,
and contextual loss [29], respectively. The parameters λadv ,
λp2 , λsty , and λcon1 are set to 1.

3.3.2 Progressive Makeup Tuning

To better encode essential makeup details and disentan-
gle urelated features, we introduce the Progressive Makeup
Tuning (PMT) strategy to optimize the initial makeup code.
PMT consists of two stages.
(Stage 1) Detail-Oriented Latent Optimization: To op-
timize the makeup detail encoding, we fix the parameters
of BeautyBank and fine-tune the makeup code. During
this fine-tuning stage, the fusion module in BeautyBank re-
ceives paired inputs of the bare-face code and the optimized
makeup code. It then reconstructs makeup images to calcu-
late the loss necessary for latent optimization. In the objec-
tive function, we incorporate prior knowledge of face pars-
ing to enhance feature extraction in makeup-concentrated
regions (overall face, eyes, lips) of facial images. We apply
the objective function

Lm2−1
=λp3

Lperc + λcon2
Lcon + λfm2

Lfm

+ λpm1
Lpm + λem1

Lem + λlm1
Llm,

where Lpm, Lem, and Llm are the perceptual loss of utiliz-
ing the facial mask Mface in Fig. 5 (a), eye mask Meye in
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Fig. 5 (b), and lip mask Mlip in Fig. 5 (c). The parameters
λp3 , λcon2 , λfm2 , λpm1 , λem1 , and λlm1 are set to 1, 1,
0.0001, 100, 100, 100, respectively.
(Stage 2) Non-Makeup Features Disentanglement: To
disentangle makeup-unrelated features (e.g., background,
hair color), we further optimize the makeup code. We con-
duct training using different sources of bare-face code z+b
and makeup code z+m, and replace Lperc with λpfLpf +
λpbLpb in the objective function of the previous stage:

Lm2−2 = λpfLpf + λpbLpb + λfm3Lfm + λcon3Lcon

+ λpm2Lpm + λem2Lem + λlm2Llm,

where Lpf , Lpb represent the perceptual loss of utilizing
masks for facial areas, Mfore, in Fig. 5 (d), and masks for
non-facial areas, Mback, in Fig. 5 (e). In this stage, the out-
put of BeautyBank is a facial image with face and back-
ground features from the bare-face code and makeup fea-
tures from the makeup code. This avoids the inclusion of
makeup-unrelated features in the makeup code. The param-
eters λpf , λpb, λfm3

, λcon3
, λpm2

, λem2
, and λlm2

are set
to 100, 100, 0.0001, 1, 100, 100, 100, respectively.

Through PMT, BeautyBank achieves bare-face and
makeup encoding for 1412 makeup styles. This makeup en-
coding can be widely applied to various makeup tasks, such
as generating faces with specific makeup, makeup transfer,
and makeup similarity measure, discussed in Section 5.

4. Experiments

4.1. Bare-Makeup Synthesis Dataset

We utilized a pretrained diffusion method LEDITS++ [6]
to create a large-scale bare-makeup synthesis dataset, Bare-
Makeup Synthesis Dataset (BMS). The construction pro-
cess primarily involves two steps:

First, inspired by Stable-Makeup [59], we employed
GPT-4 to generate 400 style prompts using the template
“make it {} makeup”. However, upon testing these prompts,
we found that the generated makeup samples lacked diver-
sity in patterns and colors. Therefore, we used the tem-
plate “{} makeup with {} on the face” to generate 410 style
prompts with GPT-4. To further enhance the diversity of
prompts, we constructed 20 color prompts (e.g., Red, Blue,
etc.). Ultimately, we created 16,200 prompt pairs by com-
bining the 810 style prompts with the 20 color prompts,
which were used to guide the LEDITS++ model in synthe-
sizing makeup data.

Second, we used the FFHQ dataset as the bare skin data
to synthesize the corresponding makeup data. For each
prompt, we randomly selected 20 facial images from the
FFHQ dataset as source images for makeup rendering.

Consequently, we constructed the BMS dataset, com-
prising 324,000 pairs of 512x512 pixel bare-makeup facial

LEDITS++FFHQ LEDITS++FFHQ

Figure 6. Examples of generated makeup images using LED-
ITS++ with text prompt. Despite using the same style prompt
’make it fairy makeup’ and the color prompt ’Blue’, the generated
images exhibit markedly different colors and pattern details.

images. It should be noted that even when using identi-
cal prompts, LEDITS++ cannot produce consistent makeup
results. As shown in Fig. 6, using the same style prompt
“make it fairy makeup” and the color prompt “Blue”, the
generated makeup looks are significantly different. This
demonstrates that the prompt code cannot be used as the
makeup embedding.

4.2. Experimental Setup

We conducted the training of BeautyBank using the PMT
strategy. The training was performed on 4 NVIDIA Tesla
T4 GPUs, with a batch size of 2 per GPU. For bare-face
encoding, the number of training iterations for gf was 600,
and the number of iterations for optimizing the encoding
was 300. In makeup encoding, the number of iterations
for each stage of PMT was 300 and 300, respectively. The
bare-face images used for training were sourced from the
FFHQ dataset, and the makeup images were sourced from
the BMS dataset and BeautyFace dataset [49].

Our developed BeautyBank can encode a wide variety of
makeup styles. Currently, we have encoded 1412 makeup
codes using BeautyBank, all of which are derived from
the BMS dataset and BeautyFace dataset. Utilizing these
makeup codes, we can perform various makeup-related
tasks (in Section 5), demonstrating the versatility and flex-
ibility of BeautyBank in practical applications. To further
expand the application scope of BeautyBank, we plan to
encode additional makeup codes in future work to support
more diverse makeup image tasks.

4.3. Comparison with SOTA

We performed comprehensive comparisons with the
most representative makeup transfer algorithms, including
PSGAN [17] SCGAN [9], EleGANt [50], BeautyRec [49],
CSD-MT [41], and Stable-Makeup [59]. As shown in
Fig. 7, our results demonstrate more stable performance
across various makeup references.

Besides, we conducted a user study to quantitatively
evaluate the generation quality and transfer accuracy of dif-
ferent models. We randomly selected 20 pairs of bare-face
images from the FFHQ dataset and makeup images from the
BMS dataset and BeautyFace dataset, producing 20 makeup
transfer result images. A total of 15 participants were asked
to evaluate these samples in three aspects: “visual quality”,
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(c) EleGANt (g) OursRef Img Source Img (e) CSD-MT (f) Stable-Makeup(b) SCGAN(a) PSGAN (d) BeautyREC

Figure 7. Qualitative comparison of different methods. Our results outperform other methods in terms of color and detail.

Source Img

(a) Bare-face encoding

 (Sec. 3.2)

w/ (𝐿𝑓𝑚+𝐿𝑝𝑚

+𝐿𝑒𝑚+𝐿𝑙𝑚)
(Sec. 3.3.2. Stage 1)

w/ fine-tuning
(Sec. 3.3.1) 

w/o 𝐿𝑓𝑚 
(Sec. 3.2.1)

w/ 𝐿𝑓𝑚 
(Sec. 3.2.2) 

w/ (𝐿𝑝𝑓+𝐿𝑝𝑏)
(Sec. 3.3.2. Stage 2)

Ref Img (b) Makeup encoding 
(Sec. 3.3) 

Figure 8. Ablation study. Figure (a) illustrates the ablation study
of each stage in bare-face encoding (in Section 3.2), while Figure
(b) shows the ablation study of each stage in makeup encoding (in
Section 3.3).

Table 1. Comparison of different methods based on Quality,
Detail, and Overall performance. Our method received the high-
est (best) scores across all criteria.

Criteria PSGAN SCGAN EleGANt BeautyRec CSD-MT Stable-Makeup BeautyBank
[17] [9] [50] [49] [41] [59] (Ours)

Quality↑ 0.00% 0.00% 20.00% 0.00% 0.00% 6.67% 73.33%
Detail↑ 0.00% 0.00% 40.00% 0.00% 0.00% 13.33% 46.67%
Overall↑ 0.00% 0.00% 26.67% 0.00% 0.00% 6.67% 66.67%

“detail processing” (the precision of transferred details),
and “overall performance” (the visual quality, the fidelity of
transferred makeup, etc.). Participants were requested to se-
lect the best set of results for each aspect. Table 1 shows the
results of the user study (ratio (%) selected as the best). Our
BeautyBank outperformed other methods in all aspects. It
should be noted that our evaluation data includes reference
makeup images with extensive occlusions and shadows, as
we aim to evaluate the stability of performance under vari-
ous conditions.

4.4. Ablation Study

This section demonstrates the effectiveness of bare-face
encoding and makeup encoding by showcasing results on
makeup image generation and makeup transfer tasks. As
shown in Fig. 8, our results demonstrate more stable perfor-
mance across various makeup references.
Bare-face encoding: Fig. 8 (a) shows the performance in
the makeup transfer task before and after adding Lfm dur-

Figure 9. Examples of makeup facial generation with makeup
injection. We replace the bare-face code with random Gaussian
noise as input to BeautyBank, generating facial images with the
same makeup but varying in gender, expressions, hairstyles, and
face shapes.

ing the optimization stage. Without Lfm, the loss of iden-
tity features is more pronounced under the same number of
iterations. Additionally, it is worth noting that the makeup
transfer results shown in this section are all generated by
BeautyBank after completing the stage 1 of PMT.
Makeup encoding: Fig. 8 (b) presents the results from
BeautyBank training along with stages 1 and 2 of PMT in
the makeup transfer task. With the addition of the detail-
enhanced objective function, BeautyBank can fully transfer
the color and pattern of the makeup. After further latent
optimization, as the makeup code contains fewer makeup-
unrelated features, BeautyBank can better preserve the hair
and background color of the source image.

5. Applications
To explore the effectiveness of our method, we evaluated

our makeup encoding on several makeup-related applica-
tions.
Makeup facial generation with makeup injection: We
randomly selected several sets of encoded makeup codes,
and for each makeup code, we generated random Gaussian
noises to replace the bare-face code. Subsequently, we used
the fusion module of BeautyBank for facial image genera-
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Figure 10. Examples of makeup similarity measure with ref-
erence makeup. By searching the encoded makeup database and
calculating the cosine similarity with the makeup code of the query
image, we can identify the makeup style most similar to the query
image.

Bare-face interpolation

Source Img 1

Ref Img 1 Ref Img 2

Source Img 2

Makeup interpolation

Figure 11. Makeup interpolation application. BeautyBank can
separately encode the bare-face code (Source Img 1 and 2) and the
makeup code (Ref Img 1 and 2), supporting interpolation between
different sets of bare-face and makeup images.

Source Img Ref Img             Ours              Ref Img             Ours                              

(a) Facial occlusion (b) Expression entanglement

Figure 12. Limitations of BeautyBank. The makeup images
generated by Beauty perform poorly in cases of extensive facial
occlusion, or exhibit entangled expression information due to the
limitations of the image encoder.

tion. Fig. 9 illustrates the results of our facial image gen-
eration. The figure indicates that by altering the input ran-
dom noise, we can generate faces with various expressions,
poses, genders, and hairstyles, while retaining the specified
makeup.
Makeup similarity measure: As shown in Fig. 10, by cal-
culating and ranking the cosine similarity between makeup
codes, we can retrieve similar makeup styles from the en-
coded makeup database. The examples shown are from the
1412 encoded makeup styles. With more makeup encoded,
more accurate and similar results can be obtained.
Makeup transfer: As shown in Fig. 7, BeautyBank can

perform makeup transfer by utilizing the bare-face code
from the source image and the makeup code from the refer-
ence makeup image. The generated images using Beauty-
Bank are overall more natural and realistic, with rich colors
and detailed features in the makeup.

Makeup removal: As shown in Fig. 4 (d), BeautyBank
can generate bare-skin facial images with preserved iden-
tity features by performing bare-face encoding of the input
makeup image Im.

Makeup interpolation: Demonstrated in Fig. 1 (f) and 11,
since BeautyBank includes two style paths, we can achieve
seamless interpolation between different source images and
reference makeup styles by interpolating between the bare-
face codes or between the makeup codes.

6. Conclusion

In this study, we introduced BeautyBank, a novel
makeup encoding approach that significantly expands the
application possibilities in the field of makeup. We also de-
veloped the Bare-Makeup Synthesis Dataset (BMS) and the
Progressive Makeup Tuning (PMT) strategy, which enhance
the extraction and refinement of makeup codes. Extensive
empirical testing confirms that our approach not only im-
proves the adaptability of makeup tasks but also opens up
new avenues for innovative applications such as makeup in-
jection and similarity measure. We believe these advance-
ments set a new standard for future research and applica-
tions in makeup-related technologies.

As illustrated in Fig. 12, although our model demon-
strates robustness in accurately encoding makeup from ref-
erence images with partial facial occlusions, significant
occlusions can lead to incorrect encoding in these areas.
Moreover, accurately estimating natural skin tone from im-
ages with makeup presents challenges, primarily because
most makeup applications include a foundation layer. Con-
sequently, our methodology assumes that the input facial
images already have foundation applied. Additionally, due
to the variability in iris color—which may be natural or al-
tered by cosmetic lenses—we do not categorize it as un-
related to makeup. Therefore, both the foundation color
and iris color in our generated results are closely aligned
with the reference makeup. Furthermore, the accuracy of
our makeup encoding process, which utilizes the pSp en-
coder [36], is constrained by the capabilities of this model.
Challenges such as effectively disentangling facial expres-
sions or avoiding identity shifts during the encoding process
may occur. Moving forward, we plan to explore the use
of higher-quality facial encoders and develop specialized
methods aimed at more effectively disentangling expres-
sions while preserving identity features to overcome these
limitations.
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